Skip to main content

Advertisement

Log in

Uncovering the Cellular Microenvironment in Chronic Rhinosinusitis via Single-Cell RNA Sequencing: Application and Future Directions

  • Review
  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Chronic rhinosinusitis (CRS) is a heterogenic disease characterized by persistent mucosal inflammation of the upper airway. Researches of CRS have progressed from phenotype-based to endotype-based, looking more deeply into molecular biomarkers, signaling pathways, and immune microenvironment. Single-cell RNA sequencing is an effective tool in analyzing composition, function, and interaction of cells in disease microenvironment at transcriptome level, showing great advantage in analyzing potential biomarkers, pathogenesis, and heterogeneity of chronic airway inflammation in an unbiased manner. In this article, we will review the latest advances in scRNA-seq studies of CRS to provide new perspectives for the diagnosis and treatment of this heterogeneous disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Bachert C, Marple B, Schlosser RJ, Hopkins C, Schleimer RP, Lambrecht BN et al (2020) Adult chronic rhinosinusitis. Nat Rev Dis Primers 6(1):86

    Article  PubMed  Google Scholar 

  2. Cho SH, Hamilos DL, Han DH, Laidlaw TM (2020) Phenotypes of chronic rhinosinusitis. J Allergy Clin Immunol Pract 8(5):1505–1511

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kato A, Peters AT, Stevens WW, Schleimer RP, Tan BK, Kern RC (2022) Endotypes of chronic rhinosinusitis: relationships to disease phenotypes, pathogenesis, clinical findings, and treatment approaches. Allergy 77(3):812–826

    Article  PubMed  Google Scholar 

  4. Chapurin N, Wu J, Labby AB, Chandra RK, Chowdhury NI, Turner JH (2022) Current insight into treatment of chronic rhinosinusitis: phenotypes, endotypes, and implications for targeted therapeutics. J Allergy Clin Immunol 150(1):22–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fokkens WJ, Lund VJ, Mullol J, Bachert C, Alobid I, Baroody F et al (2012) EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists Rhinology 50(1):1–12

    PubMed  Google Scholar 

  6. Fokkens WJ, Lund VJ, Hopkins C, Hellings PW, Kern R, Reitsma S et al (2020) European position paper on rhinosinusitis and nasal polyps 2020. Rhinology 58(Suppl S29):1–464

    PubMed  Google Scholar 

  7. Zhu Z, Wang W, Zhang X, Wang X, Zha Y, Chen Y et al (2020) Nasal fluid cytology and cytokine profiles of eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps. Rhinology 58(4):314–322

    CAS  PubMed  Google Scholar 

  8. Wang W, Gao Y, Zhu Z, Zha Y, Wang X, Qi F et al (2019) Changes in the clinical and histological characteristics of Chinese chronic rhinosinusitis with nasal polyps over 11 years. Int Forum Allergy Rhinol 9(2):149–157

    Article  CAS  PubMed  Google Scholar 

  9. Wang W, Gao Z, Wang H, Li T, He W, Lv W et al (2016) Transcriptome analysis reveals distinct gene expression profiles in eosinophilic and noneosinophilic chronic rhinosinusitis with nasal polyps. Sci Rep 6:26604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M et al (2017) Comparative analysis of single-cell RNA sequencing methods. Mol Cell 65(4):631-643.e4

    Article  CAS  PubMed  Google Scholar 

  11. Grün D, van Oudenaarden A (2015) Design and analysis of single-cell sequencing experiments. Cell 163(4):799–810

    Article  PubMed  Google Scholar 

  12. Papalexi E, Satija R (2018) Single-cell RNA sequencing to explore immune cell heterogeneity. Nat Rev Immunol 18(1):35–45

    Article  CAS  PubMed  Google Scholar 

  13. Schleimer RP, Berdnikovs S (2017) Etiology of epithelial barrier dysfunction in patients with type 2 inflammatory diseases. J Allergy Clin Immunol 139(6):1752–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kato A, Schleimer RP, Bleier BS (2022) Mechanisms and pathogenesis of chronic rhinosinusitis. J Allergy Clin Immunol 149(5):1491–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hammad H, Lambrecht BN (2015) Barrier epithelial cells and the control of type 2 immunity. Immunity 43(1):29–40

