Skip to main content
Log in

Changes in Dopamine Signalling Do Not Underlie Aberrant Hippocampal Plasticity in a Mouse Model of Huntington’s Disease

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Altered dopamine receptor labelling has been demonstrated in presymptomatic and symptomatic Huntington’s disease (HD) gene carriers, indicating that alterations in dopaminergic signalling are an early event in HD. We have previously described early alterations in synaptic transmission and plasticity in both the cortex and hippocampus of the R6/1 mouse model of Huntington’s disease. Deficits in cortical synaptic plasticity were associated with altered dopaminergic signalling and could be reversed by D1- or D2-like dopamine receptor activation. In light of these findings we here investigated whether defects in dopamine signalling could also contribute to the marked alteration in hippocampal synaptic function. To this end we performed dopamine receptor labelling and pharmacology in the R6/1 hippocampus and report a marked, age-dependent elevation of hippocampal D1 and D2 receptor labelling in R6/1 hippocampal subfields. Yet, pharmacological inhibition or activation of D1- or D2-like receptors did not modify the aberrant synaptic plasticity observed in R6/1 mice. These findings demonstrate that global perturbations to dopamine receptor expression do occur in HD transgenic mice, similarly in HD gene carriers and patients. However, the direction of change and the lack of effect of dopaminergic pharmacological agents on synaptic function demonstrate that the perturbations are heterogeneous and region-specific, a finding that may explain the mixed results of dopamine therapy in HD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amenta, F., Mignini, F., Ricci, A., Sabbatini, M., Tomassoni, D., & Tayebati, S. K. (2001). Age-related changes of dopamine receptors in the rat hippocampus: A light microscope autoradiography study. Mechanisms of Ageing and Development, 122(16), 2071–2083.

    Article  CAS  PubMed  Google Scholar 

  • André, V. M., Cepeda, C., & Levine, M. S. (2010). Dopamine and glutamate in Huntington’s disease: A balancing act. CNS Neuroscience & Therapeutics, 16(3), 163–178.

    Article  Google Scholar 

  • Andrews, T. C., Weeks, R. A., Turjanski, N., Gunn, R. N., Watkins, L. H., Sahakian, B., et al. (1999). Huntington’s disease progression: PET and clinical observations. Brain, 122(12), 2353–2363.

    Article  PubMed  Google Scholar 

  • Antonini, A., Leenders, K. L., & Eidelberg, D. (1998). [11C]Raclopride-PET studies of the Huntington’s disease rate of progression: Relevance of the trinucleotide repeat length. Annals of Neurology, 43(2), 253–255.

    Article  CAS  PubMed  Google Scholar 

  • Ariano, M. A., Aronin, N., Difiglia, M., Tagle, D. A., Sibley, D. R., Leavitt, B. R., et al. (2002). Striatal neurochemical changes in transgenic models of Huntington’s disease. Journal of Neuroscience Research, 68(6), 716–729.

    Article  CAS  PubMed  Google Scholar 

  • Bolivar, V. J., Manley, K., & Messer, A. (2004). Early exploratory behavior abnormalities in R6/1 Huntington’s disease transgenic mice. Brain Research, 1005(1–2), 29–35.

    Article  CAS  PubMed  Google Scholar 

  • Brito, V., Giralt, A., Enriquez-Barreto, L., Puigdellívol, M., Suelves, N., Zamora-Moratalla, A., et al. (2014). Neurotrophin receptor p75(NTR) mediates Huntington’s disease-associated synaptic and memory dysfunction. The Journal of Clinical Investigation, 124(10), 4411–4428.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cepeda, C., Murphy, K. P. S., Parent, M., & Levine, M. S. (2014). The role of dopamine in Huntington’s disease. Progress in Brain Research, 211, 235–254.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chritin, M., Savasta, M., Mennicken, F., Bal, A., Abrous, D. N., Le Moal, M., et al. (1992). Intrastriatal dopamine-rich implants reverse the increase of dopamine D2 receptor mRNA levels caused by lesion of the nigrostriatal pathway: A quantitative in situ hybridization study. The European Journal of Neuroscience, 4(7), 663–672.

