Skip to main content

Advertisement

Log in

Clinical Aspects of Fracture Healing: An Overview

  • Fracture healing and bone regeneration
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The assessment, diagnosis, and management of fractures, particularly fractures that exhibit delayed healing, present considerable unique challenges to both patients and physicians. Fracture healing results from a complex series of biochemical events that may produce complete restoration of the anatomic and biochemical properties of the original osseous tissue. Fracture healing requires appropriate reduction, mechanical stability, and adequate vascularity to the fracture site; compromise of one of these elements may lead to delayed healing or nonunion. The patient’s history, physical examination, and findings based on radiographs or other imaging modalities allow for assessment and characterization of the progression of healing. If nonunion is recognized, it is important for the clinician to understand the current treatment options that are available to optimize healing. Physical stimulation therapies include electromagnetic stimulation and low-intensity pulsed ultrasonography. Osteogenic factors used locally to promote fracture healing include autologous bone marrow and peptide signaling molecules such as platelet-derived growth factors, fibroblast growth factors, and bone morphogenetic proteins. Systemic biological protein such as parathyroid hormone and factors that target the Wnt family of signaling molecules offers promising data regarding its abilities to promote healing. Large segmental defects must be managed depending on the type and severity of the injury and may require treatment with bone grafts, induced membrane techniques, acute shortening, or distraction osteogenesis. A systematic approach in evaluating fracture union and an understanding of the modern methods to promote fracture healing will allow clinicians to significantly improve the treatment of patients with these injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marsell R, Einhorn TA. Emerging bone healing therapies. J Orthop Trauma. 2010;24(Suppl 1):S4–8. doi:10.1097/BOT.0b013e3181ca3fab.

    Article  PubMed  Google Scholar 

  2. Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011;42(6):551–5. doi:10.1016/j.injury.2011.03.031.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Shapiro F. Cortical bone repair. The relationship of the lacunar-canalicular system and intercellular gap junctions to the repair process. J Bone Joint Surg. 1988;70(7):1067–81.

    CAS  PubMed  Google Scholar 

  4. Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA. Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem. 2003;88(5):873–84. doi:10.1002/jcb.10435.

    Article  CAS  PubMed  Google Scholar 

  5. Greenbaum MA, Kanat IO. Current concepts in bone healing. Review of the literature. J Am Podiatr Med Assoc. 1993;83(3):123–9. doi:10.7547/87507315-83-3-123.

    Article  CAS  PubMed  Google Scholar 

  6. Kitaori T, Ito H, Schwarz EM, Tsutsumi R, Yoshitomi H, Oishi S, et al. Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum. 2009;60(3):813–23. doi:10.1002/art.24330.

    Article  CAS  PubMed  Google Scholar 

  7. Kaderly RE. Primary bone healing. Semin Vet Med Surg (Small Anim). 1991;6(1):21–5.

    CAS  Google Scholar 

  8. Schenk RK, Buser D, Hardwick WR, Dahlin C. Healing pattern of bone regeneration in membrane-protected defects: a histologic study in the canine mandible. Int J Oral Maxillofac Implants. 1994;9(1):13–29.

    CAS  PubMed  Google Scholar 

  9. Green E, Lubahn JD, Evans J. Risk factors, treatment, and outcomes associated with nonunion of the midshaft humerus fracture. J Surg Orthop Adv. 2005;14(2):64–72.

    PubMed  Google Scholar 

  10. Iwata H, Sakano S, Itoh T, Bauer TW. Demineralized bone matrix and native bone morphogenetic protein in orthopaedic surgery. Clin Orthop Relat Res. 2002;395:99–109.

    Article  PubMed  Google Scholar 

  11. Gerstenfeld LC, Alkhiary YM, Krall EA, Nicholls FH, Stapleton SN, Fitch JL, et al. Three-dimensional reconstruction of fracture callus morphogenesis. J Histochem Cytochem. 2006;54(11):1215–28. doi:10.1369/jhc.6A6959.2006.

    Article  CAS  PubMed  Google Scholar 

  12. Cho HH, Kyoung KM, Seo MJ, Kim YJ, Bae YC, Jung JS. Overexpression of CXCR4 increases migration and proliferation of human adipose tissue stromal cells. Stem Cells Dev. 2006;15(6):853–64. doi:10.1089/scd.2006.15.853.

