Skip to main content
Log in

Adrenal steroidogenesis disruption caused by HDL/cholesterol suppression in diethylstilbestrol-treated adult male rat

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The synthetic estrogen diethylstilbestrol is used to prevent miscarriages and as a therapeutic treatment for prostate cancer, but it has been reported to have adverse effects on endocrine homeostasis. However, the toxicity mechanism is poorly understood. Recently, we reported that diethylstilbestrol impairs adrenal steroidogenesis via cholesterol insufficiency in adult male rats. In the present study, we found that the adrenal cholesterol level was significantly reduced without of the decrease in other precursors in the adrenal steroidogenesis 24 h after a single dose of diethylstilbestrol (0.33 μg/g body mass). The serum HDL/cholesterol level was also reduced only 12 h after the diethylstilbestrol exposure. The level of Apo E, which is indispensable for HDL/cholesterol maturation, was decreased in both the HDL and VLDL/LDL fractions, whereas the level of Apo A1, which is an essential constituent of HDL, was not altered in the HDL fraction. Because the liver is a major source of Apo E and Apo A1, the secretion rates of these proteins were examined using a liver perfusion experiment. The secretion rate of Apo A1 from the liver was consistent between DES-treated and control rats, but that of Apo E was comparatively suppressed in the DES-treated rats. The disruption of adrenal steroidogenesis by diethylstilbestrol was caused by a decrease in serum HDL/cholesterol, which is the main source of adrenal steroidogenesis, due to the inhibition of Apo E secretion from the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

HDL:

High-density lipoprotein

LDL:

Low-density lipoprotein

VLDL:

Very low-density lipoprotein

DES:

Diethylstilbestrol

Apo E:

Apolipoprotein E

Apo A1:

Apolipoprotein A1

StAR:

Acute regulatory protein

ER:

Estrogen receptor

SR-B1:

Scavenger receptor class B type 1

MALDI-TOF MS:

Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry

LC–MS:

Liquid chromatography–mass spectrometry

CHAPS:

3-((3-cholamidopropyl)dimethylammonium)-1-propanesulfonate

References

  1. E. Diamanti-Kandarakis, J.P. Bourguignon, L.C. Giudice, R. Hauser, G.S. Prins, A.M. Soto, R.T. Zoeller, A.C. Gore, Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr. Rev. 30, 293–342 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. R. Hampl, J. Kubatova, L. Starka, Steroids and endocrine disruptors-History, recent state of art and open questions. J. Steroid Biochem. Mol. Biol. (2014). doi:10.1016/j.jsbmb.2014.04.013

    Google Scholar 

  3. O.V. Martin, T. Shialis, J.N. Lester, M.D. Scrimshaw, A.R. Boobis, N. Voulvoulis, Testicular dysgenesis syndrome and the estrogen hypothesis: a quantitative meta-analysis. Environ. Health Perspect. 116, 149–157 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  4. R.R. Newbold, E. Padilla-Banks, W.N. Jefferson, Adverse effects of the model environmental estrogen diethylstilbestrol are transmitted to subsequent generations. Endocrinology 147, S11–S17 (2006)

    Article  CAS  PubMed  Google Scholar 

  5. J.R. Palmer, A.L. Herbst, K.L. Noller, D.A. Boggs, R. Troisi, L. Titus-Ernstoff, E.E. Hatch, L.A. Wise, W.C. Strohsnitter, R.N. Hoover, Urogenital abnormalities in men exposed to diethylstilbestrol in utero: a cohort study. Environ. Health 8, 37 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  6. S. Schrager, B.E. Potter, Diethylstilbestrol exposure. Am. Fam. Physician 69, 2395–2400 (2004)

    PubMed  Google Scholar 

  7. J.H. Shin, T.S. Kim, I.H. Kang, T.S. Kang, H.J. Moon, S.Y. Han, Effects of postnatal administration of diethylstilbestrol on puberty and thyroid function in male rats. J Reprod Dev 55, 461–466 (2009)

    Article  CAS  PubMed  Google Scholar 

  8. T. Unuvar, A. Buyukgebiz, Fetal and neonatal endocrine disruptors. J. Clin. Res. Pediatr. Endocrinol. 4, 51–60 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  9. R.M. Giusti, K. Iwamoto, E.E. Hatch, Diethylstilbestrol revisited: a review of the long-term health effects. Ann. Intern. Med. 122, 778–788 (1995)

    Article  CAS  PubMed  Google Scholar 

  10. D.V. Henley, K.S. Korach, Endocrine-disrupting chemicals use distinct mechanisms of action to modulate endocrine system function. Endocrinology 147, S25–S32 (2006)

    Article  CAS  PubMed  Google Scholar 

  11. K.S. Korach, J.A. McLachlan, The role of the estrogen receptor in diethylstilbestrol toxicity. Arch. Toxicol. Suppl. 8, 33–42 (1985)