    Article  PubMed  Google Scholar 

  • Colgin, L. L., Moser, E. I., & Moser, M.-B. (2008). Understanding memory through hippocampal remapping. Trends in Neurosciences, 31(9), 469–477.

    Article  CAS  PubMed  Google Scholar 

  • Cummings, D. M., Milnerwood, A. J., Dallérac, G. M., Waights, V., Brown, J. Y., Vatsavayai, S. C., et al. (2006). Aberrant cortical synaptic plasticity and dopaminergic dysfunction in a mouse model of Huntington’s disease. Human Molecular Genetics, 15(19), 2856–2868.

    Article  CAS  PubMed  Google Scholar 

  • Dallerac, G., Chever, O., & Rouach, N. (2013). How do astrocytes shape synaptic transmission? Insights from electrophysiology. Frontiers in Cellular Neuroscience, 7, 159.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dallérac, G. M., Levasseur, G., Vatsavayai, S. C., Milnerwood, A. J., Cummings, D. M., Kraev, I., et al. (2015). Dysfunctional dopaminergic neurones in mouse models of Huntington’s disease: a role for SK3 channels. Neuro-Degenerative Diseases, 15(2), 93–108.

    Article  PubMed  Google Scholar 

  • Dallérac, G. M., Vatsavayai, S. C., Cummings, D. M., Milnerwood, A. J., Peddie, C. J., Evans, K. A., et al. (2011). Impaired long-term potentiation in the prefrontal cortex of Huntington’s disease mouse models: rescue by D(1) dopamine receptor activation. Neurodegenerative Diseases, 8(4), 230–239.

    Article  PubMed  Google Scholar 

  • Ginovart, N., Lundin, A., Farde, L., Halldin, C., Bäckman, L., Swahn, C. G., et al. (1997). PET study of the pre- and post-synaptic dopaminergic markers for the neurodegenerative process in Huntington’s disease. Brain, 120(3), 503–514.

    Article  PubMed  Google Scholar 

  • Glass, M., Dragunow, M., & Faull, R. L. M. L. (2000). The pattern of neurodegeneration in Huntington’s disease: A comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington’s disease. Neuroscience, 97(3), 505–519.

    Article  CAS  PubMed  Google Scholar 

  • González-Burgos, I., & Feria-Velasco, A. (2008). Serotonin/dopamine interaction in memory formation. Progress in Brain Research, 172, 603–623.

    Article  PubMed  Google Scholar 

  • Hansen, N., & Manahan-Vaughan, D. (2014). Dopamine D1/D5 receptors mediate informational saliency that promotes persistent hippocampal long-term plasticity. Cerebral Cortex (New York, N.Y.: 1991), 24(4), 845–858.

    PubMed Central  Google Scholar 

  • Harper, P. (1996). Huntington’s disease. In W. B. Saunders (Ed.), Major problems of neurology (2nd ed.). Philadelphia, PA: WB Saunders.

    Google Scholar 

  • Heng, M. Y., Tallaksen-Greene, S. J., Detloff, P. J., & Albin, R. L. (2007). Longitudinal evaluation of the Hdh(CAG)150 knock-in murine model of Huntington’s disease. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(34), 8989–8998.

    Article  CAS  Google Scholar 

  • Hodgson, J. G. G., Agopyan, N., Gutekunst, C.-A. A., Leavitt, B. R., LePiane, F., Singaraja, R., et al. (1999). A YAC mouse model for Huntington’s disease with full-length mutant Huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron, 23(1), 181–192.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Y.-Y. Y., Simpson, E., Kellendonk, C., & Kandel, E. R. (2004). Genetic evidence for the bidirectional modulation of synaptic plasticity in the prefrontal cortex by D1 receptors. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 3236–3241.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jay, T. M. (2003). Dopamine: A potential substrate for synaptic plasticity and memory mechanisms. Progress in Neurobiology, 69(6), 375–390.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, M. A., Rajan, V., Miller, C. E., & Wightman, R. M. (2006). Dopamine release is severely compromised in the R6/2 mouse model of Huntington’s disease. Journal of Neurochemistry, 97(3), 737–746.