    Article  CAS  PubMed  Google Scholar 

  13. Ma J, Ge J, Zhang S, Sun A, Shen J, Chen L, et al. Time course of myocardial stromal cell-derived factor 1 expression and beneficial effects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction. Basic Res Cardiol. 2005;100(3):217–23. doi:10.1007/s00395-005-0521-z.

    Article  CAS  PubMed  Google Scholar 

  14. Cho TJ, Gerstenfeld LC, Einhorn TA. Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. J Bone Miner Res. 2002;17(3):513–20. doi:10.1359/jbmr.2002.17.3.513.

    Article  CAS  PubMed  Google Scholar 

  15. Einhorn TA. The cell and molecular biology of fracture healing. Clin Orthop Relat Res. 1998;355(Suppl):S7–21.

    Article  PubMed  Google Scholar 

  16. Marsell R, Einhorn TA. The role of endogenous bone morphogenetic proteins in normal skeletal repair. Injury. 2009;40(Suppl 3):S4–7. doi:10.1016/S0020-1383(09)70003-8.

    Article  PubMed  Google Scholar 

  17. Chen Y, Alman BA. Wnt pathway, an essential role in bone regeneration. J Cell Biochem. 2009;106(3):353–62. doi:10.1002/jcb.22020.

    Article  CAS  PubMed  Google Scholar 

  18. Wendeberg B. Mineral metabolism of fractures of the tibia in man studied with external counting of Sr85. Acta Orthop Scand Suppl. 1961;52:1–79.

    Article  CAS  PubMed  Google Scholar 

  19. Einhorn TA. Enhancement of fracture-healing. J Bone Joint Surg. 1995;77(6):940–56.

    CAS  PubMed  Google Scholar 

  20. Morshed S. Current options for determining fracture union. Adv Med. 2014;2014(708574):12.

    Google Scholar 

  21. Bishop JA, Palanca AA, Bellino MJ, Lowenberg DW. Assessment of compromised fracture healing. J Am Acad Orthop Surg. 2012;20(5):273–82. doi:10.5435/JAAOS-20-05-273.

    Article  PubMed  Google Scholar 

  22. Castillo RC, Bosse MJ, MacKenzie EJ, Patterson BM. Impact of smoking on fracture healing and risk of complications in limb-threatening open tibia fractures. J Orthop Trauma. 2005;19(3):151–7.

    Article  PubMed  Google Scholar 

  23. Bhandari M, Guyatt GH, Swiontkowski MF, Tornetta P 3rd, Sprague S, Schemitsch EH. A lack of consensus in the assessment of fracture healing among orthopaedic surgeons. J Orthop Trauma. 2002;16(8):562–6.

    Article  PubMed  Google Scholar 

  24. Brinker MR, Bailey DE Jr. Fracture healing in tibia fractures with an associated vascular injury. J Trauma. 1997;42(1):11–9.

    Article  CAS  PubMed  Google Scholar 

  25. Court-Brown CM. Reamed tibial nailing in Edinburgh (1985–1995). Bull Hosp Joint Dis. 1999;58(1):24–30.

    CAS  Google Scholar 

  26. Harley BJ, Beaupre LA, Jones CA, Dulai SK, Weber DW. The effect of time to definitive treatment on the rate of nonunion and infection in open fractures. J Orthop Trauma. 2002;16(7):484–90.

    Article  PubMed  Google Scholar 

  27. Fang MA, Frost PJ, Iida-Klein A, Hahn TJ. Effects of nicotine on cellular function in UMR 106-01 osteoblast-like cells. Bone. 1991;12(4):283–6.

    Article  CAS  PubMed  Google Scholar 

  28. Bhandari M, Fong K, Sprague S, Williams D, Petrisor B. Variability in the definition and perceived causes of delayed unions and nonunions: a cross-sectional, multinational survey of orthopaedic surgeons. J Bone Joint Surg. 2012;94(15):e1091–6. doi:10.2106/JBJS.K.01344.

    Article  PubMed  Google Scholar 

  29. Morshed S, Corrales L, Genant H, Miclau T 3rd. Outcome assessment in clinical trials of fracture-healing. J Bone Joint Surg. 2008;90(Suppl 1):62–7. doi:10.2106/JBJS.G.01556.

