Skip to main content

Advertisement

Log in

Markers of Endothelial Dysfunction in Kawasaki Disease: An Update

  • Review
  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Kawasaki disease (KD) is a medium vessel vasculitis that has a special predilection for coronary arteries. Cardiovascular complications include the development of coronary artery abnormalities (CAAs) and myocarditis. Endothelial dysfunction (ED) is now recognized to be a key component in the pathogenesis of KD and is believed to contribute to the development of CAAs. ED has been evaluated by several clinical parameters. However, there is paucity of literature on laboratory markers for ED in KD. The evaluation of ED can be aided by the identification of biomarkers such as oxidative stress markers, circulating cells and their progenitors, angiogenesis factors, cytokines, chemokines, cell-adhesion molecules, and adipokines. If validated in multicentric studies, these biomarkers may be useful for monitoring the disease course of KD. They may also provide a useful predictive marker for the development of premature atherosclerosis that is often a concern during long-term follow-up of KD. This review provides insights into the current understanding of the significance of ED in KD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Material

No datasets were generated or analysed during the current study.

Code Availability

Not applicable.

Abbreviations

KD:

Kawasaki disease

CVD:

Cardiovascular disease

AHA:

American Heart Association Criteria

ITPKC:

Inositol 1,4,5-trisphosphate 3-kinase

FCGR2A:

Fc gamma receptor IIa

SNP:

Single nucleotide polymorphism

CAA:

Coronary artery aneurysms

CAD:

Coronary artery disease

CEC:

Circulating endothelial cells

EPC:

Endothelial progenitor cells

IVIg:

Intravenous immunoglobulin

FMD:

Flow-mediated dilatation

NMD:

Nitroglycerin-mediated dilatation

CiMT:

Carotid intima-media thickness

NO:

Nitric oxide

ROS:

Reactive oxygen species

ROM:

Reactive oxygen metabolites

OS:

Oxidative stress

MDA:

Malondialdehyde

MPO:

Myeloperoxidases

ADMA:

Asymmetric dimethyl arginine

EC:

Endothelial cell

TNF-ɑ:

Tumor necrosis factor-alpha

hs-CRP:

High-sensitivity C-reactive protein

LCWE:

Lactobacillus casei cell wall extract

HCAEC:

Human coronary artery endothelial cells

References

  1. Newburger JW, Takahashi M, Gerber MA, Gewitz MH, Tani LY, Burns JC et al (2004) Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis and Kawasaki Disease, Council on Cardiovascular Disease in the Young. American Heart Association Circulation 110(17):2747–2771

    PubMed  Google Scholar 

  2. Orenstein JM, Shulman ST, Fox LM, Baker SC, Takahashi M et al (2012) Three linked vasculopathic processes characterize Kawasaki disease: a light and transmission electron microscopic study. PLoS ONE 7(6):e38998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Singh S, Aulakh R, Bhalla AK, Suri D, Manojkumar R et al (2011) Is Kawasaki disease incidence rising in Chandigarh, North India? Arch Dis Child 96(2):137–140

    Article  PubMed  Google Scholar 

  4. Singh S, Vignesh P, Burgner D (2015) The epidemiology of Kawasaki disease: a global update. Arch Dis Child 100(11):1084–1088

    Article  PubMed  Google Scholar 

  5. Singh S, Bhattad S (2016) Kawasaki disease incidence at Chandigarh, North India, during 2009–2014. Rheumatol Int 36(10):1391–1397

    Article  PubMed  Google Scholar 

  6. Jiao F, Jindal AK, Pandiarajan V, Khubchandani R, Kamath N et al (2017) (2017) The emergence of Kawasaki disease in India and China. Glob Cardiol Sci Pract 3:e201721

    Google Scholar 

  7. Du Z-D, Zhao D, Du J, Zhang YL et al (2007) Epidemiologic study on Kawasaki disease in Beijing from 2000 through 2004. Pediatr Infect Dis J 26(5):449–451

    Article  PubMed  Google Scholar 

  8. Chen JJ, Ma XJ, Liu F, Yan WL, Huang MR et al (2016) Epidemiologic features of Kawasaki disease in Shanghai from 2008 through 2012. Pediatr Infect Dis J 35(1):7–12

    Article  CAS  PubMed  Google Scholar 

  9. Ma XJ, Yu CY, Huang M, Chen SB, Huang MR et al (2010) Epidemiologic features of Kawasaki disease in Shanghai from 2003 through 2007. Chin Med J (Engl) 123(19):2629–34

