Skip to main content

Advertisement

Log in

High-normal serum thyrotropin levels and increased glycemic variability in type 2 diabetic patients

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

High-normal thyrotropin (TSH) is related to reduced insulin sensitivity and may contribute to glycemic disorders in diabetes. We investigated the relationship between normal serum TSH levels and glycemic variability in euthyroid type 2 diabetic patients.

Methods

A total of 432 newly diagnosed type 2 diabetic patients with euthyroid function and normal serum TSH levels were recruited between March 2013 and February 2017. Insulin sensitivity was evaluated by the Matsuda index (ISIMatsuda) following a 75-g oral glucose tolerance test. Multiple glycemic variability indices, including the mean amplitude of glycemic excursions (MAGE), mean of daily differences (MODD), and standard deviation of glucose (SD), were calculated from glucose data obtained with a continuous glucose monitoring system. Average glucose accessed by 24-h mean glucose (24-h MG) was also calculated.

Results

A normal serum TSH level was positively correlated with MAGE, MODD, SD, and 24-h MG (r = 0.206, 0.178, 0.186, and 0.132, respectively, p < 0.01). After adjusting for somatometric parameters, lipid profiles, ISIMatsuda, and HbA1c via multiple linear regression analysis, mean differences [B(95% CI)] in MAGE, MODD, SD, and 24-h MG between the patients in the lowest and highest quartiles of TSH levels were 0.128(0.031, 0.226), 0.085(0.022, 0.148), 0.039(0.001, 0.078), and 0.002(−0.264, 0.267) mmol/L, respectively. High-normal TSH was independently associated with MAGE, MODD, and SD, but not 24-h MG.

Conclusions

High-normal serum TSH is a significant additional risk factor for increased glycemic variability in type 2 diabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

TSH:

Thyrotropin

FT3:

Free triiodothyronine

FT4:

Free thyroxine

TPO-Ab:

Thyroperoxidase antibody

ISIMatsuda :

Insulin sensitivity index recommended by Matsuda

MAGE:

Mean amplitude of glycemic excursions

MODD:

Mean of daily differences

SD:

Standard deviation of glucose

24-h MG:

24-h mean glucose

BMI:

Body mass index

SBP:

Systolic blood pressure

DBP:

Diastolic blood pressure

TC:

Total cholesterol

TG:

Triglyceride

HDLC:

High-density lipoprotein cholesterol

LDLC:

Low-density lipoprotein cholesterol

HbA1c:

Glycosylated hemoglobin A1c

References

  1. O. Sarfo-Kantanka, F.S. Sarfo, E.O. Ansah, E. Yorke, J. Akpalu, B.C. Nkum, B. Eghan, Frequency and determinants of thyroid autoimmunity in Ghanaian type 2 diabetes patients: a case-control study. BMC Endocr. Disord. 17(1), 2 (2017). https://doi.org/10.1186/s12902-016-0152-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. M.A. Pisarev, Interrelationships between the pancreas and the thyroid. Curr. Opin. Endocrinol. Diabetes Obes. 17(5), 437–439 (2010). https://doi.org/10.1097/MED.0b013e32833e0750

    Article  PubMed  CAS  Google Scholar 

  3. C. Wang, The relationship between type 2 diabetes mellitus and related thyroid diseases. J. Diabetes Res. 2013, 390534 (2013). https://doi.org/10.1155/2013/390534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. A. Roos, S.J. Bakker, T.P. Links, R.O. Gans, B.H. Wolffenbuttel, Thyroid function is associated with components of the metabolic syndrome in euthyroid subjects. J. Clin. Endocrinol. Metab. 92(2), 491–496 (2007). https://doi.org/10.1210/jc.2006-1718

    Article  PubMed  CAS  Google Scholar 

  5. L.J. van Tienhoven-Wind, R.P. Dullaart, Low-normal thyroid function and novel cardiometabolic biomarkers. Nutrients 7(2), 1352–1377 (2015). https://doi.org/10.3390/nu7021352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. A. Giandalia, G.T. Russo, E.L. Romeo, A. Alibrandi, P. Villari, A.A. Mirto, G. Armentano, S. Benvenga, D. Cucinotta, Influence of high-normal serum TSH levels on major cardiovascular risk factors and Visceral Adiposity Index in euthyroid type 2 diabetic subjects. Endocrine 47(1), 152–160 (2014). https://doi.org/10.1007/s12020-013-0137-2