    Article  PubMed  Google Scholar 

  30. Blokhuis TJ, de Bruine JH, Bramer JA, den Boer FC, Bakker FC, Patka P, et al. The reliability of plain radiography in experimental fracture healing. Skelet Radiol. 2001;30(3):151–6.

    Article  CAS  Google Scholar 

  31. Govender S, Csimma C, Genant HK, Valentin-Opran A, Amit Y, Arbel R, et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg. 2002;84-A(12):2123–34.

    PubMed  Google Scholar 

  32. Moed BR, Subramanian S, van Holsbeeck M, Watson JT, Cramer KE, Karges DE, et al. Ultrasound for the early diagnosis of tibial fracture healing after static interlocked nailing without reaming: clinical results. J Orthop Trauma. 1998;12(3):206–13.

    Article  CAS  PubMed  Google Scholar 

  33. McClelland D, Thomas PB, Bancroft G, Moorcraft CI. Fracture healing assessment comparing stiffness measurements using radiographs. Clin Orthop Relat Res. 2007;457:214–9. doi:10.1097/BLO.0b013e31802f80a8.

    CAS  PubMed  Google Scholar 

  34. Corrales LA, Morshed S, Bhandari M, Miclau T 3rd. Variability in the assessment of fracture-healing in orthopaedic trauma studies. J Bone Joint Surg. 2008;90(9):1862–8. doi:10.2106/JBJS.G.01580.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Kooistra BW, Dijkman BG, Busse JW, Sprague S, Schemitsch EH, Bhandari M. The radiographic union scale in tibial fractures: reliability and validity. J Orthop Trauma. 2010;24(Suppl 1):S81–6. doi:10.1097/BOT.0b013e3181ca3fd1.

    Article  PubMed  Google Scholar 

  36. Whelan DB, Bhandari M, Stephen D, Kreder H, McKee MD, Zdero R, et al. Development of the radiographic union score for tibial fractures for the assessment of tibial fracture healing after intramedullary fixation. J Trauma. 2010;68(3):629–32. doi:10.1097/TA.0b013e3181a7c16d.

    Article  PubMed  Google Scholar 

  37. Bhandari M, Chiavaras MM, Parasu N, Choudur H, Ayeni O, Chakravertty R, et al. Radiographic union score for hip substantially improves agreement between surgeons and radiologists. BMC Musculoskelet Disord. 2013;14:70. doi:10.1186/1471-2474-14-70.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Chiavaras MM, Bains S, Choudur H, Parasu N, Jacobson J, Ayeni O, et al. The Radiographic Union Score for Hip (RUSH): the use of a checklist to evaluate hip fracture healing improves agreement between radiologists and orthopedic surgeons. Skelet Radiol. 2013;42(8):1079–88. doi:10.1007/s00256-013-1605-8.

    Article  Google Scholar 

  39. Bhattacharyya T, Bouchard KA, Phadke A, Meigs JB, Kassarjian A, Salamipour H. The accuracy of computed tomography for the diagnosis of tibial nonunion. J Bone Joint Surg. 2006;88(4):692–7. doi:10.2106/JBJS.E.00232.

    Article  PubMed  Google Scholar 

  40. Roberts GLPI. Finite element analysis in trauma and orthopaedics—an introduction to clinically relevant simulation and its limitations. Orthop Trauma. 2012;26(6):410–6.

    Article  Google Scholar 

  41. Orwoll ES, Marshall LM, Nielson CM, Cummings SR, Lapidus J, Cauley JA, et al. Finite element analysis of the proximal femur and hip fracture risk in older men. J Bone Miner Res. 2009;24(3):475–83. doi:10.1359/jbmr.081201.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Petfield JL, Kluk M, Shin E, Bharmal H, Hoffman P, Keaveny T, et al. Virtual stress testing of regenerating bone in Tibia fractures. In Proceedings of the 23rd annual scientific meeting of limb lengthening and reconstruction society. New York, NY, USA. 2013. http://www.llrs.org/PDFs/Annual%20Meeting%20Presentations/Saturday%20Meeting/16.Petfield.pdf.