    PubMed  Google Scholar 

  10. Li XH, Li XJ, Li H, Xu M, Zhou M (2008) Epidemiological survey of Kawasaki disease in Sichuan province of China. J Trop Pediatr 54(2):133–136

    Article  PubMed  Google Scholar 

  11. McCrindle BW, Rowley AH, Newburger JW, Burns JC, Bolger AF, Gewitz M et al (2017) Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association. Circulation 135(17):e927–e999

    Article  PubMed  Google Scholar 

  12. Noval Rivas M, Arditi M (2020) Kawasaki disease: pathophysiology and insights from mouse models. Nat Rev Rheumatol 16(7):391–405

    Article  PubMed  PubMed Central  Google Scholar 

  13. Son MB, Sundel RP (2016) Kawasaki disease. Textbook of Pediatric. Rheumatology 467–483:e6

    Google Scholar 

  14. Aggarwal R, Pilania RK, Sharma S, Kumar A, Dhaliwal M, Rawat A, Singh S (2023) Kawasaki disease and the environment: an enigmatic interplay. Front Immunol 14:1259094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pilania RK, Jindal AK, Bhattarai D, Naganur SH, Singh S (2020) Cardiovascular involvement in Kawasaki disease is much more than mere coronary arteritis. Front Pediatr 8:526969

    Article  PubMed  PubMed Central  Google Scholar 

  16. Burns JC, Glodé MP (2004) Kawasaki syndrome. Lancet 13(364(9433)):533–44

    Article  Google Scholar 

  17. Malhotra MG, Gruber D, Abraham SS et al (2009) Atherosclerosis in survivors of Kawasaki disease. J Pediatr 155(4):572–577

    Article  Google Scholar 

  18. McCrindle BW, McIntyre S, Kim C, Lin T, Adeli K (2007) Are patients after Kawasaki disease at increased risk for accelerated atherosclerosis? J Pediatr 151(3):244–8, 248.e

    Article  CAS  PubMed  Google Scholar 

  19. Nakagawa R, Kuwata S, Kurishima C, Saiki H, Iwamoto Y et al (2015) Arterial stiffness in patients after Kawasaki disease without coronary artery involvement: assessment by performing brachial ankle pulse wave velocity and cardio-ankle vascular index. J Cardiol 66(2):130–134

    Article  PubMed  Google Scholar 

  20. Hirai T, Sasayama S, Kawasaki T, Yagi S (1989) Stiffness of systemic arteries in patients with myocardial infarction. A noninvasive method to predict severity of coronary atherosclerosis. Circulation 80(1):78–86

    CAS  PubMed  Google Scholar 

  21. Routhu SK, Singhal M, Jindal AK, Kumar V, Yadav AK, Singh S (2021) Assessment of endothelial dysfunction in acute and convalescent phases of Kawasaki disease using automated edge detection software: a preliminary study from North India. J Clin Rheumatol 27(4):143–149

    Article  PubMed  Google Scholar 

  22. Favero G, Paganelli C, Buffoli B, Rodella LF, Rezzani R (2014) Endothelium and its alterations in cardiovascular diseases: life style intervention. Biomed Res Int 2014:801896

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sun HJ, Wu ZY, Nie XW, Bian JS (2020) Role of endothelial dysfunction in cardiovascular diseases: the link between inflammation and hydrogen sulfide. Front Pharmacol 10:1568

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dhillon R, Clarkson P, Donald AE et al (1996) Endothelial dysfunction late after Kawasaki disease. Circulation 94(9):2103–2106

    Article  CAS  PubMed  Google Scholar 

  25. Patra PK, Banday AZ, Das RR, Manohari S, Jindal AK, Singh S (2023) Long-term vascular dysfunction in Kawasaki disease: systematic review and meta-analyses. Cardiol Young 33(9):1614–1626

    Article  PubMed  Google Scholar 

  26. Deng YB, Li TL, Xiang HJ, Chang Q, Li CL (2003) Impaired endothelial function in the brachial artery after Kawasaki disease and the effects of intravenous administration of vitamin C. Pediatr Infect Dis J 22(1):34–39

    Article  PubMed  Google Scholar 

  27. Ikemoto Y, Ogino H, Teraguchi M, Kobayashi Y (2005) Evaluation of preclinical atherosclerosis by flow-mediated dilatation of the brachial artery and carotid artery analysis in patients with a history of Kawasaki disease. Pediatr Cardiol 26(6):782–786