    Article  CAS  PubMed  Google Scholar 

  • Kelly, M. A., Rubinstein, M., Asa, S. L., Zhang, G., Saez, C., Bunzow, J. R., et al. (1997). Pituitary lactotroph hyperplasia and chronic hyperprolactinemia in dopamine D2 receptor-deficient mice. Neuron, 19(1), 103–113.

    Article  CAS  PubMed  Google Scholar 

  • Koob, G. F., Stinus, L., & Le Moal, M. (1981). Hyperactivity and hypoactivity produced by lesions to the mesolimbic dopamine system. Behavioural Brain Research, 3(3), 341–359.

    Article  CAS  PubMed  Google Scholar 

  • Korchounov, A., Meyer, M. F., & Krasnianski, M. (2010). Postsynaptic nigrostriatal dopamine receptors and their role in movement regulation. Journal of Neural Transmission (Vienna, Austria: 1996), 117(12), 1359–1369.

    Article  CAS  Google Scholar 

  • Kung, V. W. S., Hassam, R., Morton, A. J., & Jones, S. (2007). Dopamine-dependent long term potentiation in the dorsal striatum is reduced in the R6/2 mouse model of Huntington’s disease. Neuroscience, 146(4), 1571–1580.

    Article  CAS  PubMed  Google Scholar 

  • LaHoste, G. J., & Marshall, J. F. (1989). Non-additivity of D2 receptor proliferation induced by dopamine denervation and chronic selective antagonist administration: Evidence from quantitative autoradiography indicates a single mechanism of action. Brain Research, 502(2), 223–232.

    Article  CAS  PubMed  Google Scholar 

  • Li, L., Murphy, T. H., Hayden, M. R., & Raymond, L. A. (2004). Enhanced striatal NR2B-containing N-methyl-D-aspartate receptor-mediated synaptic currents in a mouse model of Huntington disease. Journal of Neurophysiology, 92(5), 2738–2746.

    Article  CAS  PubMed  Google Scholar 

  • Lynch, G., Kramar, E. A., Rex, C. S., Jia, Y., Chappas, D., Gall, C. M., & Simmons, D. A. (2007). Brain-derived neurotrophic factor restores synaptic plasticity in a knock-in mouse model of Huntington’s disease. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(16), 4424–4434.

    Article  CAS  Google Scholar 

  • Mangiarini, L., Sathasivam, K., Seller, M., Cozens, B., Harper, A., Hetherington, C., et al. (1996). Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell, 87(3), 493–506.

    Article  CAS  PubMed  Google Scholar 

  • Milner, A. J., Cummings, D. M., Spencer, J. P., & Murphy, K. P. S. J. (2004). Bi-directional plasticity and age-dependent long-term depression at mouse CA3-CA1 hippocampal synapses. Neuroscience Letters, 367(1), 1–5.

    Article  CAS  PubMed  Google Scholar 

  • Milnerwood, A. J., Cummings, D. M., Dallerac, G. M., Brown, J. Y., Vatsavayai, S. C., Hirst, M. C., et al. (2006). Early development of aberrant synaptic plasticity in a mouse model of Huntington’s disease. Human Molecular Genetics, 15(10), 1690–1703.

    Article  CAS  PubMed  Google Scholar 

  • Mochel, F., Durant, B., Durr, A., & Schiffmann, R. (2011). Altered dopamine and serotonin metabolism in motorically asymptomatic R6/2 mice. PLoS ONE, 6(3), e18336.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murphy, K. P. S. J., Carter, R. J., Lione, L. A., Mangiarini, L., Mahal, A., Bates, G. P., et al. (2000). Abnormal synaptic plasticity and impaired spatial cognition in mice transgenic for exon 1 of the human Huntington’s disease mutation. Journal of Neuroscience, 20(13), 5115–5123.

