Skip to main content
Log in

Involvement of RBP4 in hyperinsulinism-induced vascular smooth muscle cell proliferation

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Retinol-binding protein 4 (RBP4) is a newly discovered adipocytokine related to insulin resistance (IR). Hyperinsulinemia and IR are the major risk factors for cardiovascular diseases (CVD). The role of RBP4 in CVD has not yet been determined. The present study was designed to analyze the correlation of RBP4 and CVD risk factors and to evaluate the role of RBP4 in proliferation of vascular smooth muscle cells during hyperinsulinemia and the underlying mechanisms. Plasma RBP4 concentration, IR-related indexes, and cardiovascular risk factors were measured from blood samples of hyperinsulinemic rats (HIns) and control SD rats (Cons). The vascular morphology and the expression of ERK1/2, p-ERK1/2 in arterial tissues of rats were assessed. Different concentrations of RBP4 (1, 4 μg/ml) were used as intervention factor during insulin-induced aortic smooth muscle cells (RASMCs) proliferation. The expression of cell growth signaling pathways was assessed to identify the active pathway during this proliferation. Specifically, ERK1/2 inhibitor PD98059 and JAK2 inhibitor AG490 were used to detect it. RBP4 expression was higher in HIns compared with Cons (p < 0.01). Plasma RBP4 concentrations were positively correlated with TG (r = 0.490), hsCRP (r = 0.565), media thickness (r = 0.890), and p-ERK1/2 protein (r = 0.746) (p < 0.05 each). In cultured RASMCs, RBP4 enhanced insulin-induced proliferation of cells and expression of p-ERK1/2 and p-JAK2. Blockade of ERK1/2 signaling pathway inhibited RBP4-induced proliferation of RASMCs, while suppressing JAK2 remains unchanged. These results suggest that plasma RBP4 concentrations were associated with CVD. In addition, RBP4 increases the proliferation of VSMCs induced by hyperinsulinism via activation of MAPK signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.N. Al-Harithy, S. Al-Ghamdi, Serum resistin, adiposity and insulin resistance in Saudi women with type 2 diabetes mellitus. Ann. Saudi Med. 25, 283–287 (2005)

    PubMed  Google Scholar 

  2. I.B. Bauche, S.A. El Mkadem, R. Rezsohazy, T. Funahashi, N. Maeda et al., Adiponectin downregulates its own production and the expression of its AdipoR2 receptor in transgenic mice. Biochem. Biophys. Res. Commun. 345, 1414–1424 (2006)

    Article  CAS  PubMed  Google Scholar 

  3. Q. Yang, T.E. Graham, N. Mody, F. Preitner, O.D. Peroni et al., Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436, 356–362 (2005)

    Article  CAS  PubMed  Google Scholar 

  4. Y.M. Cho, B.S. Youn, H. Lee, N. Lee, S.S. Min et al., Plasma retinol-binding protein-4 concentrations are elevated in human subjects with impaired glucose tolerance and type 2 diabetes. Diabetes Care 29, 2457–2461 (2006)

    Article  CAS  PubMed  Google Scholar 

  5. T.E. Graham, Q. Yang, M. Bluher, A. Hammarstedt, T.P. Ciaraldi et al., Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N. Engl. J. Med. 354, 2552–2563 (2006)

    Article  CAS  PubMed  Google Scholar 

  6. N. Kloeting, T.E. Graham, J. Berndt, S. Kralisch, P. Kovacs et al., Serum retinol-binding protein is more highly expressed in visceral than in subcutaneous adipose tissue and is a marker of intra-abdominal fat mass. Cell Metab. 6, 79–87 (2007)

    Article  CAS  Google Scholar 

  7. R. Ribel-Madsen, M. Friedrichsen, A. Vaag, P. Poulsen, Retinol-binding protein 4 in twins regulatory mechanisms and impact of circulating and tissue expression levels on insulin secretion and action. Diabetes 58, 54–60 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. N. Stefan, F. Schick, A.M. Hennige, E. Schleicher, H. Staiger et al., High circulating retinol-binding protein 4 is associated with elevated liver fat but not with total, subcutaneous, visceral, or intramyocellular fat in humans. Diabetes Care 30, 1173–1178 (2007)

    Article  CAS  PubMed  Google Scholar 

  9. K. Takebayashi, M. Suetsugu, S. Wakabayashi, Y. Aso, T. Inukai, Retinol binding protein-4 levels and clinical features of type 2 diabetes patients. J. Clin. Endocrinol. Metab. 92, 2712–2719 (2007)

    Article  CAS  PubMed  Google Scholar 

  10. J.P. Despres, B. Lamarche, P. Mauriege, B. Cantin, G.R. Dagenais et al., Hyperinsulinemia as an independent risk factor for ischemic heart disease. N Engl. J. Med. 334, 952–957 (1996)

    Article  CAS  PubMed  Google Scholar 

  11. C. Giannattasio, G. Mancia, Arterial distensibility in humans. Modulating mechanisms, alterations in diseases and effects of treatment. J. Hypertens. 20, 1889–1899 (2002)