    Article  CAS  PubMed  Google Scholar 

  28. Noto N, Okada T, Karasawa K et al (2009) Age-related acceleration of endothelial dysfunction and subclinical atherosclerosis in subjects with coronary artery lesions after Kawasaki disease. Pediatr Cardiol 30(3):262–268

    Article  PubMed  Google Scholar 

  29. Ghelani SJ, Singh S, Manojkumar R (2009) Endothelial dysfunction in a cohort of North Indian children with Kawasaki disease without overt coronary artery involvement. J Cardiol 53(2):226–231

    Article  PubMed  Google Scholar 

  30. Liu XQ, Huang GY, Liang XV, Ma XJ (2009) Endothelial progenitor cells and arterial functions in the late convalescence period of Kawasaki disease. Acta Paediatr 98(8):1355–1359

    Article  PubMed  Google Scholar 

  31. Gordon JB, Kahn AM, Burns JC (2009) When children with Kawasaki disease grow up: myocardial and vascular complications in adulthood. J Am Coll Cardiol 54(21):1911–1920

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shimizu C, Sood A, Lau HD et al (2015) Cardiovascular pathology in 2 young adults with sudden, unexpected death due to coronary aneurysms from Kawasaki disease in childhood. Cardiovasc Pathol 24(5):310–316

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ishikawa T, Iwashima S (2013) Endothelial dysfunction in children within 5 years after onset of Kawasaki disease. J Pediatr 163(4):1117–1121

    Article  CAS  PubMed  Google Scholar 

  34. Cheung YF (2014) Vascular health late after Kawasaki disease: implications for accelerated atherosclerosis. Korean J Pediatr 57(11):472–478

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lo MH, Lin YJ, Kuo HC et al (2023) Assessment of vascular and endothelial function in Kawasaki disease. Biomed J 46(2):100525

    Article  CAS  PubMed  Google Scholar 

  36. Breunis WB, Davila S, Shimizu C (2012) International Kawasaki Disease Genetics Consortium. Disruption of vascular homeostasis in patients with Kawasaki disease: involvement of vascular endothelial growth factor and angiopoietins. Arthritis Rheum 64(1):306–15

    CAS  PubMed  Google Scholar 

  37. Pinto FF, Laranjo S, Paramés F, Freitas I, Mota-Carmo M (2013) Long-term evaluation of endothelial function in Kawasaki disease patients. Cardiol Young 23(4):517–522

    Article  PubMed  Google Scholar 

  38. Yamakawa R, Ishii M, Sugimura T (1998) Coronary endothelial dysfunction after Kawasaki disease: evaluation by intracoronary injection of acetylcholine. J Am Coll Cardiol 31(5):1074–1080

    Article  CAS  PubMed  Google Scholar 

  39. Sato YZ, Molkara DP, Daniels LB et al (2013) Cardiovascular biomarkers in acute Kawasaki disease. Int J Cardiol 164(1):58–63

    Article  PubMed  Google Scholar 

  40. Higashi Y (2022) Roles of oxidative stress and inflammation in vascular endothelial dysfunction-related disease. Antioxidants (Basel) 11(10):1958

    Article  CAS  PubMed  Google Scholar 

  41. Steven S, Frenis K, Oelze M, Kalinovic S, Kuntic M et al (2019) Vascular inflammation and oxidative stress: major triggers for cardiovascular disease. Oxid Med Cell Longev 2019:7092151

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tsukahara H, Hiraoka M, Kobata R, Hata I, Ohshima Y et al (2000) Increased oxidative stress in rats with chronic nitric oxide depletion: measurement of urinary 8-hydroxy-2’-deoxyguanosine excretion. Redox Rep 5(1):23–28

    Article  CAS  PubMed  Google Scholar 

  43. Kong AS, Lai KS, Hee CW, Loh JY, Lim SHE, Sathiya M (2022) Oxidative stress parameters as biomarkers of cardiovascular disease towards the development and progression. Antioxidants (Basel) 11(6):1175

    Article  CAS  PubMed  Google Scholar 

  44. Lucantoni G, Pietraforte D, Matarrese P (2006) The red blood cell as a biosensor for monitoring oxidative imbalance in chronic obstructive pulmonary disease: an ex vivo and in vitro study. Antioxid Redox Signal 8(7–8):1171–1182

