Skip to main content

Advertisement

Log in

Thyroid hormones regulate skeletal muscle regeneration after acute injury

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

We evaluated the effects of hypo- and hyperthyroid statuses during the initial phase of skeletal muscle regeneration in rats. To induce hypo- or hyperthyroidism, adult male Wistar rats were treated with methimazole (0.03 %) or T4 (10 μg/100 g), respectively, for 10 days. Three days before sacrifice, a crush injury was produced in the solear muscles of one half of the animals, while the other half remained intact. T3, T4, TSH, and leptin serum levels were not affected by the injury. Serum T3 and T4 levels were significantly increased in hyperthyroid and hyper-injury animals. Hypothyroidism was confirmed by the significant increase in serum TSH levels in hypothyroid and hypo-injury animals. Injury increased cell infiltration and macrophage accumulation especially in hyperthyroid animals. Both type 2 and type 3 deiodinases were induced by lesion, and the opposite occurred with the type 1 isoform, at least in the control and hyperthyroid groups. Injury increased both MyoD and myogenin expression in all the studied groups, but only MyoD expression was increased by thyroidal status only at the protein level. We conclude that thyroid hormones modulate skeletal muscle regeneration possibly by regulating the inflammatory process, as well as MyoD and myogenin expression in the injured tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C.E. Stewart, J. Rittweger, Adaptive processes in skeletal muscle: molecular regulators and genetic influences. J. Musculoskelet. Neuronal Interact. 6(1), 73–86 (2006)

    CAS  PubMed  Google Scholar 

  2. P.S. Zammit, J.R. Beauchamp, The skeletal muscle satellite cell: stem cell or son of stem cell? Differentiation 68, 193–204 (2001)

    Article  CAS  PubMed  Google Scholar 

  3. J.G. Tidball, Inflammatory processes in muscle injury and repair. Am J Physiol. Regul. Integr. Comp. Physiol. 288, R345–R353 (2005)

    Article  CAS  PubMed  Google Scholar 

  4. S. Brunelli, P. Rovere-Querini, The immune system and the repair of skeletal muscle. Pharmacol. Res. 5, 117–121 (2008)

    Article  Google Scholar 

  5. M.I. Massimimo, E. Rapizzi, M. Cantini, L.D. Libera, F. Mazzoleni, P. Arslan, U. Carraro, ED2+ macrophages increase selectively myoblast proliferation in muscle cultures. Biochem. Biophys. Res. Commun. 235(3), 754–759 (1997)

    Article  Google Scholar 

  6. T.A. Robertson, M.A. Maley, M.D. Grounels, J.M. Papadimitriou, The role of macrophages in skeletal muscle regeneration with particular reference to chemotaxis. Exp. Cell Res. 207, 321–331 (1993)

    Article  CAS  PubMed  Google Scholar 

  7. L.A. Di Pietro, Wound healing: the role of the macrophage and other immune cells. Shock 4, 233–240 (1995)

    Article  Google Scholar 

  8. M. Summan, G.L. Warren, R.R. Mercer, R. Chapman, T. Hulderman, N. Van Rooijen, P.P. Simeonova, Macrophages and skeletal muscle regeneration: a clodronate-containing liposome depletion study. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R1488–R1495 (2006)

    Article  CAS  PubMed  Google Scholar 

  9. J.M. Peterson, F.X. Pizza, Cytokines derived from cultured skeletal muscle cells after mechanical strain promote neutrophil chemotaxis in vitro. J. Appl. Physiol. 106, 130–137 (2009)

    Article  CAS  PubMed  Google Scholar 

  10. T. Soukup, I. Jirmanová, Regulation of myosin expression in developing regeneratin extrafusal and intrafusal muscle fibers with special emphasis on the role of thyroid hormones. Physiol. Res. 49, 617–633 (2000)

    CAS  PubMed  Google Scholar 

  11. S. D’Arezzo, S. Incerpi, F.B. Davis, F. Accontia, M. Marino, R.N. Farias, P.J. Davis, Rapid nongenomic effects of 3,5,3′-triiodo-l-thronine on the intracellular pH of L-6 myoblasts are mediated by intracellular calcium mobilization and kinase pathways. Endocrinology 145(12), 5694–5703 (2004)

    Article  PubMed  Google Scholar 

  12. B.H. Penn, C.A. Berker, D.A. Bergustrom, J. Tapscott, How to MEK muscle. Mol. Cell 8(2), 245–246 (2001)

    Article  CAS  PubMed  Google Scholar 

  13. R.L. Perry, M.H. Parker, M.A. Rudnicki, Activated MEK-1 binds to nuclear Myo D transcriptional complex to repress transactivation. Mol. Cell 8(2), 291–301 (2001)

    Article  CAS  PubMed  Google Scholar 

  14. D.G. Moreira, M.P. Marassi, V.M. Corrêa da Costa, D.P. Carvalho, D. Rosenthal, Effects of ageing and pharmacological hypothyroidism on pituitary–thyroidal axis of Dutch–Miranda and Wistar rats. Exp. Gerontol. 40, 330–334 (2005)

    Article  CAS  PubMed  Google Scholar 

  15. A.L.R.C. Leal, T.U. Pantaleão, D.G. Moreira, M.P. Marassi, V.S. Pereira, D. Rosenthal, V.M. Corrêa da Costa, Hypothyroidism and hyperthyroidism modulates Ras–MAPK intracellular pathway in murine thyroids. Endocrine 31(2), 174–178 (2007)

