Skip to main content

Advertisement

Log in

Autocrine effect of Zn2+ on the glucose-stimulated insulin secretion

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

It is well known that zinc (Zn2+) is required for the process of insulin biosynthesis and the maturation of insulin secretory granules in pancreatic beta (β)-cells, and that changes in Zn2+ levels in the pancreas have been found to be associated with diabetes. Glucose-stimulation causes a rapid co-secretion of Zn2+ and insulin with similar kinetics. However, we do not know whether Zn2+ regulates insulin availability and secretion. Here we investigated the effect of Zn2+ on glucose-stimulated insulin secretion (GSIS) in isolated mouse pancreatic islets. Whereas Zn2+ alone (control) had no effect on the basal secretion of insulin, it significantly inhibited GSIS. The application of CaEDTA, by removing the secreted Zn2+ from the extracellular milieu of the islets, resulted in significantly increased GSIS, suggesting an overall inhibitory role of secreted Zn2+ on GSIS. The inhibitory action of Zn2+ was mostly mediated through the activities of KATP/Ca2+ channels. Furthermore, during brief paired-pulse glucose-stimulated Zn2+ secretion (GSZS), Zn2+ secretion following the second pulse was significantly attenuated, probably by the secreted endogenous Zn2+ after the first pulse. Such an inhibition on Zn2+ secretion following the second pulse was completely reversed by Zn2+ chelation, suggesting a negative feedback mechanism, in which the initial glucose-stimulated Zn2+ release inhibits subsequent Zn2+ secretion, subsequently inhibiting insulin co-secretion as well. Taken together, these data suggest a negative feedback mechanism on GSZS and GSIS by Zn2+ secreted from β-cells, and the co-secreted Zn2+ may act as an autocrine inhibitory modulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y.V. Li, Zinc and insulin in pancreatic beta-cells. Endocrine 45(2), 178–189 (2014). doi:10.1007/s12020-013-0032-x

    Article  CAS  PubMed  Google Scholar 

  2. D.A. Scott, A.M. Fisher, The insulin and the zinc content of normal and diabetic pancreas. J. Clin. Investig. 17(6), 725–728 (1938). doi:10.1172/JCI101000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. A.B. Chausmer, Zinc, insulin and diabetes. J. Am. Coll. Nutr. 17(2), 109–115 (1998)

    Article  CAS  PubMed  Google Scholar 

  4. K. Lemaire, M.A. Ravier, A. Schraenen, J.W. Creemers, R. Van de Plas, M. Granvik, L. Van Lommel, E. Waelkens, F. Chimienti, G.A. Rutter, P. Gilon, P.A. in’t Veld, F.C. Schuit, Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice. Proc Natl Acad Sci U S A 106(35), 14872–14877 (2009). doi:10.1073/pnas.0906587106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. J. Brandao-Neto, C.A. Silva, T. Shuhama, J.A. Silva, L. Oba, Renal handling of zinc in insulin-dependent diabetes mellitus patients. Biometals 14(1), 75–80 (2001)

    Article  CAS  PubMed  Google Scholar 

  6. J.J. Cunningham, A. Fu, P.L. Mearkle, R.G. Brown, Hyperzincuria in individuals with insulin-dependent diabetes mellitus: concurrent zinc status and the effect of high-dose zinc supplementation. Metabolism 43(12), 1558–1562 (1994)

    Article  CAS  PubMed  Google Scholar 

  7. W.B. Kinlaw, A.S. Levine, J.E. Morley, S.E. Silvis, C.J. McClain, Abnormal zinc metabolism in type II diabetes mellitus. Am. J. Med. 75(2), 273–277 (1983). doi:10.1016/0002-9343(83)91205-6

    Article  CAS  PubMed  Google Scholar 

  8. P. Proks, J.D. Lippiat, Membrane ion channels and diabetes. Curr. Pharm. Des. 12(4), 485–501 (2006)

    Article  CAS  PubMed  Google Scholar 

  9. G.A. Rutter, Think zinc: new roles for zinc in the control of insulin secretion. Islets 2(1), 49–50 (2011). doi:10.4161/isl.2.1.10259

    Article  Google Scholar 

  10. M. Foster, S. Samman, Zinc and redox signaling: perturbations associated with cardiovascular disease and diabetes mellitus. Antioxid. Redox Signal 13(10), 1549–1573 (2010). doi:10.1089/ars.2010.3111

