Skip to main content

Advertisement

Log in

The relationship between circulating TRAIL and endothelial dysfunction in subclinical hypothyroidism

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is associated with atherosclerosis. Subclinical hypothyroidism (sHT) is associated with the increased prevalence of atherosclerotic lesions and cardiovascular events. Therefore, we hypothesized that circulating TRAIL levels are associated with endothelial dysfunction in sHT patients. Two hundred and four patients with newly diagnosed sHT and 52 healthy subjects were recruited. Circulating TRAIL concentration was measured by an ELISA, and flow-mediated dilation (FMD) of brachial artery was measured using high-resolution ultrasound. The mean value of circulating TRAIL in newly diagnosed sHT patients was 67.2 pg/ml, which was lower than that in controls (78.5 pg/ml, p < 0.001). By dividing the distribution of FMD levels into quartiles, TRAIL levels were increased gradually with the increase of FMD levels (p < 0.001). Multivariate regression analysis demonstrated that serum TRAIL levels were independently associated with FMD (p = 0.007). By logistic regression analysis, the odds ratio for lower FMD levels was reduced by 12.1 % per 1 pg/ml increase in serum TRAIL concentration after adjustment for multivariate metabolic factors [OR (95 % CI); 0.879 (0.721–0.973)]. Circulating TRAIL level decreased in newly diagnosed sHT patients and is positively associated with endothelial function, suggesting that circulating TRAIL level may be a protective marker of endothelial function in sHT patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

TPO-Ab:

Antithyroid peroxidase antibody

Tg-Ab:

Antithyroglobulin antibody

BMI:

Body mass index

CRP:

C-reactive protein

DBP:

Diastolic blood pressure

FBG:

Fasting blood glucose

FMD:

Flow-mediated endothelium-dependent vasodilation

HDL-C:

High-density lipoprotein cholesterol

LDL-C:

Low-density lipoprotein cholesterol

IMRA:

Immunoradiometric assay

RIA:

Radioimmunoassay

sHT:

Subclinical hypothyroidism

SBP:

Systolic blood pressure

TC:

Total cholesterol

TG:

Triglyceride

TNF:

Tumor necrosis factor

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

UAER:

Urinary albumin excretion rate

References

  1. S.M. Park, R. Schickel, M.E. Peter, Nonapoptotic functions of FADD-binding death receptors and their signaling molecules. Curr. Opin. Cell Biol. 17(6), 1–7 (2005)

    Article  Google Scholar 

  2. G. Pan, J. Ni, Y.F. Wei, G. Yu, R. Gentz, V.M. Dixit, An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 277(5327), 815–818 (1997)

    Article  CAS  PubMed  Google Scholar 

  3. S.M. Mariani, P.H. Krammer, Differential regulation of TRAIL and CD95 ligand in transformed cells of the T and B lymphocyte. Eur. J. Immunol. 28(3), 973–982 (1998)

    Article  CAS  PubMed  Google Scholar 

  4. P. Secchiero, A. Gonelli, E. Carnevale, D. Milani, A. Pandolfi, D. Zella, G. Zauli, TRAIL promotes the survival and proliferation of primary human vascular endothelial cells by activating the Akt and Erk pathway. Circulation 107(17), 2250–2256 (2003)

    Article  PubMed  Google Scholar 

  5. M.M. Kavurma, M.R. Bennett, Expression, regulation and function of trail in atherosclerosis. Biochem. Pharmacol. 75(7), 1441–1450 (2008)

    Article  CAS  PubMed  Google Scholar 

  6. A. Almasan, A. Ashkenazi, Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev. 14(3–4), 337–3348 (2003)

    Article  CAS  PubMed  Google Scholar 

  7. J.H. Li, N.C. Kirkiles-Smith, J.M. McNiff, J.S. Pober, TRAIL induces apoptosis and inflammatory gene expression in human endothelial cells. J. Immunol. 171(3), 1526–1533 (2003)

    Article  CAS  PubMed  Google Scholar 

  8. L.A. O’Brien, M.A. Richardson, S.F. Mehrbod, D.T. Berg, B. Gerlitz, A. Gupta, B.W. Grinnell, Activated protein C decreases tumor necrosis factor related apoptosis-inducing ligand by an EPCR-independent mechanism involving Egr-1/Erk-1/2 activation. Arterioscler. Thromb. Vasc. Biol. 27(12), 2634–2641 (2007)

    Article  PubMed  Google Scholar 

  9. S. Simoncini, M.S. Njock, S. Robert, L. Camoin-Jau, J. Sampol, J.R. Harlé, C. Nguyen, F. Dignat-George, F. Anfosso, TRAIL/Apo2L mediates the release of procoagulant endothelial microparticles induced by thrombin in vitro: a potential mechanism linking inflammation and coagulation. Circ. Res. 104(8), 943–951 (2009)