    Article  CAS  PubMed  Google Scholar 

  12. G.G. Kuiper, B. Carlsson, K. Grandien, E. Enmark, J. Haggblad, S. Nilsson, J.A. Gustafsson, Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138, 863–870 (1997)

    CAS  PubMed  Google Scholar 

  13. J. Kaludjerovic, W.E. Ward, The interplay between estrogen and fetal adrenal cortex. J Nutr Metab 2012, 837901 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  14. J. Shamash, J. Stebbing, C. Sweeney, G. Sonpavde, S. Harland, G. Dawkins, C. Brock, W. Abelman, P. Wilson, A. Sanitt, T. Oliver, T. Powles, A validated prognostic index predicting response to dexamethasone and diethylstilbestrol in castrate-resistant prostate cancer. Cancer 116, 3595–3602 (2010)

    Article  CAS  PubMed  Google Scholar 

  15. S. Kitahara, H. Umeda, M. Yano, F. Koga, S. Sumi, H. Moriguchi, Y. Hosoya, M. Honda, K. Yoshida, Effects of intravenous administration of high dose-diethylstilbestrol diphosphate on serum hormonal levels in patients with hormone-refractory prostate cancer. Endocr. J. 19, 659–664 (1999)

    Article  Google Scholar 

  16. S. Haeno, N. Maeda, T. Yagi, S. Tahata, M. Sato, K. Sakaguchi, T. Miyasho, H. Ueda, H. Yokota, Diethylstilbestrol decreased adrenal cholesterol and corticosterone in rats. J. Endocrinol. 221, 269–280 (2014)

    Article  Google Scholar 

  17. F.B. Kraemer, Adrenal cholesterol utilization. Mol. Cell. Endocrinol. 265–266, 42–45 (2007)

    Article  PubMed  Google Scholar 

  18. H. Inoue, H. Yokota, T. Makino, A. Yuasa, S. Kato, Bisphenol a glucuronide, a major metabolite in rat bile after liver perfusion. Drug Metab. Dispos. 29, 1084–1087 (2001)

    CAS  PubMed  Google Scholar 

  19. T. Sugano, K. Suda, M. Shimada, N. Oshino, Biochemical and ultrastructural evaluation of isolated rat liver systems perfused with a hemoglobin-free medium. J. Biochem. 83, 995–1007 (1978)

    CAS  PubMed  Google Scholar 

  20. Y. Li, K. Okumura, S. Nomura, N. Maeda, T. Miyasho, H. Yokota, Oxidatively damaged proteins in the early stage of testicular toxicities in male rats by orally administered with a synthetic oestrogen, diethylstilbestrol. Reprod. Toxicol. 31, 26–34 (2011)

    Article  PubMed  Google Scholar 

  21. O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

    CAS  PubMed  Google Scholar 

  22. M.W. Duncan, A.L. Yergey, S.D. Patterson, Quantifying proteins by mass spectrometry: the selectivity of SRM is only part of the problem. Proteomics 9, 1124–1127 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. N. Maeda, E. Tanaka, T. Suzuki, K. Okumura, S. Nomura, T. Miyasho, S. Haeno, H. Yokota, Accurate determination of tissue steroid hormones, precursors and conjugates in adult male rat. J. Biochem. 153, 63–71 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. N. Maeda, K. Okumura, E. Tanaka, T. Suzuki, T. Miyasho, S. Haeno, H. Ueda, N. Hoshi, H. Yokota, Downregulation of cytochrome P450scc as an initial adverse effect of adult exposure to diethylstilbestrol on testicular steroidogenesis (Environ, Toxicol, 2013)

    Google Scholar 

  25. K.E. Kypreos, V.I. Zannis, Pathway of biogenesis of apolipoprotein E-containing HDL in vivo with the participation of ABCA1 and LCAT. Biochem. J. 403, 359–367 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. M.A. Connelly, SR-BI-mediated HDL cholesteryl ester delivery in the adrenal gland. Mol. Cell. Endocrinol. 300, 83–88 (2009)

    Article  CAS  PubMed  Google Scholar 

  27. C. Parthasarathy, K. Balasubramanian, Assessment of in vitro effects of metyrapone on Leydig cell steroidogenesis. Steroids 73, 328–338 (2008)

    Article  CAS  PubMed  Google Scholar 

  28. S. Whirledge, J.A. Cidlowski, Glucocorticoids, stress, and fertility. Minerva Endocrinol. 35, 109–125 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. C. Parthasarathy, K. Balasubramanian, Effects of corticosterone deficiency and its replacement on Leydig cell steroidogenesis. J. Cell. Biochem. 104, 1671–1683 (2008)

    Article  CAS  PubMed  Google Scholar 

  30. R.A. Srivastava, D. Baumann, G. Schonfeld, In vivo regulation of low-density lipoprotein receptors by estrogen differs at the post-transcriptional level in rat and mouse. Eur. J. Biochem. 216, 527–538 (1993)