    Article  CAS  PubMed  Google Scholar 

  11. M.D. Bosco, D.M. Mohanasundaram, C.J. Drogemuller, C.J. Lang, P.D. Zalewski, P.T. Coates, Zinc and zinc transporter regulation in pancreatic islets and the potential role of zinc in islet transplantation. Rev Diabet Stud 7(4), 263–274 (2010). doi:10.1900/RDS.2010.7.263

    Article  PubMed Central  PubMed  Google Scholar 

  12. N. Wijesekara, F. Chimienti, M.B. Wheeler, Zinc, a regulator of islet function and glucose homeostasis. Diabetes Obes. Metab. 11(Suppl 4), 202–214 (2009). doi:10.1111/j.1463-1326.2009.01110.x

    Article  CAS  PubMed  Google Scholar 

  13. Y.V. Li, Zinc Overload in Stroke, in Metal Ion in Stroke, ed. by Y.V. Li, J.H. Zhang (Springer Science+Business Media, New York, 2012), pp. 167–189

    Chapter  Google Scholar 

  14. Y.V. Li, C.J. Hough, J.M. Sarvey, Do we need zinc to think? Sci. STKE 182, 19 (2003)

    Google Scholar 

  15. C.J. Frederickson, J.Y. Koh, A.I. Bush, The neurobiology of zinc in health and disease. Nat. Rev. Neurosci. 6(6), 449–462 (2005). doi:10.1038/nrn1671

    Article  CAS  PubMed  Google Scholar 

  16. S.L. Sensi, P. Paoletti, A.I. Bush, I. Sekler, Zinc in the physiology and pathology of the CNS. Nat. Rev. Neurosci. 10(11), 780–791 (2009). doi:10.1038/nrn2734

    Article  CAS  PubMed  Google Scholar 

  17. A. Mathie, G.L. Sutton, C.E. Clarke, E.L. Veale, Zinc and copper: pharmacological probes and endogenous modulators of neuronal excitability. Pharmacol. Ther. 111(3), 567–583 (2006)

    Article  CAS  PubMed  Google Scholar 

  18. D.W. Barnett, D.M. Pressel, S. Misler, Voltage-dependent Na+ and Ca2+ currents in human pancreatic islet beta-cells: evidence for roles in the generation of action potentials and insulin secretion. Pflugers Arch. 431(2), 272–282 (1995)

    Article  CAS  PubMed  Google Scholar 

  19. C.B. Newgard, J.D. McGarry, Metabolic coupling factors in pancreatic beta-cell signal transduction. Annu. Rev. Biochem. 64, 689–719 (1995). doi:10.1146/annurev.bi.64.070195.003353

    Article  CAS  PubMed  Google Scholar 

  20. A. Tarasov, J. Dusonchet, F. Ashcroft, Metabolic regulation of the pancreatic beta-cell ATP-sensitive K+ channel: a pas de deux. Diabetes 53(Suppl 3), S113–S122 (2004)

    Article  CAS  PubMed  Google Scholar 

  21. F.M. Ashcroft, P. Rorsman, G. Trube, Single calcium channel activity in mouse pancreatic beta-cells. Ann. N. Y. Acad. Sci. 560, 410–412 (1989)

    Article  CAS  PubMed  Google Scholar 

  22. I. Findlay, F.M. Ashcroft, R.P. Kelly, P. Rorsman, O.H. Petersen, G. Trube, Calcium currents in insulin-secreting beta-cells. Ann. N. Y. Acad. Sci. 560, 403–409 (1989)

    Article  CAS  PubMed  Google Scholar 

  23. A. Bloc, T. Cens, H. Cruz, Y. Dunant, Zinc-induced changes in ionic currents of clonal rat pancreatic -cells: activation of ATP-sensitive K+ channels. J. Physiol. 529(Pt 3), 723–734 (2000)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. R. Ferrer, B. Soria, C.M. Dawson, I. Atwater, E. Rojas, Effects of Zn2+ on glucose-induced electrical activity and insulin release from mouse pancreatic islets. Am. J. Physiol. 246(5 Pt 1), C520–C527 (1984)

    CAS  PubMed  Google Scholar 

  25. T. Ghafghazi, M.L. McDaniel, P.E. Lacy, Zinc-induced inhibition of insulin secretion from isolated rat islets of Langerhans. Diabetes 30(4), 341–345 (1981)

