Skip to main content

Advertisement

Log in

Up-Regulation of Neuronal Nitric Oxide Synthase Expression by Cobalt Chloride Through a HIF-1α Mechanism in Neuroblastoma Cells

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) plays a dual role in response to neural hypoxia. NO is synthesized by three isoforms of nitric oxide synthase (NOS), among which the neuronal NOS (nNOS) is predominant in the nervous system. Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor that is induced under hypoxic conditions, but its correlation with nNOS remains unclear. In the present study, we aimed at clarifying the regulation pattern of the nNOS expression in response to cobalt chloride (CoCl2), a widely used chemical mimic of hypoxia, and the role of HIF-1α in this process in neuroblastoma cells. We found CoCl2 evidently increased the nNOS expression and NO production in human neuroblastoma SK-N-SH cells, but the effect of CoCl2 on NO was partially abrogated by 7-nitroindazole, a selective inhibitor for nNOS. Importantly, we identified a hypoxia response element (HRE) within the nNOS promoter, to which HIF-1α may bind, and CoCl2 greatly enhanced the HIF-1α expression and its binding to the HRE. Meanwhile, we demonstrated that this HRE was functionally important for the activation of the nNOS transcription, and CoCl2 increased the transcriptional activity of the nNOS promoter through this HRE. Taken together, our study shows that CoCl2 may induce the nNOS expression and NO production through a HIF-1α mechanism in neuroblastoma cells, which may provide a potential target for the treatment of neurological hypoxic disorders caused by NO dysregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arany, Z., Foo, S. Y., Ma, Y., Ruas, J. L., Bommi-Reddy, A., Girnun, G., et al. (2008). HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature, 451(7181), 1008–1012.

    Article  CAS  PubMed  Google Scholar 

  • Baranova, O., Miranda, L. F., Pichiule, P., Dragatsis, I., Johnson, R. S., & Chavez, J. C. (2007). Neuron-specific inactivation of the hypoxia inducible factor 1a increases brain injury in a mouse model of transient focal cerebral ischemia. Journal of Neuroscience, 27(23), 6320–6332.

    Article  CAS  PubMed  Google Scholar 

  • Barua, A., Standen, N. B., & Galiñanes, M. (2010). Dual role of nNOS in ischemic injury and preconditioning. BMC Physiology, 10, 15–22.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bergeron, M., Gidday, J. M., Yu, A. Y., Semenza, G. L., Ferriero, D. M., & Sharp, F. R. (2000). Role of hypoxia-inducible factor-1 in hypoxia-induced ischemic tolerance in neonatal rat brain. Annals of Neurology, 48(3), 285–296.

    Article  CAS  PubMed  Google Scholar 

  • Bredt, D. S. (1999). Endogenous nitric oxide synthesis: Biological functions and pathophysiology. Free Radical Research, 31(6), 577–596.

    Article  CAS  PubMed  Google Scholar 

  • Chu, P. W., Beart, P. M., & Jones, N. M. (2010). Preconditioning protects against oxidative injury involving hypoxia-inducible factor-1 and vascular endothelial growth factor in cultured astrocytes. European Journal of Pharmacology, 633(1–3), 24–32.

    Article  CAS  PubMed  Google Scholar 

  • Dai, Z. J., Gao, J., Ma, X. B., Yan, K., Liu, X. X., Kang, H. F., et al. (2012). Up-regulation of hypoxia inducible factor-1α by cobalt chloride correlates with proliferation and apoptosis in PC-2 cells. Journal of Experimental & Clinical Cancer Research, 31, 28.

    Article  CAS  Google Scholar 

  • Florence, C., Sophie, N., Monique, A., & Florent, S. (2003). Identification of hypoxia-response element in the human endothelial nitric-oxide synthase gene promoter. Journal of Biological Chemistry, 278(47), 46230–46240.

