Skip to main content

Advertisement

Log in

Myokine—Irisin—and Its Effects Linking Bone and Muscle Function

  • Review Paper
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Irisin is a myokine secreted by the skeletal muscle during physical activity both in mice and humans. Its first identified role was to activate the browning response in white adipocytes, subsequently triggering non-shivering thermogenesis; therefore, Irisin has raised great expectations as a potential target in the treatment of obesity. In 2015, we demonstrated that Irisin plays a central role in the control of bone mass, driving positive effects on cortical mineral density and bone mechanical properties. This effect on the bone was triggered using an Irisin dosage 70 times lower than the one needed to induce the browning response, suggesting that the skeleton is the primary target organ of this myokine. Moreover, our studies also highlighted the autocrine effect of Irisin on the skeletal muscle, overall suggesting that Irisin plays a fundamental role in the physiology of the musculoskeletal system. More recently, we demonstrated the efficacy of Irisin in preventing and restoring bone and muscle losses in a mouse model affected by disuse-induced osteoporosis and muscular atrophy. Hopefully, if future investigations will be confirmed in humans, it may lead to develop an Irisin-based therapy for physically disable or bedridden patients and it might also represent a countermeasure for astronauts subjected to microgravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Dunstan D. Diabetes: exercise and T2DM-move muscles more often! Nat Rev Endocrinol. 2011;7(4):189–90. https://doi.org/10.1038/nrendo.2011.35.

    Article  PubMed  Google Scholar 

  2. Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17(2):162–84. https://doi.org/10.1016/j.cmet.2012.12.012.

    Article  CAS  PubMed  Google Scholar 

  3. Zehnder Y, Lüthi M, Michel D, Knecht H, Perrelet R, Neto I, et al. Long-term changes in bone metabolism, bone mineral density, quantitative ultrasound parameters, and fracture incidence after spinal cord injury: a cross-sectional observational study in 100 paraplegic men. Osteoporos Int. 2004;15(3):180–9. https://doi.org/10.1007/s00198-003-1529-6.

    Article  PubMed  Google Scholar 

  4. Jørgensen L, Jacobsen BK, Wilsgaard T, Magnus JH. Walking after stroke: does it matter? Changes in bone mineral density within the first 12 months after stroke. A longitudinal study. Osteoporos Int. 2000;11(5):381–7. https://doi.org/10.1007/s001980070103.

    Article  PubMed  Google Scholar 

  5. Oppl B, Michitsch G, Misof B, Kudlacek S, Donis J, Klaushofer K, et al. Low bone mineral density and fragility fractures in permanent vegetative state patients. J Bone Miner Res. 2014;29(5):1096–100. https://doi.org/10.1002/jbmr.2122.

    Article  CAS  PubMed  Google Scholar 

  6. Robling AG, Turner CH. Mechanical signaling for bone modeling and remodeling. Crit Rev Eukaryot Gene Expr. 2009;19(4):319–38. https://doi.org/10.1615/CritRevEukarGeneExpr.v19.i4.50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huang J, Romero-Suarez S, Lara N, Mo C, Kaja S, Brotto L, et al. Crosstalk between MLO-Y4 osteocytes and C2C12 muscle cells is mediated by the Wnt/β-catenin pathway. JBMR Plus. 2017;1(2):86–100. https://doi.org/10.1002/jbm4.10015.

    Article  PubMed  Google Scholar 

  8. Keller P, Vollaard NB, Gustafsson T, Gallagher IJ, Sundberg CJ, Rankinen T, et al. A transcriptional map of the impact of endurance exercise training on skeletal muscle phenotype. J Appl Physiol. 2011;110(1):46–59. https://doi.org/10.1152/japplphysiol.00634.2010.

    Article  CAS  PubMed  Google Scholar 

  9. Pedersen BK, Akerström TC, Nielsen AR, Fischer CP. Role of myokines in exercise and metabolism. J Appl Physiol. 2007;103(3):1093–8. https://doi.org/10.1152/japplphysiol.00080.2007.

    Article  CAS  PubMed  Google Scholar 

  10. Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481(7382):463–8. https://doi.org/10.1038/nature10777.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Colaianni G, Cuscito C, Mongelli T, Oranger A, Mori G, Brunetti G, et al. Irisin enhances osteoblast differentiation in vitro. Int J Endocrinol. 2014;902186

  12. Colaianni G, Cuscito C, Mongelli T, Pignataro P, Buccoliero C, Liu P, et al. The myokine irisin increases cortical bone mass. Proc Natl Acad Sci U S A. 2015;112(39):12157–62. https://doi.org/10.1073/pnas.1516622112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Colaianni G, Grano M. Role of Irisin on the bone-muscle functional unit. Bonekey Rep. 2015;4:765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Holmes D. Bone: Irisin boosts bone mass. Nat Rev Endocrinol. 2015;11:689.