    Article  CAS  PubMed  Google Scholar 

  26. V. Bancila, I. Nikonenko, Y. Dunant, A. Bloc, Zinc inhibits glutamate release via activation of pre-synaptic K channels and reduces ischaemic damage in rat hippocampus. J. Neurochem. 90(5), 1243–1250 (2004). doi:10.1111/j.1471-4159.2004.02587.xJNC2587

    Article  CAS  PubMed  Google Scholar 

  27. B. Holst, K.L. Egerod, C. Jin, P.S. Petersen, M.V. Ostergaard, J. Hald, A.M. Sprinkel, J. Storling, T. Mandrup-Poulsen, J.J. Holst, P. Thams, C. Orskov, N. Wierup, F. Sundler, O.D. Madsen, T.W. Schwartz, G protein-coupled receptor 39 deficiency is associated with pancreatic islet dysfunction. Endocrinology 150(6), 2577–2585 (2009). doi:10.1210/en.2008-1250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. P. Popovics, A.J. Stewart, GPR39: a Zn(2+)-activated G protein-coupled receptor that regulates pancreatic, gastrointestinal and neuronal functions. Cell Mol. Life Sci. 68(1), 85–95 (2011). doi:10.1007/s00018-010-0517-1

    Article  CAS  PubMed  Google Scholar 

  29. C.A. Aspinwall, S.A. Brooks, R.T. Kennedy, J.R. Lakey, Effects of intravesicular H+ and extracellular H+ and Zn2+ on insulin secretion in pancreatic beta cells. J. Biol. Chem. 272(50), 31308–31314 (1997)

    Article  CAS  PubMed  Google Scholar 

  30. B. Ahren, Type 2 diabetes, insulin secretion and beta-cell mass. Curr. Mol. Med. 5(3), 275–286 (2005)

    Article  CAS  PubMed  Google Scholar 

  31. D.M. Muoio, C.B. Newgard, Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat. Rev. Mol. Cell Biol. 9(3), 193–205 (2008). doi:10.1038/nrm2327

    Article  CAS  PubMed  Google Scholar 

  32. Y. Lin, Z. Sun, Current views on type 2 diabetes. J. Endocrinol. 204(1), 1–11 (2012). doi:10.1677/JOE-09-0260

    Article  Google Scholar 

  33. G. Tian, S. Sandler, E. Gylfe, A. Tengholm, Glucose- and hormone-induced cAMP oscillations in alpha- and beta-cells within intact pancreatic islets. Diabetes 60(5), 1535–1543 (2011). doi:10.2337/db10-1087

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. P.D. Zalewski, S.H. Millard, I.J. Forbes, O. Kapaniris, A. Slavotinek, W.H. Betts, A.D. Ward, S.F. Lincoln, I. Mahadevan, Video image analysis of labile zinc in viable pancreatic islet cells using a specific fluorescent probe for zinc. J. Histochem. Cytochem. 42(7), 877–884 (1994)

    Article  CAS  PubMed  Google Scholar 

  35. W.J. Qian, K.R. Gee, R.T. Kennedy, Imaging of Zn2 + release from pancreatic beta-cells at the level of single exocytotic events. Anal. Chem. 75(14), 3468–3475 (2003)

    Article  CAS  PubMed  Google Scholar 

  36. W.J. Qian, J.L. Peters, G.M. Dahlgren, K.R. Gee, R.T. Kennedy, Simultaneous monitoring of Zn2+ secretion and intracellular Ca2+ from islets and islet cells by fluorescence microscopy. Biotechniques 37(6), 922–924 (2004). 926, 928-930 passim

    CAS  PubMed  Google Scholar 

  37. F. Chimienti, S. Devergnas, F. Pattou, F. Schuit, R. Garcia-Cuenca, B. Vandewalle, J. Kerr-Conte, L. Van Lommel, D. Grunwald, A. Favier, M. Seve, In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J. Cell Sci. 119(Pt 20), 4199–4206 (2006). doi:10.1242/jcs.03164

    Article  CAS  PubMed  Google Scholar 

  38. B. Formby, F. Schmid-Formby, G.M. Grodsky, Relationship between insulin release and 65zinc efflux from rat pancreatic islets maintained in tissue culture. Diabetes 33(3), 229–234 (1984)