  43. Craig JG, Jacobson JA, Moed BR. Ultrasound of fracture and bone healing. Radiol Clin N Am. 1999;37(4):737–51, ix.

  44. Moed BR, Watson JT, Goldschmidt P, van Holsbeeck M. Ultrasound for the early diagnosis of fracture healing after interlocking nailing of the tibia without reaming. Clin Orthop Relat Res. 1995;310:137–44.

    PubMed  Google Scholar 

  45. Megas P. Classification of non-union. Injury. 2005;36(Suppl 4):S30–7. doi:10.1016/j.injury.2005.10.008.

    PubMed  Google Scholar 

  46. Gross T, Kaim AH, Regazzoni P, Widmer AF. Current concepts in posttraumatic osteomyelitis: a diagnostic challenge with new imaging options. J Trauma. 2002;52(6):1210–9.

    Article  PubMed  Google Scholar 

  47. Brinker MR, O’Connor DP, Monla YT, Earthman TP. Metabolic and endocrine abnormalities in patients with nonunions. J Orthop Trauma. 2007;21(8):557–70. doi:10.1097/BOT.0b013e31814d4dc6.

    Article  PubMed  Google Scholar 

  48. Kurdy NM. Serology of abnormal fracture healing: the role of PIIINP, PICP, and BsALP. J Orthop Trauma. 2000;14(1):48–53.

    Article  CAS  PubMed  Google Scholar 

  49. Stoffel K, Engler H, Kuster M, Riesen W. Changes in biochemical markers after lower limb fractures. Clin Chem. 2007;53(1):131–4. doi:10.1373/clinchem.2006.076976.

    Article  CAS  PubMed  Google Scholar 

  50. Myeroff C, Archdeacon M. Autogenous bone graft: donor sites and techniques. J Bone Joint Surg. 2011;93(23):2227–36. doi:10.2106/JBJS.J.01513.

    Article  PubMed  Google Scholar 

  51. Kuzyk PR, Schemitsch EH. The science of electrical stimulation therapy for fracture healing. Indian J Orthop. 2009;43(2):127–31. doi:10.4103/0019-5413.50846.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Rubinacci A, Black J, Brighton CT, Friedenberg ZB. Changes in bioelectric potentials on bone associated with direct current stimulation of osteogenesis. J Orthop Res. 1988;6(3):335–45. doi:10.1002/jor.1100060305.

    Article  CAS  PubMed  Google Scholar 

  53. Korenstein R, Somjen D, Fischler H, Binderman I. Capacitative pulsed electric stimulation of bone cells. Induction of cyclic-AMP changes and DNA synthesis. Biochim Biophys Acta. 1984;803(4):302–7.

    Article  CAS  PubMed  Google Scholar 

  54. Brighton CT, Okereke E, Pollack SR, Clark CC. In vitro bone-cell response to a capacitively coupled electrical field. The role of field strength, pulse pattern, and duty cycle. Clin Orthop Relat Res. 1992;285:255–62.

    PubMed  Google Scholar 

  55. Brighton CT. The treatment of non-unions with electricity. J Bone Joint Surg. 1981;63(5):847–51.

    CAS  PubMed  Google Scholar 

  56. Scott G, King JB. A prospective, double-blind trial of electrical capacitive coupling in the treatment of non-union of long bones. J Bone Joint Surg. 1994;76(6):820–6.

    CAS  PubMed  Google Scholar 

  57. Mollon B, da Silva V, Busse JW, Einhorn TA, Bhandari M. Electrical stimulation for long-bone fracture-healing: a meta-analysis of randomized controlled trials. J Bone Joint Surg. 2008;90(11):2322–30. doi:10.2106/JBJS.H.00111.

    Article  PubMed  Google Scholar 

  58. Siska PA, Gruen GS, Pape HC. External adjuncts to enhance fracture healing: what is the role of ultrasound? Injury. 2008;39(10):1095–105. doi:10.1016/j.injury.2008.01.015.

    Article  PubMed  Google Scholar 

  59. Claes L, Willie B. The enhancement of bone regeneration by ultrasound. Prog Biophys Mol Biol. 2007;93(1–3):384–98. doi:10.1016/j.pbiomolbio.2006.07.021.