    Article  PubMed  CAS  Google Scholar 

  7. L. Chaker, S. Ligthart, T.I. Korevaar, A. Hofman, O.H. Franco, R.P. Peeters, A. Dehghan, Thyroid function and risk of type 2 diabetes: a population-based prospective cohort study. BMC Med. 14(1), 150 (2016). https://doi.org/10.1186/s12916-016-0693-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. M. Kasuga, Insulin resistance and pancreatic beta cell failure. J. Clin. Invest. 116(7), 1756–1760 (2006). https://doi.org/10.1172/jci29189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. L. Monnier, C. Colette, D.R. Owens, Integrating glycaemic variability in the glycaemic disorders of type 2 diabetes: a move towards a unified glucose tetrad concept. Diabetes Metab. Res. Rev. 25(5), 393–402 (2009). https://doi.org/10.1002/dmrr.962

    Article  PubMed  CAS  Google Scholar 

  10. American Diabetes Association, Diagnosis and classification of diabetes mellitus. Diabetes Care 34(Suppl 1), S62–S69 (2011). https://doi.org/10.2337/dc11-S062

    Article  PubMed Central  CAS  Google Scholar 

  11. M. Matsuda, R.A. DeFronzo, Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22(9), 1462–1470 (1999)

    Article  PubMed  CAS  Google Scholar 

  12. N.R. Hill, N.S. Oliver, P. Choudhary, J.C. Levy, P. Hindmarsh, D.R. Matthews, Normal reference range for mean tissue glucose and glycemic variability derived from continuous glucose monitoring for subjects without diabetes in different ethnic groups. Diabetes Technol. Ther. 13(9), 921–928 (2011). https://doi.org/10.1089/dia.2010.0247

    Article  PubMed  PubMed Central  Google Scholar 

  13. Y.M. Wang, L.H. Zhao, J.B. Su, H.F. Qiao, X.H. Wang, F. Xu, T. Chen, J.F. Chen, G. Wu, X.Q. Wang, Glycemic variability in normal glucose tolerance women with the previous gestational diabetes mellitus. Diabetol. Metab. Syndr. 7, 82 (2015). https://doi.org/10.1186/s13098-015-0077-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. L. Monnier, E. Mas, C. Ginet, F. Michel, L. Villon, J.P. Cristol, C. Colette, Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. J. Am. Med. Assoc. 295(14), 1681–1687 (2006). https://doi.org/10.1001/jama.295.14.1681

    Article  CAS  Google Scholar 

  15. M. Ohara, T. Fukui, M. Ouchi, K. Watanabe, T. Suzuki, S. Yamamoto, T. Yamamoto, T. Hayashi, K. Oba, T. Hirano, Relationship between daily and day-to-day glycemic variability and increased oxidative stress in type 2 diabetes. Diabetes Res. Clin. Pract. 122, 62–70 (2016). https://doi.org/10.1016/j.diabres.2016.09.025

    Article  PubMed  CAS  Google Scholar 

  16. K. Torimoto, Y. Okada, H. Mori, Y. Tanaka, Relationship between fluctuations in glucose levels measured by continuous glucose monitoring and vascular endothelial dysfunction in type 2 diabetes mellitus. Cardiovasc. Diabetol. 12, 1 (2013). https://doi.org/10.1186/1475-2840-12-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. W. Xu, Y. Zhu, X. Yang, H. Deng, J. Yan, S. Lin, H. Yang, H. Chen, J. Weng, Glycemic variability is an important risk factor for cardiovascular autonomic neuropathy in newly diagnosed type 2 diabetic patients. Int. J. Cardiol. 215, 263–268 (2016). https://doi.org/10.1016/j.ijcard.2016.04.078

    Article  PubMed  Google Scholar 

  18. G. Su, S. Mi, H. Tao, Z. Li, H. Yang, H. Zheng, Y. Zhou, C. Ma, Association of glycemic variability and the presence and severity of coronary artery disease in patients with type 2 diabetes. Cardiovasc. Diabetol. 10, 19 (2011). https://doi.org/10.1186/1475-2840-10-19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. M.A. van Baak, 24-hour glucose profiles on diets varying in protein content and glycemic index. Nutrients 6(8), 3050–3061 (2014). https://doi.org/10.3390/nu6083050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. A.M. Marker, A.E. Noser, M.A. Clements, S.R. Patton, Shared responsibility for type 1 diabetes care is associated with glycemic variability and risk of glycemic excursions in youth. J. Pediatr. Psychol. 43(1), 61–71 (2018). https://doi.org/10.1093/jpepsy/jsx081

    Article  PubMed  Google Scholar 

  21. C.M. Ma, F.Z. Yin, R. Wang, C.M. Qin, B. Liu, D.H. Lou, Q. Lu, Glycemic variability in abdominally obese men with normal glucose tolerance as assessed by continuous glucose monitoring system. Obesity 19(8), 1616–1622 (2011). https://doi.org/10.1038/oby.2011.5

