Skip to main content
Log in

Phenotypic characterization of a novel type 2 diabetes animal model in a SHANXI MU colony of Chinese hamsters

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Developing animal models for human diseases is critical for studying complex diseases such as type 2 diabetes mellitus (T2DM). Since inbred colonies of Chinese hamsters tend toward spontaneous development of diabetes, we investigated them as a possible model.

Methods

We regarded individuals with fasting blood glucose (FBG) higher than 6.0 mmol/L and post-prandial blood glucose (PBG) higher than 7.0 mmol/L as diabetic based on the mean and 95% frequency distribution values of FBG and PBG. Diabetic hamsters were characterized based on metabolic profiles, histopathological features, and changes in the expression of genes involved in glucose and lipid metabolism.

Results

Metabolic analyses showed that diabetic hamsters exhibited mild hyperglycemia, hypertriglyceridemia, glucose intolerance, and insulin resistance. Histopathological analysis revealed that cell nuclei migrated inward in skeletal muscle and obvious partial liver lipid deposition and focal necrosis was found. We additionally observed mild injury, atrophy, and occasional vacuolization in islet cells. Changes in the expression of several genes related to glucose and lipid metabolism were observed. Decreased expression of adiponectin and GLUT4 and increased expression of PPARγ, Akt, and leptin was observed in skeletal muscle. Decreased expression of adiponectin with increased expression of PPARγ and leptin was observed in the liver.

Conclusions

These results indicate that we have established a spontaneous diabetic hamster line that closely mimics human T2DM, which may hold potential for further research on the pathogenesis and treatment of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.Y. Lu, S.D. Qi, Y. Zhao, Y.Y. Li, F.M. Yang, W.H. Yu, M. Jin, L.X. Chen, J.B. Wang, Z.L. He, H.J. Li, Type 2 diabetes mellitus non-genetic Rhesus monkey model induced by high fat and high sucrose diet. Exp. Clin. Endocrinol. Diabetes. 123(1), 19–26 (2015). https://doi.org/10.1055/s-0034-1385923

    Article  CAS  PubMed  Google Scholar 

  2. B.K. Podell, D.F. Ackart, M.A. Richardson, J.E. DiLisio, B. Pulford, R.J. Basaraba, A model of type 2 diabetes in the guinea pig using sequential diet-induced glucose intolerance and streptozotocin treatment. Dis. Models Mech. 10(2), 151–162 (2017). https://doi.org/10.1242/dmm.025593

    Article  CAS  Google Scholar 

  3. N.H. Cho, J.E. Shaw, S. Karuranga, Y. Huang, J.D. da Rocha Fernandes, A.W. Ohlrogge, B. Malanda, IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 138, 271–281 (2018). https://doi.org/10.1016/j.diabres.2018.02.023

    Article  CAS  PubMed  Google Scholar 

  4. X. Li, J. Lu, Y. Wang, X. Huo, Z. Li, S. Zhang, C. Li, M. Guo, X. Du, Z. Chen, Establishment and characterization of a newly established diabetic gerbil line. PLoS ONE 11(7), e0159420 (2016). https://doi.org/10.1371/journal.pone.0159420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. N. Lawlor, J. George, M. Bolisetty, R. Kursawe, L. Sun, Single cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes. Genome Res. 27(2), 208 (2017)

    Article  CAS  Google Scholar 

  6. C. Sandor, N.L. Beer, C. Webber, Diverse type 2 diabetes genetic risk factors functionally converge in a phenotype-focused gene network. PLoS Comput. Biol. 13(10), e1005816 (2017). https://doi.org/10.1371/journal.pcbi.1005816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. S. De Rosa, B. Arcidiacono, E. Chiefari, A. Brunetti, C. Indolfi, D.P. Foti, Type 2 diabetes mellitus and cardiovascular disease: genetic and epigenetic links. Front. Endocrinol. 9, 2 (2018). https://doi.org/10.3389/fendo.2018.00002

    Article  Google Scholar 

  8. S. O’Rahilly, I. Barroso, N.J. Wareham, Genetic factors in type 2 diabetes: the end of the beginning? Science 307(5708), 370–373 (2005)

    Article  Google Scholar 

  9. W.T. Cefalu, Animal models of type 2 diabetes: clinical presentation and pathophysiological relevance to the human condition. Ilar J. 47(3), 186–198 (2006)