    Article  PubMed  Google Scholar 

  60. Yang RS, Lin WL, Chen YZ, Tang CH, Huang TH, Lu BY, et al. Regulation by ultrasound treatment on the integrin expression and differentiation of osteoblasts. Bone. 2005;36(2):276–83. doi:10.1016/j.bone.2004.10.009.

    Article  CAS  PubMed  Google Scholar 

  61. Heckman JD, Ryaby JP, McCabe J, Frey JJ, Kilcoyne RF. Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound. J Bone Joint Surg. 1994;76(1):26–34.

    CAS  PubMed  Google Scholar 

  62. Kristiansen TK, Johnson RJ. Fractures in the skiing athlete. Clin Sports Med. 1990;9(1):215–24.

    CAS  PubMed  Google Scholar 

  63. Pounder N. Low intensity pulsed ultrasound for fracture healing: a review of the clinical evidence and the associated biological mechanism of action. Ultrasonics. 2008;48:330–8.

    Article  CAS  PubMed  Google Scholar 

  64. Busse JW, Kaur J, Mollon B, Bhandari M, Tornetta P 3rd, Schunemann HJ, et al. Low intensity pulsed ultrasonography for fractures: systematic review of randomised controlled trials. BMJ. 2009;338:b351. doi:10.1136/bmj.b351.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell. 2007;131(2):324–36. doi:10.1016/j.cell.2007.08.025.

    Article  CAS  PubMed  Google Scholar 

  66. Hernigou P, Poignard A, Beaujean F, Rouard H. Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg. 2005;87(7):1430–7. doi:10.2106/JBJS.D.02215.

    Article  PubMed  Google Scholar 

  67. Hollinger JO, Hart CE, Hirsch SN, Lynch S, Friedlaender GE. Recombinant human platelet-derived growth factor: biology and clinical applications. J Bone Joint Surg. 2008;90(Suppl 1):48–54. doi:10.2106/JBJS.G.01231.

    Article  PubMed  Google Scholar 

  68. DiGiovanni CW, Lin SS, Baumhauer JF, Daniels T, Younger A, Glazebrook M, et al. Recombinant human platelet-derived growth factor-BB and beta-tricalcium phosphate (rhPDGF-BB/beta-TCP): an alternative to autogenous bone graft. J Bone Joint Surg. 2013;95(13):1184–92. doi:10.2106/JBJS.K.01422.

    Article  PubMed  Google Scholar 

  69. Itoh N, Ornitz DM. Evolution of the Fgf and Fgfr gene families. TIG. 2004;20(11):563–9. doi:10.1016/j.tig.2004.08.007.

    Article  CAS  PubMed  Google Scholar 

  70. Ornitz DM. FGF signaling in the developing endochondral skeleton. Cytokine Growth Factor Rev. 2005;16(2):205–13. doi:10.1016/j.cytogfr.2005.02.003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Canalis E, Centrella M, McCarthy T. Effects of basic fibroblast growth factor on bone formation in vitro. J Clin Investig. 1988;81(5):1572–7. doi:10.1172/JCI113490.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Khan SN, Bostrom MP, Lane JM. Bone growth factors. Orthop Clin N Am. 2000;31(3):375–88.

    Article  CAS  Google Scholar 

  73. Kawaguchi H, Oka H, Jingushi S, Izumi T, Fukunaga M, Sato K, et al. A local application of recombinant human fibroblast growth factor 2 for tibial shaft fractures: a randomized, placebo-controlled trial. J Bone Miner Res. 2010;25(12):2735–43. doi:10.1002/jbmr.146.

    Article  PubMed  CAS  Google Scholar 

  74. Tsuji K, Bandyopadhyay A, Harfe BD, Cox K, Kakar S, Gerstenfeld L, et al. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet. 2006;38(12):1424–9. doi:10.1038/ng1916.

    Article  CAS  PubMed  Google Scholar 

  75. Ryoo HM, Lee MH, Kim YJ. Critical molecular switches involved in BMP-2-induced osteogenic differentiation of mesenchymal cells. Gene. 2006;366(1):51–7. doi:10.1016/j.gene.2005.10.011.

    Article  CAS  PubMed  Google Scholar 

  76. Friedlaender GE, Perry CR, Cole JD, Cook SD, Cierny G, Muschler GF, et al. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg. 2001;83-A(Suppl 1 Pt 2):S151–8.