    Article  CAS  PubMed  Google Scholar 

  10. M. Schoppet, A.M. Sattler, J.R. Schaefer, L.C. Hofbauer, Osteoprotegerin (OPG) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) levels in atherosclerosis. Atherosclerosis. 184(2), 446–447 (2006)

    Article  CAS  PubMed  Google Scholar 

  11. P. Secchiero, F. Corallini, C. Ceconi, G. Parrinello, S. Volpato, R. Ferrari, G. Zauli, Potential prognostic significance of decreased serum levels of TRAIL after acute myocardial infarction. PLoS One 4(2), e4442 (2009)

  12. A. Niessner, P.J. Hohensinner, K. Rychli, S. Neuhold, G. Zorn, B. Richter, M. Hülsmann, R. Berger, D. Mörtl, K. Huber, J. Wojta, R. Pacher, Prognostic value of apoptosis markers in advanced heart failure patients. Eur. Heart J. 30(7), 789–796 (2009)

    Article  CAS  PubMed  Google Scholar 

  13. G. Vitale, M. Galderisi, G.A. Lupoli, A. Celentano, I. Pietropaolo, N. Parenti, O. De Divitiis, G. Lupoli, Left ventricular myocardial impairment in subclinical hypothyroidism assessed by a new ultrasound tool: pulsed tissue Doppler. J. Clin. Endocrinol. Metab. 87(9), 4350–4355 (2002)

    Article  CAS  PubMed  Google Scholar 

  14. M. Imaizumi, M. Akahoshi, S. Ichimaru, E. Nakashima, A. Hida, M. Soda, T. Usa, K. Ashizawa, N. Yokoyama, R. Maeda, S. Nagataki, K. Eguchi, Risk for ischemic heart disease and all-cause mortality in subclinical hypothyroidism. J. Clin. Endocrinol. Metab. 89(7), 3365–3370 (2004)

    Article  CAS  PubMed  Google Scholar 

  15. P.O. Boneti, L.O. Lerman, A. Lerman, Endothelial dysfunction, a marker of atherosclerotic risk. Arterioscler. Thromb. Vasc. Biol. 23(2), 168–175 (2003)

    Article  Google Scholar 

  16. G.D. Xiang, J.H. Pu, H.L. Sun, L.S. Zhao, Alpha-lipoic acid improves endothelial dysfunction in patients with subclinical hypothyroidism. Exp. Clin. Endocrinol. Diabetes 118(9), 1–5 (2010)

    Google Scholar 

  17. G.D. Xiang, H.L. Sun, Z.S. Cheng, L.S. Zhao, Changes in plasma concentration of osteoprotegerin before and after levothyroxine replacement therapy in hypothyroid patients. J. Clin. Endocrinol. Metab. 90(10), 5765–5768 (2005)

    Article  CAS  Google Scholar 

  18. G.D. Xiang, L. Xu, L.S. Zhao, L. Yue, J. Hou, The relationship between plasma osteoprotegerin and endothelium-dependent arterial dilation in type 2 diabetes. Diabetes 55(7), 2126–2131 (2006)

    Article  CAS  PubMed  Google Scholar 

  19. G.D. Xiang, Y.L. Wang, Regular aerobic exercise training improves endothelium-dependent artery dilation in patients with impaired fasting glucose. Diabetes Care 27(3), 801–802 (2004)

    Article  PubMed  Google Scholar 

  20. B.A. Di Bartolo, J. Chan, M.R. Bennett, S. Cartland, S. Bao, B.E. Tuch, M.M. Kavurma, TNF-related apoptosis-inducing ligand (TRAIL) protects against diabetes and atherosclerosis in Apoe (−)/(−) mice. Diabetologia 54(12), 3157–3167 (2011)

    Article  CAS  PubMed  Google Scholar 

  21. G. Zauli, B. Toffoli, M.G. di Iasio, C. Celeghini, B. Fabris, P. Secchiero, Treatment with recombinant TRAIL alleviates the severity of streptozotocin (STZ)-induced diabetes mellitus. Diabetes 59(5), 1261–1265 (2010)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. V. Watt, J. Chamberlain, T. Steiner, S. Francis, D. Crossman, TRAIL attenuates the development of atherosclerosis in apolipoprotein E deficient mice. Atherosclerosis. 215(2), 348–354 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. P. Secchiero, R. Candido, F. Corallini, S. Zacchigna, B. Toffoli, E. Rimondi, B. Fabris, M. Giacca, G. Zauli, Systemic tumor necrosis factor-related apoptosis-inducing ligand delivery shows antiatherosclerotic activity in apolipoprotein E-null diabetic mice. Circulation 114(14), 1522–1530 (2006)