    Article  CAS  PubMed  Google Scholar 

  31. R.A. Srivastava, N. Srivastava, M. Averna, R.C. Lin, K.S. Korach, D.B. Lubahn, G. Schonfeld, Estrogen up-regulates apolipoprotein E (ApoE) gene expression by increasing ApoE mRNA in the translating pool via the estrogen receptor alpha-mediated pathway. J. Biol. Chem. 272, 33360–33366 (1997)

    Article  CAS  PubMed  Google Scholar 

  32. T.J. Schoenfeld, E. Gould, Stress, stress hormones, and adult neurogenesis. Exp. Neurol. 233, 12–21 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. S.K. Droste, A. Gesing, S. Ulbricht, M.B. Muller, A.C. Linthorst, J.M. Reul, Effects of long-term voluntary exercise on the mouse hypothalamic-pituitary-adrenocortical axis. Endocrinology 144, 3012–3023 (2003)

    Article  CAS  PubMed  Google Scholar 

  34. A. Makatsori, R. Duncko, M. Schwendt, F. Moncek, B.B. Johansson, D. Jezova, Voluntary wheel running modulates glutamate receptor subunit gene expression and stress hormone release in Lewis rats. Psychoneuroendocrinology 28, 702–714 (2003)

    Article  CAS  PubMed  Google Scholar 

  35. A.M. Stranahan, D. Khalil, E. Gould, Social isolation delays the positive effects of running on adult neurogenesis. Nat. Neurosci. 9, 526–533 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. F. Klaus, T. Hauser, L. Slomianka, H.P. Lipp, I. Amrein, A reward increases running-wheel performance without changing cell proliferation, neuronal differentiation or cell death in the dentate gyrus of C57BL/6 mice. Behav. Brain Res. 204, 175–181 (2009)

    Article  PubMed  Google Scholar 

  37. H. van Praag, G. Kempermann, F.H. Gage, Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat. Neurosci. 2, 266–270 (1999)

    Article  PubMed  Google Scholar 

  38. J.S. Snyder, L.R. Glover, K.M. Sanzone, J.F. Kamhi, H.A. Cameron, The effects of exercise and stress on the survival and maturation of adult-generated granule cells. Hippocampus 19, 898–906 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. S.S. Yi, I.K. Hwang, K.Y. Yoo, O.K. Park, J. Yu, B. Yan, I.Y. Kim, Y.N. Kim, T. Pai, W. Song, I.S. Lee, M.H. Won, J.K. Seong, Y.S. Yoon, Effects of treadmill exercise on cell proliferation and differentiation in the subgranular zone of the dentate gyrus in a rat model of type II diabetes. Neurochem. Res. 34, 1039–1046 (2009)

    Article  CAS  PubMed  Google Scholar 

  40. D.J. Gordon, B.M. Rifkind, High-density lipoprotein–the clinical implications of recent studies. N. Engl. J. Med. 321, 1311–1316 (1989)

    Article  CAS  PubMed  Google Scholar 

  41. F.E. Thorngate, P.G. Yancey, G. Kellner-Weibel, L.L. Rudel, G.H. Rothblat, D.L. Williams, Testing the role of apoA-I, HDL, and cholesterol efflux in the atheroprotective action of low-level apoE expression. J. Lipid Res. 44, 2331–2338 (2003)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mr. Michio Sasaki of Japan Meat Science and Technology Institute for his suggestions and helpful advice. This work was supported in part by the Supported Program for the Strategic Research Foundation at Private Universities (2013–2017) of the Ministry of Education, Culture, Science and Technology, Japan.

Author Contributions

Conceived and designed the experiments: SH and HY. Performed the experiments: SH, NM, KY, MS and AU. Analyzed the data: SH, NM and HY. Contributed reagents/materials/analysis tools: SH, NM, KY, MS, AU and HY. Wrote the paper: SH and HY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Yokota.

Ethics declarations

Conflict of Interest

Author H. Yokota has received research grant from a Grant-in-aid and Support Project to Assist Private Universities in Developing Bases for Research from the Ministry of Education, Science, Sports and Culture and Technology in Japan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12020_2015_732_MOESM1_ESM.eps

Supplementary material 1 Fig. 1 Illustrated procedure of liver perfusion. Rats were orally administered DES (0.33 µg/g of body mass), and livers were prepared as described in the Materials and Methods. Oxygenated Krebs–Ringer buffer was perfused into the liver via the portal vein as described in the Materials and Methods. The resultant perfusate (100 μl) was sampled at each time point. The amount of Apo A1 and Apo E secreted from the liver into the perfusate was assayed by western blotting analysis using each antibody. (EPS 1342 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haeno, S., Maeda, N., Yamaguchi, K. et al. Adrenal steroidogenesis disruption caused by HDL/cholesterol suppression in diethylstilbestrol-treated adult male rat. Endocrine 52, 148–156 (2016). https://doi.org/10.1007/s12020-015-0732-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-015-0732-5

Keywords

Navigation