    Article  PubMed  CAS  Google Scholar 

  22. S.V. Madhu, S.K. Muduli, R. Avasthi, Abnormal glycemic profiles by CGMS in obese first-degree relatives of type 2 diabetes mellitus patients. Diabetes Technol. Ther. 15(6), 461–465 (2013). https://doi.org/10.1089/dia.2012.0333

    Article  PubMed  CAS  Google Scholar 

  23. S.A. Brown, B. Jiang, M. McElwee-Malloy, C. Wakeman, M.D. Breton, Fluctuations of hyperglycemia and insulin sensitivity are linked to menstrual cycle phases in women with T1D. J. Diabetes Sci. Technol. 9(6), 1192–1199 (2015). https://doi.org/10.1177/1932296815608400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. L. Monnier, C. Colette, S. Dejager, D. Owens, Magnitude of the dawn phenomenon and its impact on the overall glucose exposure in type 2 diabetes: is this of concern? Diabetes Care 36(12), 4057–4062 (2013). https://doi.org/10.2337/dc12-2127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. K. Torimoto, Y. Okada, T. Arao, H. Mori, S. Yamamoto, M. Narisawa, A. Kurozumi, Y. Tanaka, Glucose variability before and after treatment of a patient with Graves’ disease complicated by diabetes mellitus: assessment by continuous glucose monitoring. Endocr. J. 61(4), 321–328 (2014)

    Article  PubMed  CAS  Google Scholar 

  26. C.K. Kramer, H. Choi, B. Zinman, R. Retnakaran, Glycemic variability in patients with early type 2 diabetes: the impact of improvement in beta-cell function. Diabetes Care 37(4), 1116–1123 (2014). https://doi.org/10.2337/dc13-2591

    Article  PubMed  CAS  Google Scholar 

  27. J.M. Fernandez-Real, A. Lopez-Bermejo, A. Castro, R. Casamitjana, W. Ricart, Thyroid function is intrinsically linked to insulin sensitivity and endothelium-dependent vasodilation in healthy euthyroid subjects. J. Clin. Endocrinol. Metab. 91(9), 3337–3343 (2006)

    Article  PubMed  CAS  Google Scholar 

  28. E.H. van den Berg, L.J. van Tienhoven-Wind, M. Amini, T.C. Schreuder, K.N. Faber, H. Blokzijl, R.P. Dullaart, Higher free triiodothyronine is associated with non-alcoholic fatty liver disease in euthyroid subjects: the Lifelines Cohort Study. Metabolism 67, 62–71 (2017). https://doi.org/10.1016/j.metabol.2016.11.002

    Article  PubMed  CAS  Google Scholar 

  29. G.L. Roef, E.R. Rietzschel, C.M. Van Daele, Y.E. Taes, M.L. De Buyzere, T.C. Gillebert, J.M. Kaufman, Triiodothyronine and free thyroxine levels are differentially associated with metabolic profile and adiposity-related cardiovascular risk markers in euthyroid middle-aged subjects. Thyroid 24(2), 223–231 (2014). https://doi.org/10.1089/thy.2013.0314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. N. Takamura, A. Akilzhanova, N. Hayashida, K. Kadota, H. Yamasaki, T. Usa, M. Nakazato, T. Maeda, Y. Ozono, K. Aoyagi, Thyroid function is associated with carotid intima-media thickness in euthyroid subjects. Atherosclerosis 204(2), e77–e81 (2009). https://doi.org/10.1016/j.atherosclerosis.2008.09.022

    Article  PubMed  CAS  Google Scholar 

  31. I. Lambrinoudaki, E. Armeni, D. Rizos, G. Georgiopoulos, M. Kazani, A. Alexandrou, E. Deligeoroglou, A. Livada, C. Psychas, M. Creatsa, G. Bouboulis, M. Alevizaki, K. Stamatelopoulos, High normal thyroid-stimulating hormone is associated with arterial stiffness in healthy postmenopausal women. J. Hypertens. 30(3), 592–599 (2012). https://doi.org/10.1097/HJH.0b013e32834f5076

    Article  PubMed  CAS  Google Scholar 

  32. H. Li, Y. Cui, Y. Zhu, H. Yan, W. Xu, Association of high normal HbA1c and TSH levels with the risk of CHD: a 10-year cohort study and SVM analysis. Sci. Rep. 7, 45406 (2017). https://doi.org/10.1038/srep45406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. J.E. Jun, J.H. Jee, J.C. Bae, S.M. Jin, K.Y. Hur, M.K. Lee, T.H. Kim, S.W. Kim, J.H. Kim, Association between changes in thyroid hormones and incident type 2 diabetes: a seven-year longitudinal study. Thyroid 27(1), 29–38 (2017). https://doi.org/10.1089/thy.2016.0171