    CAS  Google Scholar 

  15. Lieberman DE, Polk JD, Demes B. Predicting long bone loading from cross-sectional geometry. Am J Phys Anthropol. 2004;123(2):156–71. https://doi.org/10.1002/ajpa.10316.

    Article  PubMed  Google Scholar 

  16. Jones HH, Priest JD, Hayes WC, Tichenor CC, Nagel DA. Humeral hypertrophy in response to exercise. J Bone Joint Surg Am. 1977;59(2):204–8. https://doi.org/10.2106/00004623-197759020-00012.

    Article  CAS  PubMed  Google Scholar 

  17. Vaughan RA, Gannon NP, Mermier CM, Conn CA. Irisin, a unique non-inflammatory myokine in stimulating skeletal muscle metabolism. J Physiol Biochem. 2015;71(4):679–89. https://doi.org/10.1007/s13105-015-0433-9.

    Article  CAS  PubMed  Google Scholar 

  18. Huh JY, Dincer F, Mesfum E, Mantzoros CS. Irisin stimulates muscle growth-related genes and regulates adipocyte differentiation and metabolism in humans. Int J Obes. 2014;38:1538–44.

    Article  CAS  Google Scholar 

  19. MacKenzie MG, DL Hamilton, M Pepin, A Patton, K Baar. Inhibition of myostatin signaling through Notch activation following acute resistance exercise. PLoS One 2013; 8(7): e68743. https://doi.org/10.1371/journal.pone.0068743.

  20. Elkasrawy MN, Hamrick MW. Myostatin (GDF-8) as a key factor linking muscle mass and bone structure. J Musculoskelet Neuronal Interact. 2010;10(1):56–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Shan T, Liang X, Bi P, Kuang S. Myostatin knockout drives browning of white adipose tissue through activating the AMPK-PGC1α-Fndc5 pathway in muscle. FASEB J. 2013;27(5):1981–9. https://doi.org/10.1096/fj.12-225755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. LeBlanc AD, Spector ER, Evans HJ, Sibonga JD. Skeletal responses to space flight and the bed rest analog: a review. J Musculoskeletel Neuronal Interact. 2007;7:33–47.

    CAS  Google Scholar 

  23. Karasik D, Kiel DP. Evidence for pleiotropic factors in genetics of the musculoskeletal system. Bone. 2010;46(5):1226–37. https://doi.org/10.1016/j.bone.2010.01.382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huo YR, Suriyaarachchi P, Gomez F, Curcio CL, Boersma D, Muir SW, et al. Phenotype of osteosarcopenia in older individuals with a history of falling. J Am Med Dir Assoc. 2015 Apr;16(4):290–5. https://doi.org/10.1016/j.jamda.2014.10.018.

    Article  PubMed  Google Scholar 

  25. Crepaldi G, Maggi S. Sarcopenia and osteoporosis: a hazardous duet. J Endocrinol Investig. 2005;28(10 Suppl):66–8.

    CAS  Google Scholar 

  26. LeBlanc A, Schneider V, Shackelford L, West S, Oganov V, Bakulin A, et al. Bone mineral and lean tissue loss after long duration space flight. J Musculoskelet Neuronal Interact. 2000;1(2):157–60.

    CAS  PubMed  Google Scholar 

  27. Riggs BL, Khosla S, Melton LJ 3rd. A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res. 1998;13(5):763–73. https://doi.org/10.1359/jbmr.1998.13.5.763.

    Article  CAS  PubMed  Google Scholar 

  28. Tesch PA, Berg HE, Bring D, Evans HJ, LeBlanc AD. Effects of 17-day spaceflight on knee extensor muscle function and size. Eur J Appl Physiol. 2005;93(4):463–8. https://doi.org/10.1007/s00421-004-1236-9.

    Article  PubMed  Google Scholar 

  29. LeBlanc A, Schneider V. Countermeasures against space flight related bone loss. Acta Astronaut. 1992;27:89–92. https://doi.org/10.1016/0094-5765(92)90182-I.

    Article  CAS  PubMed  Google Scholar 

  30. Morey-Holton E, Globus RK, Kaplansky A, Durnova G. The hindlimb unloading rat model: literature overview, technique update and comparison with space flight data. Adv Space Biol Med. 2005;10:7–40. https://doi.org/10.1016/S1569-2574(05)10002-1.

    Article  PubMed  Google Scholar 

  31. Allen MR, Bloomfield SA. Hindlimb unloading has a greater effect on cortical compared with cancellous bone in mature female rats. J Appl Physiol. 2003;94(2):642–50. https://doi.org/10.1152/japplphysiol.00656.2002.

    Article  PubMed  Google Scholar 

  32. Swift JM, Nilsson MI, Hogan HA, Sumner LR, Bloomfield SA. Simulated resistance training during hindlimb unloading abolishes disuse bone loss and maintains muscle strength. J Bone Miner Res. 2010;25(3):564–74. https://doi.org/10.1359/jbmr.090811.