    Article  Google Scholar 

  • Goldberg, M. A., & Schneider, T. J. (1994). Similarities between the oxygen-sensing mechanisms regulating the expression of vascular endothelial growth factor and erythropoietin. Journal of Biological Chemistry, 269(6), 4355–4359.

    CAS  PubMed  Google Scholar 

  • Gutsaeva, D. R., Carraway, M. S., Suliman, H. B., Demchenko, I. T., Shitara, H., Yonekawa, H., et al. (2008). Transient hypoxia stimulates mitochondrial biogenesis in brain subcortex by a neuronal nitric oxide synthase-dependent mechanism. Journal of Neuroscience, 28(9), 2015–2024.

    Article  CAS  PubMed  Google Scholar 

  • Hall, A. V., Antoniou, H., Wang, Y., Cheung, A. H., Arbus, A. M., Olson, S. L., et al. (1994). Structural organization of the human neuronal nitric oxide synthase gene (NOS1). Journal of Biological Chemistry, 269(52), 33082–33090.

    CAS  PubMed  Google Scholar 

  • Helton, R., Cui, J., Scheel, J. R., Ellison, J. A., Ames, C., Gibson, C., et al. (2005). Brain-specific knock-out of hypoxia-inducible factor-1a reduces rather than increases hypoxic-ischemic damage. Journal of Neuroscience, 25(16), 4099–4107.

    Article  CAS  PubMed  Google Scholar 

  • Hu, T., Beattie, W. S., Mazer, C. D., Leong-Poi, H., Fujii, H., Wilson, D. F., et al. (2013). Treatment with a highly selective β1 antagonist causes dose-dependent impairment of cerebral perfusion after hemodilution in rats. Anesthesia and Analgesia, 116(3), 649–662.

    Article  CAS  PubMed  Google Scholar 

  • Jekabsone, A., Neher, J. J., Borutaite, V., & Brown, G. C. (2007). Nitric oxide from neuronal nitric oxide synthase sensitises neurons to hypoxia-induced death via competitive inhibition of cytochrome oxidase. Journal of Neurochemistry, 103(1), 346–356.

    CAS  PubMed  Google Scholar 

  • Jones, N. M., Kardashyan, L., Callaway, J. K., Lee, E. M., & Beart, P. M. (2008). Long-term functional and protective actions of preconditioning with hypoxia, cobalt chloride, and desferrioxamine against hypoxic-ischemic injury in neonatal rats. Pediatric Research, 63(6), 620–624.

    Article  CAS  PubMed  Google Scholar 

  • Kallio, P. J., Wilson, W. J., O’Brien, S., Makino, Y., & Poellinger, L. (1999). Regulation of the hypoxia-inducible transcription factor 1 by the ubiquitin-proteasome pathway. Journal of Biological Chemistry, 274(10), 6519–6525.

    Article  CAS  PubMed  Google Scholar 

  • Kotake-Nara, E., Takizawa, S., Quan, J., Wang, H., & Saida, K. (2005). Cobalt chloride induces neurite outgrowth in rat pheochromocytoma PC-12 cells through regulation of endothelin-2/vasoactive intestinal contractor. Journal of Neuroscience Research, 81(4), 563–571.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Li, C., Sun, L., Chu, G., Li, J., Chen, F., et al. (2013). Role of p300 in regulating neuronal nitric oxide synthase gene expression through nuclear factor-κB-mediated way in neuronal cells. Neuroscience, 248, 681–689.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Zhao, Y., Li, G., Wang, J., Li, T., Li, W., et al. (2007). Regulation of neuronal nitric oxide synthase exon 1f gene expression by nuclear factor-kappaB acetylation in human neuroblastoma cells. Journal of Neurochemistry, 101(5), 1194–1204.