    Article  CAS  Google Scholar 

  10. M.S. Islam, R.D. Wilson, Experimentally induced rodent models of type 2 diabetes. Methods Mol. Biol. 933, 161 (2012)

    CAS  PubMed  Google Scholar 

  11. A. Nishigaki, H. Noma, T. Kakizawa, The relations between doses of streptozotocin and pathosis in induced diabetes mellitus. Shikwa Gakuho 89(3), 639–662 (1989)

    CAS  PubMed  Google Scholar 

  12. D.A. Rees, J.C. Alcolado, Animal models of diabetes mellitus. Diabet. Med. 22(4), 359–370 (2010)

    Article  Google Scholar 

  13. H. Ueda, H. Ikegami, E. Yamato, J. Fu, M. Fukuda, G. Shen, The NSY mouse: a new animal model of spontaneous NIDDM with moderate obesity. Diabetologia 38(5), 503–508 (1995)

    Article  CAS  Google Scholar 

  14. W. Suzuki, S. Iizuka, M. Tabuchi, S. Funo, T. Yanagisawa, M. Kimura, A new mouse model of spontaneous diabetes derived from ddY strain. Exp. Anim. 48(3), 181–189 (1999)

    Article  CAS  Google Scholar 

  15. J.H. Kim, A.M. Saxton, The TALLYHO mouse as a model of human type 2 diabetes. Methods Mol. Biol. (Clifton, N. J.) 933, 75–87 (2012). https://doi.org/10.1007/978-1-62703-068-7_6

    Article  CAS  Google Scholar 

  16. L. Boquist, Obesity and pancreatic islet hyperplasia in the Mongolian gerbil. Diabetologia 8(4), 274–282 (1972)

    Article  CAS  Google Scholar 

  17. K. Kimura, T. Toyota, M. Kakizaki, M. Kudo, K. Takebe, Y. Goto, Impaired insulin secretion in the spontaneous diabetes rats. Tohoku J. Exp. Med. 137(4), 453–459 (1982)

    Article  CAS  Google Scholar 

  18. S.E. Kahn, R.L. Hull, K.M. Utzschneider, Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444(7121), 840–846 (2006). https://doi.org/10.1038/nature05482

    Article  CAS  Google Scholar 

  19. R. Raj, J.S. Bhatti, S.K. Bhadada, P.W. Ramteke, Association of polymorphisms of peroxisome proliferator activated receptors in early and late onset of type 2 diabetes mellitus. Diabetes Metab. Syndr. 11(Suppl 1), S287–s293 (2017). https://doi.org/10.1016/j.dsx.2017.03.004

    Article  PubMed  Google Scholar 

  20. T.J. Hsiao, E. Lin, The Pro12Ala polymorphism in the peroxisome proliferator-activated receptor gamma (PPARG) gene in relation to obesity and metabolic phenotypes in a Taiwanese population. Endocrine 48(3), 786–793 (2015). https://doi.org/10.1007/s12020-014-0407-7

    Article  CAS  PubMed  Google Scholar 

  21. X. Lv, L. Zhang, J. Sun, Z. Cai, Q. Gu, R. Zhang, A. Shan, Interaction between peroxisome proliferator-activated receptor gamma polymorphism and obesity on type 2 diabetes in a Chinese Han population. Diabetol. Metab. Syndr. 9, 7 (2017). https://doi.org/10.1186/s13098-017-0205-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. M. Mueckler, Family of glucose-transporter genes. Implications for glucose homeostasis and diabetes. Diabetes 39(1), 6–11 (1990)

    Article  CAS  Google Scholar 

  23. X. Zhou, P. Shentu, Y. Xu, Spatiotemporal regulators for insulin-stimulated GLUT4 vesicle exocytosis. J. Diabetes Res. 2017, 1683678 (2017). https://doi.org/10.1155/2017/1683678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. M. Beg, N. Abdullah, F.S. Thowfeik, N.K. Altorki, T.E. Mcgraw, Distinct Akt phosphorylation states are required for insulin regulated Glut4 and Glut1-mediated glucose uptake. eLife 6(2017-05-22), (2017)

    Article  Google Scholar 

  25. W. Andreas, C.B. Wollheim, Minireview: implication of mitochondria in insulin secretion and action. Endocrinology 147(6), 2643–2649 (2006)