    Article  PubMed  CAS  Google Scholar 

  34. J.E. Jun, S.M. Jin, J.H. Jee, J.C. Bae, K.Y. Hur, M.K. Lee, S.W. Kim, J.H. Kim, TSH increment and the risk of incident type 2 diabetes mellitus in euthyroid subjects. Endocrine 55(3), 944–953 (2017). https://doi.org/10.1007/s12020-016-1221-1

    Article  PubMed  CAS  Google Scholar 

  35. G. Bellastella, M.I. Maiorino, L. Scappaticcio, O. Casciano, M. Petrizzo, M. Caputo, V.A. Paglionico, D. Giugliano, K. Esposito, TSH oscillations in young patients with type 1 diabetes may be due to glycemic variability. J. Endocrinol. Invest. 41(4), 389–393 (2018). https://doi.org/10.1007/s40618-017-0752-5

    Article  PubMed  CAS  Google Scholar 

  36. T. Farasat, A.M. Cheema, M.N. Khan, Hyperinsulinemia and insulin resistance is associated with low T(3)/T(4) ratio in pre diabetic euthyroid Pakistani subjects. J. Diabetes Complicat. 26(6), 522–525 (2012). https://doi.org/10.1016/j.jdiacomp.2012.05.017

    Article  PubMed  Google Scholar 

  37. A. Javed, P.B. Balagopal, A. Vella, P.R. Fischer, F. Piccinini, C. Dalla Man, C. Cobelli, P.D. Giesler, J.M. Laugen, S. Kumar, Association between thyrotropin levels and insulin sensitivity in euthyroid obese adolescents. Thyroid 25(5), 478–484 (2015). https://doi.org/10.1089/thy.2015.0005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. B.O. Asvold, L.J. Vatten, K. Midthjell, T. Bjoro, Serum TSH within the reference range as a predictor of future hypothyroidism and hyperthyroidism: 11-year follow-up of the HUNT Study in Norway. J. Clin. Endocrinol. Metab. 97(1), 93–99 (2012). https://doi.org/10.1210/jc.2011-1724

    Article  PubMed  CAS  Google Scholar 

  39. S.A. Chubb, W.A. Davis, T.M. Davis, Interactions among thyroid function, insulin sensitivity, and serum lipid concentrations: the Fremantle diabetes study. J. Clin. Endocrinol. Metab. 90(9), 5317–5320 (2005)

    Article  PubMed  CAS  Google Scholar 

  40. C. Menendez, R. Baldelli, J.P. Camina, B. Escudero, R. Peino, C. Dieguez, F.F. Casanueva, TSH stimulates leptin secretion by a direct effect on adipocytes. J. Endocrinol. 176(1), 7–12 (2003)

    Article  PubMed  CAS  Google Scholar 

  41. G. Fernandez-Formoso, S. Perez-Sieira, D. Gonzalez-Touceda, C. Dieguez, S. Tovar, Leptin, 20 years of searching for glucose homeostasis. Life Sci. 140, 4–9 (2015). https://doi.org/10.1016/j.lfs.2015.02.008

    Article  PubMed  CAS  Google Scholar 

  42. L. Marroqui, A. Gonzalez, P. Neco, E. Caballero-Garrido, E. Vieira, C. Ripoll, A. Nadal, I. Quesada, Role of leptin in the pancreatic beta-cell: effects and signaling pathways. J. Mol. Endocrinol. 49(1), R9–R17 (2012). https://doi.org/10.1530/jme-12-0025

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

The study was supported by the Medical Research Projects of Nantong Technology Bureau (HS2012028, MS22015065) and the Medical Research Project of Health and Family Planning Commission of Jiangsu (QNRC2016408).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Bin Su or Xue-Qin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study conformed to the guidelines of the Declaration of Helsinki, and the study procedures were reviewed and approved by the Medical Research Ethics Committee of Second Affiliated Hospital of Nantong University.

Informed consent

Each patient agreed to participate in the study and signed the informed consent form.

Additional information

These authors contributed equally: Jian-Bin Su, Li-Hua Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, JB., Zhao, LH., Zhang, XL. et al. High-normal serum thyrotropin levels and increased glycemic variability in type 2 diabetic patients. Endocrine 61, 68–75 (2018). https://doi.org/10.1007/s12020-018-1591-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-018-1591-7

Keywords

Navigation