    Article  CAS  PubMed  Google Scholar 

  • Matrone, C., Pignataro, G., Molinaro, P., Irace, C., Scorziello, A., Di Renzo, G. F., et al. (2004). HIF-1alpha reveals a binding activity to the promoter of iNOS gene after permanent middle cerebral artery occlusion. Journal of Neurochemistry, 90(2), 368–378.

    Article  CAS  PubMed  Google Scholar 

  • McLaren, A. T., Marsden, P. A., Mazer, C. D., Baker, A. J., Stewart, D. J., Tsui, A. K., et al. (2007). Increased expression of HIF-1alpha, nNOS, and VEGF in the cerebral cortex of anemic rats. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 292(1), R403–R414.

    CAS  PubMed  Google Scholar 

  • Schmid-Brunclik, N., Bürgi-Taboada, C., Antoniou, X., Gassmann, M., & Ogunshola, O. O. (2008). Astrocyte responses to injury: VEGF simultaneously modulates cell death and proliferation. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 295(3), R864–R873.

    CAS  PubMed  Google Scholar 

  • Semenza, G. (2002). Signal transduction to hypoxia-inducible factor 1. Biochemical Pharmacology, 64(5–6), 993–998.

    Article  CAS  PubMed  Google Scholar 

  • Taie, S., Ono, J., Iwanaga, Y., Tomita, S., Asaga, T., Chujo, K., et al. (2009). Hypoxia-inducible factor-1 alpha has a key role in hypoxic preconditioning. J Clin Neurosci, 16(8), 1056–1060.

    Article  CAS  PubMed  Google Scholar 

  • Tazuke, S. I., Mazure, N. M., Sugawara, J., Carland, G., Faessen, G. H., Suen, L. F., et al. (1998). Hypoxia stimulates insulin-like growth factor binding protein 1 (IGFBP-1) gene expression in HepG2 cells: A possible model for IGFBP-1 expression in fetal. Proceedings of the National Academy Sciences USA, 95(17), 10188–10193.

    Article  CAS  Google Scholar 

  • Tsui, A. K., Marsden, P. A., Mazer, C. D., Sled, J. G., Lee, K. M., Henkelman, R. M., et al. (2014). Differential HIF and NOS responses to acute anemia: Defining organ-specific hemoglobin thresholds for tissue hypoxia. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 307(1), R13–R25.

    CAS  PubMed  Google Scholar 

  • Vangeison, G., Carr, D., Federoff, H. J., & Rempe, D. A. (2008). The good, the bad, and the cell typespecific roles of hypoxia inducible factor-1a in neurons and astrocytes. Journal of Neuroscience, 28(8), 1988–1993.

    Article  CAS  PubMed  Google Scholar 

  • Ward, M. E., Toporsian, M., Scott, J. A., Teoh, H., Govindaraju, V., Quan, A., et al. (2005). Hypoxia induces a functionally significant and translationally efficient neuronal NO synthase mRNA variant. Journal of Clinical Investigation, 115(11), 3128–3139.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang, H., Chen, J., Liu, F., Gao, C., Wang, X., Zhao, T., et al. (2014). CypA, a gene downstream of HIF-1α, promotes the development of PDAC. PLoS One, 9(3), e92824.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhao, Y., Zhou, J., Narayanan, C. S., Cui, Y., & Kumar, A. (1999). Role of C/A polymorphism at −20 on the expression of human angiotensinogen gene. Hypertension, 33(1), 108–115.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Science and Technology Project of Science and Technology Department of Liaoning Province (2012225016), Science Public Welfare Fund of Liaoning Province (2014001009) and Natural Science Foundations of Liaoning Province (2014021061).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangyu Li or Yanyan Zhao.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Zhao, Y., Li, Y. et al. Up-Regulation of Neuronal Nitric Oxide Synthase Expression by Cobalt Chloride Through a HIF-1α Mechanism in Neuroblastoma Cells. Neuromol Med 17, 443–453 (2015). https://doi.org/10.1007/s12017-015-8373-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-015-8373-7

Keywords

Navigation