    PubMed  Google Scholar 

  77. Lyon T, Scheele W, Bhandari M, Koval KJ, Sanchez EG, Christensen J, et al. Efficacy and safety of recombinant human bone morphogenetic protein-2/calcium phosphate matrix for closed tibial diaphyseal fracture: a double-blind, randomized, controlled phase-II/III trial. J Bone Joint Surg. 2013;95(23):2088–96. doi:10.2106/JBJS.L.01545.

    Article  PubMed  Google Scholar 

  78. Aro HT, Govender S, Patel AD, Hernigou P, Perera de Gregorio A, Popescu GI, et al. Recombinant human bone morphogenetic protein-2: a randomized trial in open tibial fractures treated with reamed nail fixation. J Bone Joint Surg. 2011;93(9):801–8. doi:10.2106/JBJS.I.01763.

    Article  PubMed  Google Scholar 

  79. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344(19):1434–41. doi:10.1056/NEJM200105103441904.

    Article  CAS  PubMed  Google Scholar 

  80. Barnes GL, Kakar S, Vora S, Morgan EF, Gerstenfeld LC, Einhorn TA. Stimulation of fracture-healing with systemic intermittent parathyroid hormone treatment. J Bone Joint Surg. 2008;90(Suppl 1):120–7. doi:10.2106/JBJS.G.01443.

    Article  PubMed  Google Scholar 

  81. Holzer G, Majeska RJ, Lundy MW, Hartke JR, Einhorn TA. Parathyroid hormone enhances fracture healing. A preliminary report. Clin Orthop Relat Res. 1999;366:258–63.

    Article  PubMed  Google Scholar 

  82. Aspenberg P, Genant HK, Johansson T, Nino AJ, See K, Krohn K, et al. Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, double-blind study of 102 postmenopausal women with distal radial fractures. J Bone Miner Res. 2010;25(2):404–14. doi:10.1359/jbmr.090731.

    Article  CAS  PubMed  Google Scholar 

  83. Peichl P, Holzer LA, Maier R, Holzer G. Parathyroid hormone 1-84 accelerates fracture-healing in pubic bones of elderly osteoporotic women. J Bone Joint Surg. 2011;93(17):1583–7. doi:10.2106/JBJS.J.01379.

    Article  PubMed  Google Scholar 

  84. Kakar S, Einhorn TA, Vora S, Miara LJ, Hon G, Wigner NA, et al. Enhanced chondrogenesis and Wnt signaling in PTH-treated fractures. J Bone Miner Res. 2007;22(12):1903–12. doi:10.1359/jbmr.070724.

    Article  CAS  PubMed  Google Scholar 

  85. Dhamdhere GR, Fang MY, Jiang J, Lee K, Cheng D, Olveda RC, et al. Drugging a stem cell compartment using Wnt3a protein as a therapeutic. PLoS ONE. 2014;9(1):e83650. doi:10.1371/journal.pone.0083650.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  86. Taelman VF, Dobrowolski R, Plouhinec JL, Fuentealba LC, Vorwald PP, Gumper I, et al. Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell. 2010;143(7):1136–48. doi:10.1016/j.cell.2010.11.034.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Minear S, Leucht P, Jiang J, Liu B, Zeng A, Fuerer C, et al. Wnt proteins promote bone regeneration. Sci Transl Med. 2010;2(29):29ra30. doi:10.1126/scitranslmed.3000231.

    Article  PubMed  CAS  Google Scholar 

  88. Staehling-Hampton K, Proll S, Paeper BW, Zhao L, Charmley P, Brown A, et al. A 52-kb deletion in the SOST-MEOX1 intergenic region on 17q12-q21 is associated with van Buchem disease in the Dutch population. Am J Med Genet. 2002;110(2):144–52. doi:10.1002/ajmg.10401.

    Article  PubMed  Google Scholar 

  89. Hamersma H, Gardner J, Beighton P. The natural history of sclerosteosis. Clin Genet. 2003;63(3):192–7.

    Article  CAS  PubMed  Google Scholar 

  90. Agholme F, Li X, Isaksson H, Ke HZ, Aspenberg P. Sclerostin antibody treatment enhances metaphyseal bone healing in rats. J Bone Miner Res. 2010;25(11):2412–8. doi:10.1002/jbmr.135.