    Article  CAS  PubMed  Google Scholar 

  16. Akdis CA (2021) Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol 21(11):739–751

    Article  CAS  PubMed  Google Scholar 

  17. Ordovas-Montanes J, Dwyer DF, Nyquist SK, Buchheit KM, Vukovic M, Deb C et al (2018) Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature 560(7720):649–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang W, Xu Y, Wang L, Zhu Z, Aodeng S, Chen H et al (2022) Single-cell profiling identifies mechanisms of inflammatory heterogeneity in chronic rhinosinusitis. Nat Immunol 23(10):1484–1494

    Article  CAS  PubMed  Google Scholar 

  19. Wang Y, Li Z, Lu J (2024) Single-cell RNA sequencing reveals the epithelial cell, fibroblast, and key gene alterations in chronic rhinosinusitis with nasal polyps. Scientific Reports [Internet] [cited 2024 Mar 13];14. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10821928/

  20. Hupin C, Gohy S, Bouzin C, Lecocq M, Polette M, Pilette C (2014) Features of mesenchymal transition in the airway epithelium from chronic rhinosinusitis. Allergy 69(11):1540–1549

    Article  CAS  PubMed  Google Scholar 

  21. Rock JR, Onaitis MW, Rawlins EL, Lu Y, Clark CP, Xue Y et al (2009) Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci U S A 106(31):12771–12775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ruysseveldt E, Martens K, Steelant B (2021) Airway basal cells, protectors of epithelial walls in health and respiratory diseases. Front Allergy 2:787128

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang X, Hallen NR, Lee M, Samuchiwal S, Ye Q, Buchheit KM et al (2023) Type 2 inflammation drives an airway basal stem cell program through insulin receptor substrate signaling. J Allergy Clin Immunol 151(6):1536–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rock JR, Gao X, Xue Y, Randell SH, Kong YY, Hogan BLM (2011) Notch-dependent differentiation of adult airway basal stem cells. Cell Stem Cell 8(6):639–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hellings PW, Steelant B (2020) Epithelial barriers in allergy and asthma. J Allergy Clin Immunol 145(6):1499–1509

    Article  PubMed  PubMed Central  Google Scholar 

  26. Danahay H, Pessotti AD, Coote J, Montgomery BE, Xia D, Wilson A et al (2015) Notch2 is required for inflammatory cytokine-driven goblet cell metaplasia in the lung. Cell Rep 10(2):239–252

    Article  CAS  PubMed  Google Scholar 

  27. Böscke R, Vladar EK, Könnecke M, Hüsing B, Linke R, Pries R et al (2017) Wnt signaling in chronic rhinosinusitis with nasal polyps. Am J Respir Cell Mol Biol 56(5):575–584

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sivaprasad U, Kinker KG, Ericksen MB, Lindsey M, Gibson AM, Bass SA et al (2015) SERPINB3/B4 contributes to early inflammation and barrier dysfunction in an experimental murine model of atopic dermatitis. J Invest Dermatol 135(1):160–169

    Article  CAS  PubMed  Google Scholar 

  29. Ma J, Rubin BK, Voynow JA (2018) Mucins, Mucus, and Goblet Cells. Chest 154(1):169–176

    Article  PubMed  Google Scholar 

  30. Kesimer M (2022) Mucins MUC5AC and MUC5B in the airways: MUCing around together. Am J Respir Crit Care Med 206(9):1055–1057

    Article  PubMed  PubMed Central  Google Scholar 

  31. Roy MG, Livraghi-Butrico A, Fletcher AA, McElwee MM, Evans SE, Boerner RM et al (2014) Muc5b is required for airway defence. Nature 505(7483):412–416

    Article  CAS  PubMed  Google Scholar 

  32. Okuda K, Chen G, Subramani DB, Wolf M, Gilmore RC, Kato T et al (2019) Localization of secretory mucins MUC5AC and MUC5B in normal/healthy human airways. Am J Respir Crit Care Med 199(6):715–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lachowicz-Scroggins ME, Yuan S, Kerr SC, Dunican EM, Yu M, Carrington SD et al (2016) Abnormalities in MUC5AC and MUC5B protein in airway mucus in asthma. Am J Respir Crit Care Med 194(10):1296–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bonser LR, Erle DJ (2017) Airway mucus and asthma: the role of MUC5AC and MUC5B. J Clin Med 6(12):112

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cohen NA (2006) Sinonasal mucociliary clearance in health and disease. Ann Otol Rhinol Laryngol Suppl 196:20–26

