Skip to main content
Log in

Different responses of mouse islets and MIN6 pseudo-islets to metabolic stimulation: a note of caution

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

MIN6 cells and MIN6 pseudo-islets are popular surrogates for the use of primary beta cells and islets. Even though it is generally agreed that the stimulus-secretion coupling may deviate from that of beta cells or islets, direct comparisons are rare. The present side-by-side comparison of insulin secretion, cytosolic Ca2+ concentration ([Ca2+] i ) and oxygen consumption rate (OCR) points out where similarities and differences exist between MIN6 cells and normal mouse beta cells. In mouse islets and MIN6 pseudo-islets depolarization by 40 mM KCl was a more robust insulinotropic stimulus than 30 mM glucose. In MIN6 pseudo-islets, but not in mouse islets, the response to 30 mM glucose was much lower than to 40 mM KCl and could be suppressed by a preceding stimulation with 40 mM KCl. In MIN6 pseudo-islets, glucose was less effective to raise [Ca2+] i than in primary islets. In marked contrast to islets, the OCR response of MIN6 pseudo-islets to 30 mM glucose was smaller than to 40 mM KCl and was further diminished by a preceding stimulation with 40 mM KCl. The same pattern was observed when MIN6 pseudo-islets were cultured in 5 mM glucose. As with insulin secretion memory effects on the OCR remained after wash-out of a stimulus. The differences between MIN6 cells and primary beta cells were generally larger in the responses to glucose than to depolarization by KCl. Thus, the use of MIN6 cells in investigations on metabolic signalling requires particular caution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H.G. Coore, P.J. Randle, Regulation of insulin secretion studied with pieces of rabbit pancreas incubated in vitro. Biochem. J. 93, 66–78 (1964)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. M. Erecinska, J. Bryla, M. Michalik, M. Meglasson, D. Nelson, Energy metabolism in islets of Langerhans. Biochim. Biophys. Acta 1101, 273–295 (1992)

    Article  CAS  PubMed  Google Scholar 

  3. U. Panten, H. Ishida, Fluorescence of oxidized flavoproteins from perifused isolated pancreatic islets. Diabetologia 11, 569–753 (1975)

    Article  CAS  PubMed  Google Scholar 

  4. A. Sener, W.J. Malaisse, Stimulation by d-glucose of mitochondrial oxidative events in islet cells. Biochem. J. 246, 89–95 (1987)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. D.L. Cook, C.N. Hales, Intracellular ATP directly blocks K+ channels in pancreatic Beta-cells. Nature 311, 271–273 (1984)

    Article  CAS  PubMed  Google Scholar 

  6. F.M. Ashcroft, D.E. Harrison, S.J. Ashcroft, Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. Nature 312, 446–448 (1984)

    Article  CAS  PubMed  Google Scholar 

  7. S.H. Gerber, T.C. Südhof, Molecular determinants of regulated exocytosis. Diabetes 51(Suppl. 1), S3–S11 (2002)

    Article  CAS  PubMed  Google Scholar 

  8. P. Rorsman, E. Renström, Insulin granule dynamics in pancreatic beta cells. Diabetologia 46, 1029–1045 (2003)

    Article  CAS  PubMed  Google Scholar 

  9. M. Welsh, C. Hellerström, A. Andersson, Respiration and insulin release in mouse pancreatic islets. Effects of l-leucine and 2-ketoisocaproate in combination with d-glucose and l-glutamine. Biochim. Biophys. Acta 721, 178–184 (1982)

    Article  CAS  PubMed  Google Scholar 

  10. U. Panten, H. Klein, O2 consumption by isolated pancreatic islets, as measured in a microincubation system with a Clark-type electrode. Endocrinology 111, 1595–1600 (1982)

    Article  CAS  PubMed  Google Scholar 

  11. U. Panten, M. Schwanstecher, A. Wallasch, S. Lenzen, Glucose both inhibits and stimulates insulin secretion from isolated pancreatic islets exposed to maximally effective concentrations of sulfonylureas. Naunyn-Schmiedebergs Arch. Pharmacol. 338, 459–462 (1988)