    Article  CAS  PubMed  Google Scholar 

  91. McClung MR, Grauer A, Boonen S, Bolognese MA, Brown JP, Diez-Perez A, et al. Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med. 2014;370(5):412–20. doi:10.1056/NEJMoa1305224.

    Article  CAS  PubMed  Google Scholar 

  92. Mauffrey C, Barlow BT, Smith W. Management of segmental bone defects. J Am Acad Orthop Surg. 2015;23(3):143–53. doi:10.5435/JAAOS-D-14-00018.

    Article  PubMed  Google Scholar 

  93. Dimitriou R, Mataliotakis GI, Angoules AG, Kanakaris NK, Giannoudis PV. Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury. 2011;42(Suppl 2):S3–15. doi:10.1016/j.injury.2011.06.015.

    Article  PubMed  Google Scholar 

  94. Loeffler BJ, Kellam JF, Sims SH, Bosse MJ. Prospective observational study of donor-site morbidity following anterior iliac crest bone-grafting in orthopaedic trauma reconstruction patients. J Bone Joint Surg. 2012;94(18):1649–54. doi:10.2106/JBJS.K.00961.

    Article  PubMed  Google Scholar 

  95. Stafford PR, Norris BL. Reamer–irrigator–aspirator bone graft and bi Masquelet technique for segmental bone defect nonunions: a review of 25 cases. Injury. 2010;41(Suppl 2):S72–7. doi:10.1016/S0020-1383(10)70014-0.

    Article  PubMed  Google Scholar 

  96. Belthur MV, Conway JD, Jindal G, Ranade A, Herzenberg JE. Bone graft harvest using a new intramedullary system. Clin Orthop Relat Res. 2008;466(12):2973–80. doi:10.1007/s11999-008-0538-3.

    Article  PubMed Central  PubMed  Google Scholar 

  97. Sagi HC, Young ML, Gerstenfeld L, Einhorn TA, Tornetta P. Qualitative and quantitative differences between bone graft obtained from the medullary canal (with a reamer/irrigator/aspirator) and the iliac crest of the same patient. J Bone Joint Surg. 2012;94(23):2128–35. doi:10.2106/JBJS.L.00159.

    Article  PubMed  Google Scholar 

  98. Kolk A, Handschel J, Drescher W, Rothamel D, Kloss F, Blessmann M, et al. Current trends and future perspectives of bone substitute materials—from space holders to innovative biomaterials. J Cranio Maxillo Fac Surg. 2012;40(8):706–18. doi:10.1016/j.jcms.2012.01.002.

    Article  Google Scholar 

  99. Bae H, Zhao L, Zhu D, Kanim LE, Wang JC, Delamarter RB. Variability across ten production lots of a single demineralized bone matrix product. J Bone Joint Surg. 2010;92(2):427–35. doi:10.2106/JBJS.H.01400.

    Article  PubMed  Google Scholar 

  100. Russell TA, Leighton RK, Alpha BSMTPFSG. Comparison of autogenous bone graft and endothermic calcium phosphate cement for defect augmentation in tibial plateau fractures. A multicenter, prospective, randomized study. J Bone Joint Surg. 2008;90(10):2057–61. doi:10.2106/JBJS.G.01191.

    Article  PubMed  Google Scholar 

  101. Guyton GP, Miller SD. Stem cells in bone grafting: trinity allograft with stem cells and collagen/beta-tricalcium phosphate with concentrated bone marrow aspirate. Foot Ankle Clin. 2010;15(4):611–9. doi:10.1016/j.fcl.2010.09.003.

    Article  PubMed  Google Scholar 

  102. Masquelet AC, Begue T. The concept of induced membrane for reconstruction of long bone defects. Orthop Clin N Am. 2010;41(1):27–37. doi:10.1016/j.ocl.2009.07.011 (table of contents).

    Article  Google Scholar 

  103. Hartsock LA, Barfield WR, Kokko KP, Liles LL, Wind T, Green J, et al. Randomized prospective clinical trial comparing reamer irrigator aspirator (RIA) to standard reaming (SR) in both minimally injured and multiply injured patients with closed femoral shaft fractures treated with reamed intramedullary nailing (IMN). Injury. 2010;41(Suppl 2):S94–8. doi:10.1016/S0020-1383(10)70018-8.