    Article  PubMed  Google Scholar 

  33. Spatz JM, Ellman R, Cloutier AM, Louis L, van Vliet M, Suva LJ, et al. Sclerostin antibody inhibits skeletal deterioration due to reduced mechanical loading. J Bone Miner Res. 2013;28(4):865–74. https://doi.org/10.1002/jbmr.1807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gerbaix M, Vico L, Ferrari SL, Bonnet N. Periostin expression contributes to cortical bone loss during unloading. Bone. 2015;71:94–100. https://doi.org/10.1016/j.bone.2014.10.011.

    Article  CAS  PubMed  Google Scholar 

  35. Jing D, Cai J, Wu Y, Shen G, Li F, Xu Q, et al. Pulsed electromagnetic fields partially preserve bone mass, microarchitecture, and strength by promoting bone formation in hindlimb-suspended rats. J Bone Miner Res. 2014;29(10):2250–26. https://doi.org/10.1002/jbmr.2260.

    Article  CAS  PubMed  Google Scholar 

  36. Colaianni G, Mongelli T, Cuscito C, Pignataro P, Lippo L, Spiro G, et al. Irisin prevents and restores bone loss and muscle atrophy in hind-limb suspended mice. Sci Rep. 2017;7(1):2811. https://doi.org/10.1038/s41598-017-02557-8.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Alberich-Bayarri A, Marti-Bonmati L, Pérez MA, Sanz-Requena R, Lerma-Garrido JJ, García-Martí G, et al. Assessment of 2D and 3D fractal dimension measurements of trabecular bone from high-spatial resolution magnetic resonance images at 3 T. Med Phys. 2010;37(9):4930–7. https://doi.org/10.1118/1.3481509.

    Article  PubMed  Google Scholar 

  38. Majumdar S, Genant HK, Grampp S, Newitt DC, Truong VH, Lin JC, et al. Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging. J Bone Miner Res. 1997;12(1):111–8. https://doi.org/10.1359/jbmr.1997.12.1.111.

    Article  CAS  PubMed  Google Scholar 

  39. Feltrin GP, Macchi V, Saccavini C, Tosi E, Dus C, Fassina A, et al. Fractal analysis of lumbar vertebral cancellous bone architecture. Clin Anat. 2001;14(6):414–7. https://doi.org/10.1002/ca.1076.

    Article  CAS  PubMed  Google Scholar 

  40. Paszty C, Turner CH, Robinson MK. Sclerostin: a gem from the genome leads to bone-building antibodies. J Bone Miner Res. 2013;25(9):1897–904.

    Article  Google Scholar 

  41. Li X, Ominsky MS, Niu QT, Sun N, Daugherty B, D’Agostin D, et al. Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res. 2008;23(6):860–9. https://doi.org/10.1359/jbmr.080216.

    Article  PubMed  Google Scholar 

  42. Bellido T. Osteocyte-driven bone remodeling. Calcif Tissue Int. 2014;94(1):25–34. https://doi.org/10.1007/s00223-013-9774-y.

    Article  CAS  PubMed  Google Scholar 

  43. Romanello V, Guadagnin E, Gomes L, Roder I, Sandri C, Petersen Y, et al. Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO J. 2010;29(10):1774–85. https://doi.org/10.1038/emboj.2010.60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Baldwin KM, Haddad F. Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms. Am J Phys Med Rehabil. 2002;81(Supplement):S40–51. https://doi.org/10.1097/00002060-200211001-00006.

    Article  PubMed  Google Scholar 

  45. Karakelides H, Nair KS. Sarcopenia of aging and its metabolic impact. Curr Top Dev Biol. 2005;68:123–48. https://doi.org/10.1016/S0070-2153(05)68005-2.

    Article  CAS  PubMed  Google Scholar 

  46. Ellman R, Grasso DJ, van Vliet M, Brooks DJ, Spatz JM, Conlon C, et al. Combined effects of botulinum toxin injection and hind limb unloading on bone and muscle. Calcif Tissue Int. 2014;94(3):327–37. https://doi.org/10.1007/s00223-013-9814-7.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported in part by ESA (ERISTO) grant (to M.G.), by MIUR grant ex60% (to M.G.) and by SIOMMMS grant (to G.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Grano.

Ethics declarations

Conflict of Interest

G. Colaianni, G. Brunetti, S.C. Colucci, and M. Grano are the names of inventors of the Italian patent (MI2015A000558) and the European patent (16165324.1-1453) related to the work described.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This animal interventional study is in accordance with the European Law Implementation of Directive 2010/63/EU and all experimental protocols were reviewed and approved by the Veterinary Department of the Italian Ministry of Health (Project 522-2016PR).

Informed Consent

Not applicable. This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colaianni, G., Brunetti, G., Colucci, S.C. et al. Myokine—Irisin—and Its Effects Linking Bone and Muscle Function. Clinic Rev Bone Miner Metab 16, 16–21 (2018). https://doi.org/10.1007/s12018-017-9240-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-017-9240-x

Keywords

Navigation