    Article  CAS  PubMed  Google Scholar 

  12. M. Gembal, P. Gilon, J.C. Henquin, Evidence that glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse B cells. J. Clin. Invest. 1992(89), 1288–1295 (1992)

    Article  Google Scholar 

  13. Y. Sato, J.C. Henquin, The K+-ATP channel-independent pathway of regulation of insulin secretion by glucose: in search of the underlying mechanism. Diabetes 1998(47), 1713–1721 (1998)

    Article  Google Scholar 

  14. S. Farfari, V. Schulz, B. Corkey, M. Prentki, Glucose-regulated anaplerosis and cataplerosis in pancreatic beta-cells: possible implication of a pyruvate/citrate shuttle in insulin secretion. Diabetes 49, 718–726 (2000)

    Article  CAS  PubMed  Google Scholar 

  15. M.J. MacDonald, L.A. Fahien, L.J. Brown, N.M. Hasan, J.D. Buss, M.A. Kendrick, Perspective: emerging evidence for signaling roles of mitochondrial anaplerotic products in insulin secretion. Am. J. Physiol. Endocrinol. Metab. 288, E1–E15 (2005)

    Article  CAS  PubMed  Google Scholar 

  16. A. Wiederkehr, C.B. Wollheim, Mitochondrial signals drive insulin secretion in the pancreatic β-cell. Mol. Cell. Endocrinol. 353, 128–137 (2012)

    Article  CAS  PubMed  Google Scholar 

  17. M.V. Jensen, J.W. Joseph, S.M. Ronnebaum, S.C. Burgess, A.D. Sherry, C.B. Newgard, Metabolic cycling in control of glucose-stimulated insulin secretion. Am. J. Physiol. Endocrinol. Metab. 295, E1287–E1297 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. P. Spégel, V.V. Sharoyko, I. Goehring, A.P. Danielsson, S. Malmgren, C.L. Nagorny, L.E. Andersson, T. Koeck, G.W. Sharp, S.G. Straub, C.B. Wollheim, H. Mulder, Time-resolved metabolomics analysis of β-cells implicates the pentose phosphate pathway in the control of insulin release. Biochem. J. 450, 595–605 (2013)

    Article  PubMed  Google Scholar 

  19. M.A. Lorenz, M.A. El Azzouny, R.T. Kennedy, C.F. Burant, Metabolome response to glucose in the β-cell line INS-1 832/13. J. Biol. Chem. 288, 10923–10935 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. G. Gheni, M. Ogura, M. Iwasaki, N. Yokoi, K. Minami, Y. Nakayama, K. Harada, B. Hastoy, X. Wu, H. Takahashi, K. Kimura, T. Matsubara, R. Hoshikawa, N. Hatano, K. Sugawara, T. Shibasaki, N. Inagaki, T. Bamba, A. Mizoguchi, E. Fukusaki, P. Rorsman, S. Seino, Glutamate acts as a key signal linking glucose metabolism to incretin/cAMP action to amplify insulin secretion. Cell Rep. 9, 661–673 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. A. Hauge-Evans, P. Squires, S. Persaud, P. Jones, Pancreatic beta-cell-to-beta-cell interactions are required for integrated responses to nutrient stimuli: enhanced Ca2+ and insulin secretory responses of MIN6 pseudoislets. Diabetes 48, 1402–1408 (1999)

    Article  CAS  PubMed  Google Scholar 

  22. K. Schumacher, M. Matz, D. Brüning, K. Baumann, I. Rustenbeck, Granule mobility, fusion frequency and insulin secretion are differentially affected by insulinotropic stimuli. Traffic 16, 493–509 (2015)

    Article  CAS  PubMed  Google Scholar 

  23. M. Willenborg, K. Schumacher, I. Rustenbeck, Determination of beta-cell function: insulin secretion of isolated islets. Methods Mol. Biol. 933, 189–201 (2012)

    CAS  PubMed  Google Scholar 

  24. N.M. Doliba, S.L. Wehrli, M.Z. Vatamaniuk, W. Qin, C.W. Buettger, H.W. Collins, F.M. Matschinsky, Metabolic and ionic coupling factors in amino acid-stimulated insulin release in pancreatic beta-HC9 cells. Am. J. Physiol. Endocrinol. Metab. 292, E1507–E1519 (2007)