    Article  CAS  PubMed  Google Scholar 

  24. S. Volpato, L. Ferrucci, P. Secchiero, F. Corallini, G. Zuliani, R. Fellin, J.M. Guralnik, S. Bandinelli, G. Zauli, Association of tumor necrosis factor-related apoptosis-inducing ligand with total and cardiovascular mortality in older adults. Atherosclerosis. 215(2), 452–458 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. N. Kawano, K. Mori, M. Emoto, E. Lee, I. Kobayashi, Y. Yamazaki, H. Urata, T. Morioka, H. Koyama, T. Shoji, Y. Nishizawa, M. Inaba, Association of serum TRAIL levels with atherosclerosis in patients with type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 91(3), 316–320 (2011)

    Article  CAS  PubMed  Google Scholar 

  26. X.D. Zhang, T. Nguyen, W.D. Thomas, J.E. Sanders, P. Hersey, Mechanisms of resistance of normal cells to TRAIL induced apoptosis vary between different cell types. FEBS Lett. 483(3), 193–199 (2000)

    Article  Google Scholar 

  27. P. Secchiero, C. Zerbinati, E. Rimondi, F. Corallini, D. Milani, V. Grill, G. Forti, S. Capitani, G. Zauli, TRAIL promotes the survival, migration and proliferation of vascular smooth muscle cells. Cell. Mol. Life Sci. 61(15), 1965–1974 (2004)

    Article  CAS  PubMed  Google Scholar 

  28. G. Zauli, A. Pandolfi, A. Gonelli, R. Di Pietro, S. Guarnieri, G. Ciabattoni, R. Rana, M. Vitale, P. Secchiero, Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sequentially up-regulates nitric oxide and prostanoid production in primary human endothelial cells. Circ. Res. 92(8), 732–740 (2003)

    Article  CAS  PubMed  Google Scholar 

  29. E.E. Türemen, B. Çetinarslan, T. Şahin, Z. Cantürk, I. Tarkun, Endothelial dysfunction and low grade chronic inflammation in subclinical hypothyroidism due to autoimmune thyroiditis. Endocr. J. 58(5), 349–354 (2011)

    Article  PubMed  Google Scholar 

  30. F. Alibaz Oner, S. Yurdakul, E. Oner, A. Kubat Uzum, M. Erguney, Evaluation of the effect of L-thyroxin therapy on endothelial functions in patients with subclinical hypothyroidism. Endocrine 40(2), 280–4 (2011)

  31. G.D. Xiang, L.W. Xiang, H.L. He, L.S. Zhao, Postprandial lipaemia suppresses endothelium-dependent arterial dilation in patients with hypothyroidism. Endocrine 42(2), 391–398 (2012)

    Article  CAS  PubMed  Google Scholar 

  32. L. Tian, J. Ni, T. Guo, J. Liu, Y. Dang, Q. Guo, L. Zhang, TSH stimulates the proliferation of vascular smooth muscle cells. Endocrine 46(3), 651–658 (2014)

    Article  CAS  PubMed  Google Scholar 

  33. S. Bernardi, G. Zauli, C. Tikellis, R. Candido, B. Fabris, P. Secchiero, M.E. Cooper, M.C. Thomas, TNF-related apoptosis-inducing ligand significantly attenuates metabolic abnormalities in high-fat-fed mice reducing adiposity and systemic inflammation. Clin. Sci. (Lond). 123(5), 547–555 (2012)

    Article  CAS  PubMed  Google Scholar 

  34. P. Secchiero, E. Rimondi, M.G. di Iasio, C. Agnoletto, E. Melloni, I. Volpi, G. Zauli, C-reactive protein downregulates TRAIL expression in human peripheral monocytes via an Egr-1-dependent pathway. Clin. Cancer Res. 19(8), 1949–1959 (2013)

    Article  CAS  PubMed  Google Scholar 

  35. H.O. Arık, A.D. Yalcin, S. Gumuslu, G.E. Genç, A. Turan, A.D. Sanlioglu, Association of circulating sTRAIL and high-sensitivity CRP with type 2 diabetic nephropathy and foot ulcers. Med. Sci. Monit. 19(8), 712–715 (2013)

    PubMed Central  PubMed  Google Scholar 

  36. G.D. Xiang, Y.S. He, L.S. Zhao, J. Hou, L. Yue, H.J. Xiang, Impairment of endothelium-dependent arterial dilation in Hashimoto’s thyroiditis patients with euthyroidism. Clin. Endocrinol. (Oxf). 64(6), 698–702 (2006)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The program was supported by National Foundation of Natural Science (81370896) and Natural Science Foundation of Hubei Province (Nos. 2011CDA002 and 2009CDB427). Dr Guangda Xiang is the guarantor of the work, and as such, has full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangda Xiang.

Additional information

Guangda Xiang and Ling Yue has equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, G., Yue, L., Zhang, J. et al. The relationship between circulating TRAIL and endothelial dysfunction in subclinical hypothyroidism. Endocrine 49, 184–190 (2015). https://doi.org/10.1007/s12020-014-0443-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-014-0443-3

Keywords

Navigation