    Article  PubMed  Google Scholar 

  16. T.U. Pantaleão, F. Mousovich, D. Rosenthal, D.P. Carvalho, V.M. Corrêa da Costa, Effect of serum estradiol and leptin levels on thyroid function, food intake and body weight gain in female Wistar rats. Steroids 75, 638–642 (2010)

    Article  PubMed  Google Scholar 

  17. M.M. Bradford, A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72, 248–254 (1976)

    Article  CAS  PubMed  Google Scholar 

  18. K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25, 402–408 (2001)

    Article  CAS  PubMed  Google Scholar 

  19. G.L. Warren, T. Hulderman, D. Mishra, X. Gao, L. Millecchia, L. O’Farrell, W.A. Kuziel, P.P. Simeonova, Chemokine receptor CCR2 involvement in skeletal muscle regeneration. FASEB J 19, 413–415 (2001)

    Google Scholar 

  20. B.K. Pedersen, M.A. Febbraio, Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol. Rev. 88, 1379–1406 (2008)

    Article  CAS  PubMed  Google Scholar 

  21. A. Marsili, D. Tang, J.W. Harney, P. Singh, A.M. Zavacki, M. Dentice, D. Salvatore, P.R. Larsen, Type II iodothyronine deiodinase provides intracellular 3, 5, 3′-triiodothyronine to normal and regenerating mouse skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 301, E818–E824 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. M. Dentice, A. Marsili, R. Ambrosio, O. Guardiola, A. Sibilio, J. Paik, G. Minchiotti, R.A. DePinho, G. Fenzi, P.R. Larsen, D. Salvatore, The FoxO3/type 2 deiodinase pathway is required for normal mouse myogenesis and muscle regeneration. J. Clin. Investig. 120, 4021–4030 (2012)

    Article  Google Scholar 

  23. R. Ambrosio, V. Damiano, A. Sibilio, M.A. De Stefano, V.E. Avvedimento, D. Salvatore, M. Dentice, Epigenetic control of type 2 and 3 deiodinases in myogenesis: role of Lysine-specific Demethylase enzyme and FoxO3. Nucleic Acids Res. 41(6), 3551–3562 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. D. Salvatore, W.S. Simonides, M. Dentice, A.M. Zavacki, P.R. Larsen, Thyroid hormones and skeletal muscle—new insights and potential implications. Nat. Rev. (2013). doi:10.1038/nrendo.2013.238

    Google Scholar 

  25. M.P. Rozing, R.G.J. Westendorp, A.B. Maier, C.A. Wijsman, M. Frölich, A.J.M. de Craen, D. van Heemst, Serum triiodothyronine levels and inflammatory cytokine production capacity. Age 34, 195–201 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. K. Yeow, C. Cabane, L. Turchi, G. Ponzio, B. Dérijard, Increased MAPK signaling during in vitro muscle wounding. Biochem. Biophys. Res. Commun. 293, 112–119 (2002)

    Article  CAS  PubMed  Google Scholar 

  27. M. Murgia, A.L. Serrano, E. Calábria, G. Pallafacchina, T. Lomo, S. Schiaffino, Ras is involved in nerve-activity-dependent regulation of muscle genes. Nat. Cell Biol. 2, 142–147 (2000)

    Article  CAS  PubMed  Google Scholar 

  28. A. Rinnov, C. Yfanti, S. Nielsen, T.C.A. Akerstrom, L. Peijs, A. Zankari, C.P. Fischer, B.K. Pedersen, Endurance training enhances skeletal muscle interleukin-15 in human male subjects. Endocrine 45, 271–278 (2014)

    Article  CAS  PubMed  Google Scholar 

  29. L. Ceglia, D.A. Rivas, R.M. Pojednic, L.L. Price, S.S. Harris, D. Smith, R.A. Fielding, B.D. Hughes, Effects of alkali supplementation and vitamin D insufficiency on rat skeletal muscle. Endocrine 44, 454–464 (2013)

    Article  CAS  PubMed  Google Scholar 

  30. S.C. Forbes, J.P. Little, D.G. Candow, Exercise and nutritional interventions for improving aging muscle health. Endocrine 42, 29–38 (2012)

    Article  CAS  PubMed  Google Scholar 

  31. D.T. Thomas, Could vitamin D and bicarbonate supplementation synergize to mitigate age-related loss of muscle? Endocrine 44, 280–282 (2013)

    Article  Google Scholar 

  32. L. Cianferotti, M.L. Brandi, Muscle-bone interactions: basic and clinical aspects. Endocrine 45, 165–177 (2014)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the technical assistance of Advaldo Nunes Bezerra, José Humberto Tavares de Abreu, Norma Lima de Araújo Faria, and Wagner Nunes Bezerra. This work was supported by the grants from Fundação Carlos Chagas Filho de Amparo `a Pesquisa do Estado do Rio de Janeiro (FAPERJ), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Conflict of interest

Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vânia Maria Corrêa da Costa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leal, A.L.R.C., Albuquerque, J.P.C., Matos, M.S. et al. Thyroid hormones regulate skeletal muscle regeneration after acute injury. Endocrine 48, 233–240 (2015). https://doi.org/10.1007/s12020-014-0271-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-014-0271-5

Keywords

Navigation