    Article  CAS  PubMed  Google Scholar 

  25. M. Belz, M. Willenborg, N. Görgler, A. Hamada, K. Schumacher, I. Rustenbeck, Insulinotropic effect of high potassium concentration beyond plasma membrane depolarization. Am. J. Physiol. Endocrinol. Metab. 306, E697–E706 (2014)

    Article  CAS  PubMed  Google Scholar 

  26. C.B. Wollheim, P. Maechler, Beta-cell mitochondria and insulin secretion: messenger role of nucleotides and metabolites. Diabetes 51(Suppl. 1), S37–S42 (2002)

    Article  CAS  PubMed  Google Scholar 

  27. I.R. Sweet, D.L. Cook, E. DeJulio, A.R. Wallen, G. Khalil, J. Callis, J. Reems, Regulation of ATP/ADP in pancreatic islets. Diabetes 53, 401–409 (2004)

    Article  CAS  PubMed  Google Scholar 

  28. S.R. Jung, B.J. Reed, I.R. Sweet, A highly energetic process couples calcium influx through L-type calcium channels to insulin secretion in pancreatic beta-cells. Am. J. Physiol. Endocrinol. Metab. 297, E717–E727 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. S.R. Jung, I.T. Kuok, D. Couron, N. Rizzo, D.H. Margineantu, D.M. Hockenbery, F. Kim, I.R. Sweet, Reduced cytochrome C is an essential regulator of sustained insulin secretion by pancreatic islets. J. Biol. Chem. 286, 17422–17434 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. R. Nesher, L. Waldman, E. Cerasi, Time-dependent inhibition of insulin release: glucose–arginine interactions in the perfused rat pancreas. Diabetologia 26, 146–149 (1984)

    CAS  PubMed  Google Scholar 

  31. R. Nesher, E. Cerasi, Modeling phasic insulin release: immediate and time-dependent effects of glucose. Diabetes 51(Suppl. 1), S53–S59 (2002)

    Article  CAS  PubMed  Google Scholar 

  32. A.E. Senior, ATP synthesis by oxidative phosphorylation. Physiol. Rev. 68, 177–231 (1988)

    CAS  PubMed  Google Scholar 

  33. J. Miyazaki, K. Araki, E. Yamato, H. Ikegami, T. Asano, Y. Shibasaki, Y. Oka, K. Yamamura, Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology 127, 126–132 (1990)

    Article  CAS  PubMed  Google Scholar 

  34. H. Ishihara, T. Asano, K. Tsukuda, H. Katagiri, K. Inukai, M. Anai, M. Kikuchi, Y. Yazaki, J.I. Miyazaki, Y. Oka, Pancreatic beta cell line MIN6 exhibits characteristics of glucose metabolism and glucose-stimulated insulin secretion similar to those of normal islets. Diabetologia 36, 1139–1145 (1993)

    Article  CAS  PubMed  Google Scholar 

  35. K. Minami, H. Yano, T. Miki, K. Nagashima, C.Z. Wang, H. Tanaka, J.I. Miyazaki, S. Seino, Insulin secretion and differential gene expression in glucose-responsive and -unresponsive MIN6 sublines. Am J Physiol Endocrinol Metab. 279, E773–E781 (2000)

    CAS  PubMed  Google Scholar 

  36. M. Prentki, F.M. Matschinsky, S.R. Madiraju, Metabolic signaling in fuel-induced insulin secretion. Cell Metab. 18, 162–185 (2013)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Deutsche Diabetes Gesellschaft. T. Schulze was supported by PVZ—Center of Pharmaceutical Engineering at the University of Braunschweig. Skilful technical assistance by Verena Lier-Glaubitz and Carolin Rattunde is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Rustenbeck.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulze, T., Morsi, M., Brüning, D. et al. Different responses of mouse islets and MIN6 pseudo-islets to metabolic stimulation: a note of caution. Endocrine 51, 440–447 (2016). https://doi.org/10.1007/s12020-015-0701-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-015-0701-z

Keywords

Navigation