    Article  PubMed  Google Scholar 

  36. O’Leary CE, Schneider C, Locksley RM (2019) Tuft cells-systemically dispersed sensory epithelia integrating immune and neural circuitry. Annu Rev Immunol 37:47–72

    Article  PubMed  Google Scholar 

  37. Kotas ME, Moore CM, Gurrola JG, Pletcher SD, Goldberg AN, Alvarez R et al (2022) IL-13-programmed airway tuft cells produce PGE2, which promotes CFTR-dependent mucociliary function. JCI Insight 7(13):e159832

    Article  PubMed  PubMed Central  Google Scholar 

  38. Plasschaert LW, Žilionis R, Choo-Wing R, Savova V, Knehr J, Roma G et al (2018) A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 560(7718):377–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Deprez M, Zaragosi LE, Truchi M, Becavin C, Ruiz García S, Arguel MJ et al (2020) A single-cell atlas of the human healthy airways. Am J Respir Crit Care Med 202(12):1636–1645

    Article  CAS  PubMed  Google Scholar 

  40. Hewitt RJ, Lloyd CM (2021) Regulation of immune responses by the airway epithelial cell landscape. Nat Rev Immunol 21(6):347–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sui P, Wiesner DL, Xu J, Zhang Y, Lee J, Van Dyken S et al (2018) Pulmonary neuroendocrine cells amplify allergic asthma responses. Science 360(6393):eaan8546

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ruiz García S, Deprez M, Lebrigand K, Cavard A, Paquet A, Arguel MJ et al (2019) Novel dynamics of human mucociliary differentiation revealed by single-cell RNA sequencing of nasal epithelial cultures. Development 146(20):dev177428

    Article  PubMed  PubMed Central  Google Scholar 

  43. Vieira Braga FA, Kar G, Berg M, Carpaij OA, Polanski K, Simon LM et al (2019) A cellular census of human lungs identifies novel cell states in health and in asthma. Nat Med 25(7):1153–1163

    Article  CAS  PubMed  Google Scholar 

  44. Ghesquière B, Wong BW, Kuchnio A, Carmeliet P (2014) Metabolism of stromal and immune cells in health and disease. Nature 511(7508):167–176

    Article  PubMed  Google Scholar 

  45. Tan S, Zhou S, Fan K, Jin L, Wang Y, Gao Z et al (2023) Bulk and single-cell transcriptome sequencing reveal the metabolic feature in chronic rhinosinusitis with polyps. Clin Exp Allergy

  46. Xu Z, Huang Y, Meese T, Van Nevel S, Holtappels G, Vanhee S et al (2023) The multi-omics single-cell landscape of sinus mucosa in uncontrolled severe chronic rhinosinusitis with nasal polyps. Clin Immunol 256:109791

    Article  CAS  PubMed  Google Scholar 

  47. Akdis CA, Arkwright PD, Brüggen MC, Busse W, Gadina M, Guttman-Yassky E et al (2020) Type 2 immunity in the skin and lungs. Allergy 75(7):1582–1605

    Article  CAS  PubMed  Google Scholar 

  48. Ma J, Tibbitt CA, Georén SK, Christian M, Murrell B, Cardell LO et al (2021) Single-cell analysis pinpoints distinct populations of cytotoxic CD4+ T cells and an IL-10+CD109+ TH2 cell population in nasal polyps. Sci Immunol 6(62):eabg6356

    Article  CAS  PubMed  Google Scholar 

  49. Scher JU, Pillinger MH (2005) 15d-PGJ2: the anti-inflammatory prostaglandin? Clin Immunol 114(2):100–109

    Article  CAS  PubMed  Google Scholar 

  50. Song J, Wang H, Wang ZZ, Guo CL, Xiang WX, Li JX et al (2023) Aberrant TFR cells associate with immunoglobulin hyperproduction in nasal polyps with ectopic lymphoid tissues. J Allergy Clin Immunol S0091–6749(23):02410–02417

    Google Scholar 

  51. Weisberg SP, Ural BB, Farber DL (2021) Tissue-specific immunity for a changing world. Cell 184(6):1517–1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Buchheit KM, Dwyer DF, Ordovas-Montanes J, Katz HR, Lewis E, Vukovic M et al (2020) IL-5Rα marks nasal polyp IgG4- and IgE-expressing cells in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 145(6):1574–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Huang Y, Xu Z, Holtappels G, Shen Y, Van Zele T, Wen W et al (2023) MZB1-expressing cells are essential for local immunoglobulin production in chronic rhinosinusitis with nasal polyps. Ann Allergy Asthma Immunol S1081–1206(23):01313–01323