    Article  CAS  PubMed  Google Scholar 

  39. K.G. Slepchenko, C.B. James, Y.V. Li, Inhibitory effect of zinc on glucose-stimulated zinc/insulin secretion in an insulin-secreting beta-cell line. Exp. Physiol. 98(8), 1301–1311 (2013). doi:10.1113/expphysiol.2013.072348

    Article  CAS  PubMed  Google Scholar 

  40. D.P. Figlewicz, B. Formby, A.T. Hodgson, F.G. Schmid, G.M. Grodsky, Kinetics of 65zinc uptake and distribution in fractions from cultured rat islets of langerhans. Diabetes 29(10), 767–773 (1980)

    Article  CAS  PubMed  Google Scholar 

  41. G. Gold, G.M. Grodsky, Kinetic aspects of compartmental storage and secretion of insulin and zinc. Experientia 40(10), 1105–1114 (1984)

    Article  CAS  PubMed  Google Scholar 

  42. E.D. Kilpatrick, R.P. Robertson, Differentiation between glucose-induced desensitization of insulin secretion and beta-cell exhaustion in the HIT-T15 cell line. Diabetes 47(4), 606–611 (1998)

    Article  CAS  PubMed  Google Scholar 

  43. R.F. Santerre, R.A. Cook, R.M. Crisel, J.D. Sharp, R.J. Schmidt, D.C. Williams, C.P. Wilson, Insulin synthesis in a clonal cell line of simian virus 40-transformed hamster pancreatic beta cells. Proc. Natl. Acad. Sci. U.S.A. 78(7), 4339–4343 (1981)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. M. Skelin, M. Rupnik, A. Cencic, Pancreatic beta cell lines and their applications in diabetes mellitus research. Altex 27(2), 105–113 (2010)

    PubMed  Google Scholar 

  45. J. Miyazaki, K. Araki, E. Yamato, H. Ikegami, T. Asano, Y. Shibasaki, Y. Oka, K. Yamamura, Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology 127(1), 126–132 (1990)

    Article  CAS  PubMed  Google Scholar 

  46. K.G. Slepchenko, Y.V. Li, Rising intracellular zinc by membrane depolarization and glucose in insulin-secreting clonal HIT-T15 beta cells. Exp. Diabetes Res. 2012, 190309 (2012). doi:10.1155/2012/190309

    Article  PubMed Central  PubMed  Google Scholar 

  47. J.K. Ketterman, Y.V. Li, Presynaptic evidence for zinc release at the mossy fiber synapse of rat hippocampus. J. Neurosci. Res. 86(2), 422–434 (2008)

    Article  CAS  PubMed  Google Scholar 

  48. S.C. Burdette, G.K. Walkup, B. Spingler, R.Y. Tsien, S.J. Lippard, Fluorescent sensors for Zn(2+) based on a fluorescein platform: synthesis, properties and intracellular distribution. J. Am. Chem. Soc. 123(32), 7831–7841 (2001)

    Article  CAS  PubMed  Google Scholar 

  49. G.K. Walkup, S.C. Burdette, S.J. Lippard, R.Y. Tsien, A new cell-permeable fluorescent probe for Zn2+. J. Am. Chem. Soc. 122(23), 5644–5645 (2000). doi:10.1021/ja000868p

    Article  CAS  Google Scholar 

  50. G. Anderegg, E. Hubmann, N.G. Podder, F. Wenk, Pyridinderivate als Komplexbildner. XI. Die Thermodynamik der Metallkomplexbildung mit Bis-, Tris- und Tetrakis[(2-pyridyl)methyl]-aminen. Helv. Chim. Acta 60(1), 123–140 (1977). doi:10.1002/hlca.19770600115

    Article  CAS  Google Scholar 

  51. P. Arslan, F. Di Virgilio, M. Beltrame, R.Y. Tsien, T. Pozzan, Cytosolic Ca2+ homeostasis in Ehrlich and Yoshida carcinomas. A new, membrane-permeant chelator of heavy metals reveals that these ascites tumor cell lines have normal cytosolic free Ca2+. J. Biol. Chem. 260(5), 2719–2727 (1985)

    CAS  PubMed  Google Scholar 

  52. K.Y. Chu, M.J. Briggs, T. Albrecht, P.F. Drain, J.D. Johnson, Differential regulation and localization of carboxypeptidase D and carboxypeptidase E in human and mouse beta-cells. Islets 3(4), 155–165 (2011)