    Article  Google Scholar 

  26. H. Meier, G.A. Yerganian, Spontaneous hereditary diabetes mellitus in Chinese hamster (Cricetulus griseus). 1. Pathological findings. Proc. Soc. Exp. Biol. Med 100(4), 810–815 (1959)

    Article  CAS  Google Scholar 

  27. H. Meier, G. Yerganian, Spontaneous diabetes mellitus in the Chinese hamster (Cricetulus griseus). II. Findings in the offspring of diabetic parents. Diabetes 10(1), 12 (1961)

    Article  CAS  Google Scholar 

  28. H. Meier, G. Yerganian, Spontaneous hereditary diabetes mellitus in the Chinese hamster (Cricetulus griseus). III. Maintenance of a diabetic hamster colony with the aid of hypoglycemic therapy. Diabetes 10, 19–21 (1961)

    Article  CAS  Google Scholar 

  29. S. Andrikopoulos, A.R. Blair, N. Deluca, B.C. Fam, J. Proietto, Evaluating the glucose tolerance test in mice. Am. J. Physiol. Endocrinol. Metab. 295(6), E1323 (2008). https://doi.org/10.1152/ajpendo.90617.2008

    Article  CAS  PubMed  Google Scholar 

  30. J.H. Kim, T.P. Stewart, M. Soltani-Bejnood, L. Wang, J.M. Fortuna, O.A. Mostafa, N. Moustaid-Moussa, A.M. Shoieb, M.F. McEntee, Y. Wang, L. Bechtel, J.K. Naggert, Phenotypic characterization of polygenic type 2 diabetes in TALLYHO/JngJ mice. J. Endocrinol. 191(2), 437–446 (2006). https://doi.org/10.1677/joe.1.06647

    Article  CAS  PubMed  Google Scholar 

  31. G. Mingrone, F.L. Henriksen, A.V. Greco, L.N. Krogh, E. Capristo, A. Gastaldelli, M. Castagneto, E. Ferrannini, G. Gasbarrini, H. Beck-Nielsen, Triglyceride-induced diabetes associated with familial lipoprotein lipase deficiency. Diabetes 48(6), 1258–1263 (1999). https://doi.org/10.2337/diabetes.48.6.1258

    Article  CAS  PubMed  Google Scholar 

  32. M. Roden, T.B. Price, G. Perseghin, K.F. Petersen, D.L. Rothman, G.W. Cline, G.I. Shulman, Mechanism of free fatty acid-induced insulin resistance in humans. J. Clin. Investig. 97(12), 2859–2865 (1996). https://doi.org/10.1172/jci118742

    Article  CAS  PubMed  Google Scholar 

  33. Z. Abdeen, C. Jildeh, S. Dkeideek, R. Qasrawi, I. Ghannam, H. Al Sabbah, Overweight and obesity among Palestinian adults: analyses of the anthropometric data from the First National Health and Nutrition Survey (1999-2000). J. Obes. 2012, 213547 (2012). https://doi.org/10.1155/2012/213547

    Article  PubMed  PubMed Central  Google Scholar 

  34. M.M. Lima-Martinez, M. Paoli, M. Rodney, N. Balladares, M. Contreras, L. D'Marco, G. Iacobellis, Effect of sitagliptin on epicardial fat thickness in subjects with type 2 diabetes and obesity: a pilot study. Endocrine 51(3), 448–455 (2016). https://doi.org/10.1007/s12020-015-0710-y

    Article  CAS  PubMed  Google Scholar 

  35. Y. Goto, M. Kakizaki, N. Masaki, Production of spontaneous diabetic rats by repetition of selective breeding. Tohoku J. Exp. Med. 119(1), 85–90 (1976)

    Article  CAS  Google Scholar 

  36. G. Miao, T. Ito, F. Uchikoshi, M. Tanemura, K. Kawamoto, K. Shimada, M. Nozawa, H. Matsuda, Development of islet-like cell clusters after pancreas transplantation in the spontaneously diabetic Torri rat. Am. J. Transplant. 5(10), 2360–2367 (2005). https://doi.org/10.1111/j.1600-6143.2005.01023.x