    Google Scholar 

  54. Kim JH, Jang YJ (2018) Role of natural killer cells in airway inflammation. Allergy Asthma Immunol Res 10(5):448–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Böttcher JP, Bonavita E, Chakravarty P, Blees H, Cabeza-Cabrerizo M, Sammicheli S et al (2018) NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172(5):1022-1037.e14

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kawamoto H, Minato N (2004) Myeloid cells. Int J Biochem Cell Biol 36(8):1374–1379

    Article  CAS  PubMed  Google Scholar 

  57. Lambrecht BN, Hammad H (2010) The role of dendritic and epithelial cells as master regulators of allergic airway inflammation. Lancet 376(9743):835–843

    Article  CAS  PubMed  Google Scholar 

  58. Yin X, Chen S, Eisenbarth SC (2021) Dendritic cell regulation of T helper cells. Annu Rev Immunol 39:759–790

    Article  CAS  PubMed  Google Scholar 

  59. Stevens WW, Staudacher AG, Hulse KE, Carter RG, Winter DR, Abdala-Valencia H et al (2021) Activation of the 15-lipoxygenase pathway in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 147(2):600–612

    Article  CAS  PubMed  Google Scholar 

  60. Nakayama T, Lee IT, Le W, Tsunemi Y, Borchard NA, Zarabanda D et al (2022) Inflammatory molecular endotypes of nasal polyps derived from White and Japanese populations. J Allergy Clin Immunol 149(4):1296-1308.e6

    Article  CAS  PubMed  Google Scholar 

  61. Martin HC, Derakhshan T, Dwyer DF (2021) Insights into mast cell hyperplasia in aspirin-exacerbated respiratory disease from transcriptional profiling of polyp mast cells. Ann Allergy Asthma Immunol 126(2):120–121

    Article  PubMed  Google Scholar 

  62. Méndez-Enríquez E, Hallgren J (2019) Mast cells and their progenitors in allergic asthma. Front Immunol 10:821

    Article  PubMed  PubMed Central  Google Scholar 

  63. Dwyer DF, Ordovas-Montanes J, Allon SJ, Buchheit KM, Vukovic M, Derakhshan T et al (2021) Human airway mast cells proliferate and acquire distinct inflammation-driven phenotypes during type 2 inflammation. Sci Immunol 6(56):eabb7221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bangert C, Villazala-Merino S, Fahrenberger M, Krausgruber T, Bauer WM, Stanek V et al (2022) Comprehensive analysis of nasal polyps reveals a more pronounced type 2 transcriptomic profile of epithelial cells and mast cells in aspirin-exacerbated respiratory disease. Front Immunol 13:850494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. van Breugel M, Qi C, Xu Z, Pedersen CET, Petoukhov I, Vonk JM et al (2022) Nasal DNA methylation at three CpG sites predicts childhood allergic disease. Nat Commun 13(1):7415

    Article  PubMed  PubMed Central  Google Scholar 

  66. Pollen AA, Nowakowski TJ, Shuga J, Wang X, Leyrat AA, Lui JH et al (2014) Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat Biotechnol 32(10):1053–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ding J, Smith SL, Orozco G, Barton A, Eyre S, Martin P (2020) Characterisation of CD4+ T-cell subtypes using single cell RNA sequencing and the impact of cell number and sequencing depth. Sci Rep 10(1):19825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jovic D, Liang X, Zeng H, Lin L, Xu F, Luo Y (2022) Single-cell RNA sequencing technologies and applications: a brief overview. Clin Transl Med 12(3):e694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (grant numbers 82071027 and 82101200); National High Level Hospital Clinical Research Funding (grant numbers 2022-PUMCH-B-096, 2022-PUMCH-A-030, and 2022-PUMCH-C-050).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Literature search and data analysis were performed by Yuzhuo Liu and Weiqing Wang. The first draft of the manuscript was written by Yuzhuo Liu, and all authors revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wei Lv or Weiqing Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Lv, W. & Wang, W. Uncovering the Cellular Microenvironment in Chronic Rhinosinusitis via Single-Cell RNA Sequencing: Application and Future Directions. Clinic Rev Allerg Immunol (2024). https://doi.org/10.1007/s12016-024-08992-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12016-024-08992-6

Keywords

Navigation