    Article  PubMed  Google Scholar 

  53. S. Watkins, X. Geng, L. Li, G. Papworth, P.D. Robbins, P. Drain, Imaging secretory vesicles by fluorescent protein insertion in propeptide rather than mature secreted peptide. Traffic 3(7), 461–471 (2002)

    Article  CAS  PubMed  Google Scholar 

  54. D. Baetens, F. Malaisse-Lagae, A. Perrelet, L. Orci, Endocrine pancreas: three-dimensional reconstruction shows two types of islets of langerhans. Science 206(4424), 1323–1325 (1979)

    Article  CAS  PubMed  Google Scholar 

  55. O. Cabrera, D.M. Berman, N.S. Kenyon, C. Ricordi, P.O. Berggren, A. Caicedo, The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl. Acad. Sci. U.S.A. 103(7), 2334–2339 (2006). doi:10.1073/pnas.0510790103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. D.M. Bers, C.W. Patton, R. Nuccitelli, A practical guide to the preparation of Ca2+ buffers. Methods Cell Biol. 40, 3–29 (1994)

    Article  CAS  PubMed  Google Scholar 

  57. Y. Li, C.J. Hough, C.J. Frederickson, J.M. Sarvey, Induction of mossy fiber –> Ca3 long-term potentiation requires translocation of synaptically released Zn2+. J. Neurosci. 21(20), 8015–8025 (2001)

    CAS  PubMed  Google Scholar 

  58. H.L. Hellmich, C.J. Frederickson, D.S. DeWitt, R. Saban, M.O. Parsley, R. Stephenson, M. Velasco, T. Uchida, M. Shimamura, D.S. Prough, Protective effects of zinc chelation in traumatic brain injury correlate with upregulation of neuroprotective genes in rat brain. Neurosci. Lett. 355(3), 221–225 (2004)

    Article  CAS  PubMed  Google Scholar 

  59. T.J. Kamp, J.W. Hell, Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circ. Res. 87(12), 1095–1102 (2000)

    Article  CAS  PubMed  Google Scholar 

  60. G. Devis, G. Somers, E. Van Obberghen, W.J. Malaisse, Calcium antagonists and islet function. I. Inhibition of insulin release by verapamil. Diabetes 24(6), 247–251 (1975)

    Article  CAS  PubMed  Google Scholar 

  61. S. Falkmer, R. Odselius, B. Blondel, M. Prentki, C.B. Wollheim, Energy dispersive X-ray microanalysis of zinc and calcium in organelles of insulin-producing cells of the mouse, rat, and a fish. Biomed. Biochim. Acta 44(1), 37–43 (1985)

    CAS  PubMed  Google Scholar 

  62. U. Lindh, L. Juntti-Berggren, P.O. Berggren, B. Hellman, Proton microprobe analysis of pancreatic beta-cells. Biomed. Biochim. Acta 44(1), 55–61 (1985)

    CAS  PubMed  Google Scholar 

  63. M.C. Foster, R.D. Leapman, M.X. Li, I. Atwater, Elemental composition of secretory granules in pancreatic islets of Langerhans. Biophys. J. 64(2), 525–532 (1993). doi:10.1016/S0006-3495(93)81397-3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. W.J. Qian, C.A. Aspinwall, M.A. Battiste, R.T. Kennedy, Detection of secretion from single pancreatic beta-cells using extracellular fluorogenic reactions and confocal fluorescence microscopy. Anal. Chem. 72(4), 711–717 (2000)

    Article  CAS  PubMed  Google Scholar 

  65. D. Li, S. Chen, E.A. Bellomo, A.I. Tarasov, C. Kaut, G.A. Rutter, W.H. Li, Imaging dynamic insulin release using a fluorescent zinc indicator for monitoring induced exocytotic release (ZIMIR). Proc. Natl. Acad. Sci. U.S.A. 108(52), 21063–21068 (2011). doi:10.1073/pnas.1109773109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. L.S. Satin, Localized calcium influx in pancreatic beta-cells: its significance for Ca2+-dependent insulin secretion from the islets of Langerhans. Endocrine 13(3), 251–262 (2000). doi:10.1385/ENDO:13:3:251

    Article  CAS  PubMed  Google Scholar 

  67. S. Jitrapakdee, A. Wutthisathapornchai, J.C. Wallace, M.J. MacDonald, Regulation of insulin secretion: role of mitochondrial signalling. Diabetologia 53(6), 1019–1032 (2010). doi:10.1007/s00125-010-1685-0