    Article  CAS  PubMed  Google Scholar 

  12. C. Page, A.F. Doubell, Mitogen-activated protein kinase (MAPK) in cardiac tissues. Mol. Cell. Biochem. 157, 49–57 (1996)

    Article  CAS  PubMed  Google Scholar 

  13. J.E. Pessin, A.R. Saltiel, Signaling pathways in insulin action: molecular targets of insulin resistance. J. Clin. Investig. 106, 165–169 (2000)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. K. Cusi, K. Maezono, A. Osman, M. Pendergrass, M.E. Patti et al., Insulin resistance differentially affects the PI3-kinase- and MAP kinase-mediated signaling in human muscle. J. Clin. Investig. 105, 311–320 (2000)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Z. Mallat, T. Simon, J. Benessiano, K. Clement, S. Taleb et al., Retinol-binding protein 4 and prediction of incident coronary events in healthy men and women. J. Clin. Endocrinol. Metab. 94, 255–260 (2008)

    Article  PubMed  Google Scholar 

  16. M.J. Mahmoudi, M. Mahmoudi, F. Siassi, M. Hedayat, P. Pasalar et al., Circulating retinol-binding protein 4 concentrations in patients with coronary artery disease and patients with type 2 diabetes mellitus. Int. J. Diabetes Dev. Ctries. 32, 105–110 (2012)

    Article  CAS  Google Scholar 

  17. T. Bobbert, J. Raila, F. Schwarz, K. Mai, A. Henze et al., Relation between retinol, retinol-binding protein 4, transthyretin and carotid intima media thickness. Atherosclerosis 213, 549–551 (2010)

    Article  CAS  PubMed  Google Scholar 

  18. E. Ingelsson, L. Lind, Circulating retinol-binding protein 4 and subclinical cardiovascular disease in the elderly. Diabetes Care 32, 733–735 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. M. von Eynatten, P.M. Lepper, D. Liu, K. Lang, M. Baumann et al., Retinol-binding protein 4 is associated with components of the metabolic syndrome, but not with insulin resistance, in men with type 2 diabetes or coronary artery disease. Diabetologia 50, 1930–1937 (2007)

    Article  Google Scholar 

  20. J. Wu, Y.-H. Shi, D.-M. Niu, H.-Q. Li, C.-N. Zhang et al., Association among retinol-binding protein 4, small dense LDL cholesterol and oxidized LDL levels in dyslipidemia subjects. Clin. Biochem. 45, 619–622 (2012)

    Article  CAS  PubMed  Google Scholar 

  21. E. Ingelsson, J. Sundström, H. Melhus, K. Michaëlsson, C. Berne et al., Circulating retinol-binding protein 4, cardiovascular risk factors and prevalent cardiovascular disease in elderly. Atherosclerosis 206, 239–244 (2009)

    Article  CAS  PubMed  Google Scholar 

  22. A. Cabré, I. Lázaro, J. Girona, J. Manzanares, F. Marimón et al., Retinol-binding protein 4 as a plasma biomarker of renal dysfunction and cardiovascular disease in type 2 diabetes. J. Intern. Med. 262, 496–503 (2007)

    Article  PubMed  Google Scholar 

  23. L. Poretsky, B. Glover, V. Laumas, M. Kalin, A. Dunaif, The effects of experimental hyperinsulinemia on steroid secretion, ovarian 125I insulin binding, and ovarian 125I insulin-like growth-factor I binding in the rat. Endocrinology 122, 581–585 (1988)

    Article  CAS  PubMed  Google Scholar 

  24. J. Radziuk, Insulin sensitivity and its measurement: structural commonalities among the methods. J. Clin. Endocrinol. Metab. 85, 4426–4433 (2000)

    CAS  PubMed  Google Scholar 

  25. C.C.L. Wang, I. Gurevich, B. Draznin, Insulin affects vascular smooth muscle cell phenotype and migration via distinct signaling pathways. Diabetes 52, 2562–2569 (2003)

    Article  CAS  PubMed  Google Scholar 

  26. C–.C. Lin, M–.M. Lai, T.-C. Li, C.-I. Li, C.-S. Liu et al., Relationship between serum retinol-binding protein 4 and visfatin and the metabolic syndrome. Diabetes Res. Clin. Pract. 85, 24–29 (2009)

    Article  CAS  PubMed  Google Scholar 

  27. Q. Qi, Z. Yu, X. Ye, F. Zhao, P. Huang et al., Elevated retinol-binding protein 4 levels are associated with metabolic syndrome in Chinese people. J. Clin. Endocrinol. Metab. 92, 4827–4834 (2007)

    Article  CAS  PubMed  Google Scholar 

  28. B. Verges, B. Guiu, J.P. Cercueil, L. Duvillard, I. Robin et al., Retinol-binding protein 4 is an independent factor associated with triglycerides and a determinant of very low-density lipoprotein-apolipoprotein B100 catabolism in type 2 diabetes mellitus. Arterioscler. Thromb. Vasc. Biol. 32, 3050–3057 (2012)