    Article  PubMed  Google Scholar 

  104. McCall TA, Brokaw DS, Jelen BA, Scheid DK, Scharfenberger AV, Maar DC, et al. Treatment of large segmental bone defects with reamer–irrigator–aspirator bone graft: technique and case series. Orthop Clin N Am. 2010;41(1):63–73. doi:10.1016/j.ocl.2009.08.002 (table of contents).

    Article  Google Scholar 

  105. Apard T, Bigorre N, Cronier P, Duteille F, Bizot P, Massin P. Two-stage reconstruction of post-traumatic segmental tibia bone loss with nailing. OTSR. 2010;96(5):549–53. doi:10.1016/j.otsr.2010.02.010.

    CAS  PubMed  Google Scholar 

  106. Chaddha M, Gulati D, Singh AP, Singh AP, Maini L. Management of massive posttraumatic bone defects in the lower limb with the Ilizarov technique. Acta Orthop Belg. 2010;76(6):811–20.

    PubMed  Google Scholar 

  107. Keating JF, Simpson AH, Robinson CM. The management of fractures with bone loss. J Bone Joint Surg. 2005;87(2):142–50.

    Article  CAS  Google Scholar 

  108. Borzunov DY. Long bone reconstruction using multilevel lengthening of bone defect fragments. Int Orthop. 2012;36(8):1695–700. doi:10.1007/s00264-012-1562-1.

    Article  PubMed Central  PubMed  Google Scholar 

  109. Sen C, Kocaoglu M, Eralp L, Gulsen M, Cinar M. Bifocal compression-distraction in the acute treatment of grade III open tibia fractures with bone and soft-tissue loss: a report of 24 cases. J Orthop Trauma. 2004;18(3):150–7.

    Article  PubMed  Google Scholar 

  110. El-Rosasy MA. Acute shortening and re-lengthening in the management of bone and soft-tissue loss in complicated fractures of the tibia. J Bone Joint Surg. 2007;89(1):80–8. doi:10.1302/0301-620X.89B1.17595.

    Article  CAS  Google Scholar 

  111. Cavadas PC, Landin L, Ibanez J, Nthumba P. Reconstruction of major traumatic segmental bone defects of the tibia with vascularized bone transfers. Plast Reconstr Surg. 2010;125(1):215–23. doi:10.1097/PRS.0b013e3181c495b3.

    Article  CAS  PubMed  Google Scholar 

  112. Zhen P, Hu YY, Luo ZJ, Liu XY, Lu H, Li XS. One-stage treatment and reconstruction of Gustilo Type III open tibial shaft fractures with a vascularized fibular osteoseptocutaneous flap graft. J Orthop Trauma. 2010;24(12):745–51. doi:10.1097/BOT.0b013e3181d88a07.

    Article  PubMed  Google Scholar 

  113. MacKenzie EJ, Bosse MJ, Pollak AN, Webb LX, Swiontkowski MF, Kellam JF, et al. Long-term persistence of disability following severe lower-limb trauma. Results of a seven-year follow-up. J Bone Joint Surg. 2005;87(8):1801–9. doi:10.2106/JBJS.E.00032.

    Article  PubMed  Google Scholar 

  114. Doukas WC, Hayda RA, Frisch HM, Andersen RC, Mazurek MT, Ficke JR, et al. The Military Extremity Trauma Amputation/Limb Salvage (METALS) study: outcomes of amputation versus limb salvage following major lower-extremity trauma. J Bone Joint Surg. 2013;95(2):138–45. doi:10.2106/JBJS.K.00734.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Leucht.

Ethics declarations

Conflicts of interest

James X. Liu and Philipp Leucht declare that they have no conflict of interest. John A. Buza or an immediate family member is an employee of Stryker.

Animal/Human Studies

This article does not include any studies with human or animal subjects performed by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J.X., Buza, J.A. & Leucht, P. Clinical Aspects of Fracture Healing: An Overview. Clinic Rev Bone Miner Metab 13, 208–221 (2015). https://doi.org/10.1007/s12018-015-9196-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-015-9196-7

Keywords

Navigation