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. J.C. Henquin, M. Nenquin, P. Stiernet, B. Ahren, In vivo and in vitro glucose-induced biphasic insulin secretion in the mouse: pattern and role of cytoplasmic Ca2+ and amplification signals in beta-cells. Diabetes 55(2), 441–451 (2006)

    Article  CAS  PubMed  Google Scholar 

  69. S. Seino, T. Shibasaki, K. Minami, Dynamics of insulin secretion and the clinical implications for obesity and diabetes. J. Clin. Investig. 121(6), 2118–2125 (2011). doi:10.1172/JCI45680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. I.I. Nita, M. Hershfinkel, C. Kantor, G.A. Rutter, E.C. Lewis, I. Sekler, Pancreatic beta-cell Na+ channels control global Ca2+ signaling and oxidative metabolism by inducing Na+ and Ca2+ responses that are propagated into mitochondria. FASEB J. 28(8), 3301–3312 (2014). doi:10.1096/fj.13-248161

    Article  CAS  PubMed  Google Scholar 

  71. L. Aguilar-Bryan, J. Bryan, Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr. Rev. 20(2), 101–135 (1999)

    CAS  PubMed  Google Scholar 

  72. B. Turan, Zinc-induced changes in ionic currents of cardiomyocytes. Biol. Trace Elem. Res. 94(1), 49–60 (2003). doi:10.1385/BTER:94:1:49

    Article  CAS  PubMed  Google Scholar 

  73. X.P. Chu, J.A. Wemmie, W.Z. Wang, X.M. Zhu, J.A. Saugstad, M.P. Price, R.P. Simon, Z.G. Xiong, Subunit-dependent high-affinity zinc inhibition of acid-sensing ion channels. J. Neurosci. 24(40), 8678–8689 (2004). doi:10.1523/JNEUROSCI.2844-04.2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. M. Hutton, The effects of environmental lead exposure and in vitro zinc on tissue delta-aminolevulinic acid dehydratase in urban pigeons. Comp. Biochem. Physiol. C 74(2), 441–446 (1983)

    Article  CAS  PubMed  Google Scholar 

  75. A.L. Prost, A. Bloc, N. Hussy, R. Derand, M. Vivaudou, Zinc is both an intracellular and extracellular regulator of KATP channel function. J. Physiol. 559(Pt 1), 157–167 (2004). doi:10.1113/jphysiol.2004.065094

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. F. Chimienti, S. Devergnas, A. Favier, M. Seve, Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 53(9), 2330–2337 (2004)

    Article  CAS  PubMed  Google Scholar 

  77. N. Wijesekara, F.F. Dai, A.B. Hardy, P.R. Giglou, A. Bhattacharjee, V. Koshkin, F. Chimienti, H.Y. Gaisano, G.A. Rutter, M.B. Wheeler, Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. Diabetologia 53(8), 1656–1668 (2010). doi:10.1007/s00125-010-1733-9

    Article  CAS  PubMed  Google Scholar 

  78. T.J. Nicolson, E.A. Bellomo, N. Wijesekara, M.K. Loder, J.M. Baldwin, A.V. Gyulkhandanyan, V. Koshkin, A.I. Tarasov, R. Carzaniga, K. Kronenberger, T.K. Taneja, G. da Silva Xavier, S. Libert, P. Froguel, R. Scharfmann, V. Stetsyuk, P. Ravassard, H. Parker, F.M. Gribble, F. Reimann, R. Sladek, S.J. Hughes, P.R. Johnson, M. Masseboeuf, R. Burcelin, S.A. Baldwin, M. Liu, R. Lara-Lemus, P. Arvan, F.C. Schuit, M.B. Wheeler, F. Chimienti, G.A. Rutter, Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes 58(9), 2070–2083 (2009). doi:10.2337/db09-0551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Calvin James for his advice of preparing pancreatic islets, Dr. Peter Drain for mCherry-tagged insulin fusion protein, and Dr. Tomohiko Sugiyama for helping with propagation and purification of construct DNA kindly gifted to us by Dr. Drain. We also wish to thank the Imaging Facility of the Ohio University Neuroscience Program for their support.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang V. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slepchenko, K.G., Daniels, N.A., Guo, A. et al. Autocrine effect of Zn2+ on the glucose-stimulated insulin secretion. Endocrine 50, 110–122 (2015). https://doi.org/10.1007/s12020-015-0568-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-015-0568-z

Keywords

Navigation