    Article  PubMed  Google Scholar 

  37. A. Charollais, A. Gjinovci, J. Huarte, J. Bauquis, A. Nadal, F. MartãN, Junctional communication of pancreatic beta cells contributes to the control of insulin secretion and glucose tolerance. J. Clin. Investig. 106(2), 235–243 (2000)

    Article  CAS  Google Scholar 

  38. A.K. Turpeinen, T.O. Takala, P. Nuutila, T. Axelin, M. Luotolahti, M. Haaparanta, J. Bergman, H. Hamalainen, H. Iida, M. Maki, M.I. Uusitupa, J. Knuuti, Impaired free fatty acid uptake in skeletal muscle but not in myocardium in patients with impaired glucose tolerance: studies with PET and 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid. Diabetes 48(6), 1245–1250 (1999). https://doi.org/10.2337/diabetes.48.6.1245

    Article  CAS  PubMed  Google Scholar 

  39. E.S. Jin, M. Szuszkiewicz-Garcia, J.D. Browning, J.D. Baxter, N. Abate, C.R. Malloy, Influence of liver triglycerides on suppression of glucose production by insulin in men. J. Clin. Endocrinol. Metab. 100(1), 235–243 (2015). https://doi.org/10.1210/jc.2014-2404

    Article  CAS  PubMed  Google Scholar 

  40. A.H. Bakker, J. Nijhuis, W.A. Buurman, F.M. van Dielen, J.W. Greve, Low number of omental preadipocytes with high leptin and low adiponectin secretion is associated with high fasting plasma glucose levels in obese subjects. Diabetes Obes. Metab. 8(5), 585–588 (2006). https://doi.org/10.1111/j.1463-1326.2006.00558.x

    Article  CAS  PubMed  Google Scholar 

  41. G. Paltoglou, M. Schoina, G. Valsamakis, N. Salakos, A. Avloniti, A. Chatzinikolaou, A. Margeli, C. Skevaki, M. Papagianni, C. Kanaka-Gantenbein, I. Papassotiriou, G.P. Chrousos, I.G. Fatouros, G. Mastorakos, Interrelations among the adipocytokines leptin and adiponectin, oxidative stress and aseptic inflammation markers in pre- and early-pubertal normal-weight and obese boys. Endocrine 55(3), 925–933 (2017). https://doi.org/10.1007/s12020-017-1227-3

    Article  CAS  PubMed  Google Scholar 

  42. Y. Minokoshi, Y.B. Kim, O.D. Peroni, L.G. Fryer, C. Mã¼Ller, D. Carling, Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415(6869), 339–343 (2002)

    Article  CAS  Google Scholar 

  43. T. Yamauchi, J. Kamon, Y. Minokoshi, Y. Ito, H. Waki, S. Uchida, S. Yamashita, M. Noda, S. Kita, K. Ueki, K. Eto, Y. Akanuma, P. Froguel, F. Foufelle, P. Ferre, D. Carling, S. Kimura, R. Nagai, B.B. Kahn, T. Kadowaki, Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8(11), 1288–1295 (2002). https://doi.org/10.1038/nm788

    Article  CAS  PubMed  Google Scholar 

  44. S. Yu, K. Matsusue, P. Kashireddy, W.Q. Cao, V. Yeldandi, A.V. Yeldandi, Adipocyte-specific gene expression and adipogenic steatosis in the mouse liver due to peroxisome proliferator-activated receptorgamma1 (PPARgamma1) overexpression. J. Biol. Chem. 278(1), 498–505 (2003)

    Article  CAS  Google Scholar 

  45. T. Miura, W. Suzuki, E. Ishihara, I. Arai, H. Ishida, Y. Seino, Impairment of insulin-stimulated GLUT4 translocation in skeletal muscle and adipose tissue in the Tsumura Suzuki obese diabetic mouse: a new genetic animal model of type 2 diabetes. Eur. J. Endocrinol. 145(6), 785 (2001)

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Shanxi Province Experimental Animal Resources Service Platform of China (no. 201605D121019), the Shanxi Scholarship Council of China (no. 2015-054), and the Shanxi Medical University Youth Fund Project of China (no. 02201317).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wang, C., Zhang, R. et al. Phenotypic characterization of a novel type 2 diabetes animal model in a SHANXI MU colony of Chinese hamsters. Endocrine 65, 61–72 (2019). https://doi.org/10.1007/s12020-019-01940-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-019-01940-x

Keywords

Navigation