    Article  CAS  PubMed  Google Scholar 

  29. S. Usui, M. Ichimura, S. Ikeda, M. Okamoto, Association between serum retinol-binding protein 4 and small dense low-density lipoprotein cholesterol levels in young adult women. Clin. Chim. Acta 399, 45–48 (2009)

    Article  CAS  PubMed  Google Scholar 

  30. N. Mostafaie, C. Sebesta, S. Zehetmayer, S. Jungwirth, K.R. Huber et al., Circulating retinol-binding protein 4 and metabolic syndrome in the elderly. Wien. Med. Wochenschr. 161, 505–510 (2011)

    Article  PubMed  Google Scholar 

  31. A. Yoshida, Y. Matsutani, Y. Fukuchi, K. Saito, M. Naito, Analysis of the factors contributing to serum retinol binding protein and transthyretin levels in Japanese adults. J. Atheroscler. Thromb. 13, 209–215 (2006)

    Article  CAS  PubMed  Google Scholar 

  32. W. Jia, H. Wu, Y. Bao, C. Wang, J. Lu et al., Association of serum retinol-binding protein 4 and visceral adiposity in chinese subjects with and without type 2 diabetes. J. Clin. Endocrinol. Metab. 92, 3224–3229 (2007)

    Article  CAS  PubMed  Google Scholar 

  33. N. Vu-Dac, P. Gervois, I.P. Torra, J.C. Fruchart, V. Kosykh et al., Retinoids increase human apo C-III expression at the transcriptional level via the retinoid X receptor. Contribution to the hypertriglyceridemic action of retinoids. J. Clin. Investig. 102, 625–632 (1998)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. G. Assmann, H. Schulte, A. von Eckardstein, Hypertriglyceridemia and elevated lipoprotein(a) are risk factors for major coronary events in middle-aged men. Am. J. Cardiol. 77, 1179–1184 (1996)

    Article  CAS  PubMed  Google Scholar 

  35. M.J. Stampfer, R.M. Krauss, J. Ma, P.J. Blanche, L.G. Holl et al., A prospective study of triglyceride level, low-density lipoprotein particle diameter, and risk of myocardial infarction. JAMA, J. Am. Med. Assoc. 276, 882–888 (1996)

    Article  CAS  Google Scholar 

  36. P. Libby, Inflammation in atherosclerosis. Nature 420, 868–874 (2002)

    Article  CAS  PubMed  Google Scholar 

  37. N. Rifai, P.M. Ridker, High-sensitivity C-reactive protein: a novel and promising marker of coronary heart disease. Clin. Chem. 47, 403–411 (2001)

    CAS  PubMed  Google Scholar 

  38. S. Watanabe, W. Mu, A. Kahn, N. Jing, J.H. Li et al., Role of JAK/STAT pathway in IL-6-induced activation of vascular smooth muscle cells. Am. J. Nephrol. 24, 387–392 (2004)

    Article  CAS  PubMed  Google Scholar 

  39. I. Neeli, Z.M. Liu, N. Dronadula, Z.A. Ma, G.N. Rao, An essential role of the Jak-2/STAT-3/cytosolic phospholipase A(2) axis in platelet-derived growth factor BB-induced vascular smooth muscle cell motility. J. Biol. Chem. 279, 46122–46128 (2004)

    Article  CAS  PubMed  Google Scholar 

  40. S. Sahar, R.S. Dwarakanath, M.A. Reddy, L. Lanting, I. Todorov et al., Angiotensin II enhances interleukin-18 mediated inflammatory gene expression in vascular smooth muscle cells—a novel cross-talk in the pathogenesis of atherosclerosis. Circ. Res. 96, 1064–1071 (2005)

    Article  CAS  PubMed  Google Scholar 

  41. K. Takebayashi, R. Sohma, Y. Aso, T. Inukai, Effects of retinol binding protein-4 on vascular endothelial cells. Biochem. Biophys. Res. Commun. 408, 58–64 (2011)

    Article  CAS  PubMed  Google Scholar 

  42. N. Takashima, H. Tomoike, N. Iwai, Retinol-binding protein 4 and insulin resistance. N Engl. J. Med. 355, 1392 (2006); author reply 1394–1395

  43. S.K. Frey, J. Spranger, A. Henze, A.F. Pfeiffer, F.J. Schweigert et al., Factors that influence retinol-binding protein 4-transthyretin interaction are not altered in overweight subjects and overweight subjects with type 2 diabetes mellitus. Metab. Clin. Exp. 58, 1386–1392 (2009)

    Article  CAS  PubMed  Google Scholar 

  44. A. Ost, A. Danielsson, M. Liden, U. Eriksson, F.H. Nystrom et al., Retinol-binding protein-4 attenuates insulin-induced phosphorylation of IRS1 and ERK1/2 in primary human adipocytes. FASEB J. 21, 3696–3704 (2007)

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuanchang Li or Tianlun Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Xia, K., Sheikh, M.S.A. et al. Involvement of RBP4 in hyperinsulinism-induced vascular smooth muscle cell proliferation. Endocrine 48, 472–482 (2015). https://doi.org/10.1007/s12020-014-0304-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-014-0304-0

Keywords

Navigation