    CAS  PubMed  Google Scholar 

  • Ortiz, A. N., Kurth, B. J., Osterhaus, G. L., & Johnson, Ma. (2011). Impaired dopamine release and uptake in R6/1 Huntington’s disease model mice. Neuroscience Letters, 492(1), 11–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Plotkin, J. L., Day, M., Peterson, J. D., Xie, Z., Kress, G. J., Rafalovich, I., et al. (2014). Impaired TrkB receptor signaling underlies corticostriatal dysfunction in Huntington’s disease. Neuron, 83(1), 178–188.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Savasta, M., Mennicken, F., Chritin, M., Abrous, D. N., Feuerstein, C., Le Moal, M., & Herman, J. P. (1992). Intrastriatal dopamine-rich implants reverse the changes in dopamine D2 receptor densities caused by 6-hydroxydopamine lesion of the nigrostriatal pathway in rats: an autoradiographic study. Neuroscience, 46(3), 729–738.

    Article  CAS  PubMed  Google Scholar 

  • Shohamy, D., & Adcock, R. A. (2010). Dopamine and adaptive memory. Trends in Cognitive Sciences, 14(10), 464–472.

    Article  CAS  PubMed  Google Scholar 

  • Simmons, D. A., Rex, C. S., Palmer, L., Pandyarajan, V., Fedulov, V., Gall, C. M., & Lynch, G. (2009). Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington’s disease knockin mice. Proceedings of the National Academy of Sciences of the United States of America, 106(12), 4906–4911.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith, Y., & Villalba, R. (2008). Striatal and extrastriatal dopamine in the basal ganglia: an overview of its anatomical organization in normal and Parkinsonian brains. Movement Disorders: Official Journal of the Movement Disorder Society, 23(Suppl 3), S534–S547.

    Article  Google Scholar 

  • Tong, X., Ao, Y., Faas, G. C., Nwaobi, S. E., Xu, J., Haustein, M. D., et al. (2014). Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nature Neuroscience, 17(5), 694–703.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Usdin, M. T., Shelbourne, P. F., Myers, R. M., & Madison, D. V. (1999). Impaired synaptic plasticity in mice carrying the Huntington’s disease mutation. Human Molecular Genetics, 8(5), 839–846.

    Article  CAS  PubMed  Google Scholar 

  • van der Borght, K., & Brundin, P. (2007). Reduced expression of PSA-NCAM in the hippocampus and piriform cortex of the R6/1 and R6/2 mouse models of Huntington’s disease. Experimental Neurology, 204(1), 473–478.

    Article  PubMed  Google Scholar 

  • Van Vugt, J., & Roos, R. (1999). Huntington’s disease: Options for controlling symptoms. CNS Drugs, 11(2), 105–123.

    Article  Google Scholar 

  • Weeks, R. (1997). Cortical control of movement in Huntington’s disease. A PET activation study. Brain, 120(9), 1569–1578.

    Article  PubMed  Google Scholar 

  • Zeron, M. M., Hansson, O., Chen, N., Wellington, C. L., Leavitt, B. R., Brundin, P., et al. (2002). Increased sensitivity to N-methyl-D-aspartate in a mouse model of Huntington’ s disease. Neuron, 33, 849–860.

    Article  CAS  PubMed  Google Scholar 

  • Zuccato, C., Tartari, M., Crotti, A., Goffredo, D., Valenza, M., Conti, L., et al. (2003). Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nature Genetics, 35(1), 76–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Mr. Steve Walters, Mrs. Dawn Sadler, Mrs. Karen Evans, and Dr. Verina Waights at the Open University for their excellent technical assistance and Drs Tony Hannan and Anton van Dellen of Oxford University for their help in establishing our R6/1 colony. We would also like to thank Professor Michael Levine and Mr Ehud Gruen for providing D2 knock-out mouse brains. This work was funded by the Open University Research Development Committee and the Royal Society.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Glenn M. Dallérac or Kerry P. S. J. Murphy.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dallérac, G.M., Cummings, D.M., Hirst, M.C. et al. Changes in Dopamine Signalling Do Not Underlie Aberrant Hippocampal Plasticity in a Mouse Model of Huntington’s Disease. Neuromol Med 18, 146–153 (2016). https://doi.org/10.1007/s12017-016-8384-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-016-8384-z

Keywords

Navigation