    Article  CAS  PubMed  Google Scholar 

  45. Del Principe D, Pietraforte D, Gambardella L et al (2017) Pathogenetic determinants in Kawasaki disease: the haematological point of view. J Cell Mol Med 21(4):632–639

    Article  PubMed  PubMed Central  Google Scholar 

  46. Straface E, Marchesi A, Gambardella L et al (2012) Does oxidative stress play a critical role in cardiovascular complications of Kawasaki disease? Antioxid Redox Signal 17(10):1441–1446

    Article  CAS  PubMed  Google Scholar 

  47. Yoshimura K, Tatsumi K, Iharada A (2009) Increased nitric oxide production by neutrophils in early stage of Kawasaki disease. Eur J Pediatr 168(9):1037–1041

    Article  CAS  PubMed  Google Scholar 

  48. Hu J, Qian W, Yu Z (2020) Increased neutrophil respiratory burst predicts the risk of coronary artery lesion in Kawasaki disease. Front Pediatr 8:391

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yahata T, Suzuki C, Hamaoka A, Fujii M, Hamaoka K (2011) Dynamics of reactive oxygen metabolites and biological antioxidant potential in the acute stage of Kawasaki disease. Circ J 75(10):2453–2459

    Article  CAS  PubMed  Google Scholar 

  50. Cheung YF, O K, Woo CW et al (2008) Oxidative stress in children late after Kawasaki disease: relationship with carotid atherosclerosis and stiffness. BMC Pediatr 8:20

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sekine K, Mochizuki H, Inoue Y et al (2012) Regulation of oxidative stress in patients with Kawasaki disease. Inflammation 35(3):952–958

    Article  CAS  PubMed  Google Scholar 

  52. Ishikawa T, Seki K (2018) The association between oxidative stress and endothelial dysfunction in early childhood patients with Kawasaki disease. BMC Cardiovasc Disord 18(1):30

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wang CL, Wu YT, Lee CJ et al (2002) Decreased nitric oxide production after intravenous immunoglobulin treatment in patients with Kawasaki disease. J Pediatr 141(4):560–565

    Article  CAS  PubMed  Google Scholar 

  54. Iizuka T, Oishi K, Sasaki M et al (1997) Nitric oxide and aneurysm formation in Kawasaki disease. Acta Paediatr 86(5):470–473

    Article  CAS  PubMed  Google Scholar 

  55. Tsukahara H, Kikuchi K, Matsuda M et al (1997) Endogenous nitric oxide production in Kawasaki disease. Scand J Clin Lab Invest 57(1):43–47

    Article  CAS  PubMed  Google Scholar 

  56. Medina-Leyte DJ, Zepeda-García O, Domínguez-Pérez M, González-Garrido A et al (2021) Endothelial dysfunction, inflammation and coronary artery disease: potential biomarkers and promising therapeutical approaches. Int J Mol Sci 22(8):3850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Clancy RM (2000) Circulating endothelial cells and vascular injury in systemic lupus erythematosus. Curr Rheumatol Rep 2(1):39–43

    Article  CAS  PubMed  Google Scholar 

  58. Grefte A, van der Giessen M, van Son W, The TH (1993) Circulating cytomegalovirus (CMV)-infected endothelial cells in patients with an active CMV infection. J Infect Dis 167(2):270–277

    Article  CAS  PubMed  Google Scholar 

  59. Mutin M, Canavy I, Blann A, Bory M et al (1999) Direct evidence of endothelial injury in acute myocardial infarction and unstable angina by demonstration of circulating endothelial cells. Blood 93(9):2951–2958

    Article  CAS  PubMed  Google Scholar 

  60. Werner N, Kosiol S, Schiegl T (2005) Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353(10):999–1007

    Article  CAS  PubMed  Google Scholar 

  61. Edwards N, Langford-Smith AWW, Wilkinson FL, Alexander MY (2018) Endothelial progenitor cells: new targets for therapeutics for inflammatory conditions with high cardiovascular risk. Front Med (Lausanne) 5:200

    Article  PubMed  Google Scholar 

  62. Nakatani K, Takeshita S, Tsujimoto H et al (2003) Circulating endothelial cells in Kawasaki disease. Clin Exp Immunol 131(3):536–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fabi M, Petrovic B, Andreozzi L et al (2022) Circulating endothelial cells: a new possible marker of endothelial damage in Kawasaki disease, multisystem inflammatory syndrome in children and acute SARS-CoV-2 infection. Int J Mol Sci 23(17):10106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kuroi A, Imanishi T, Suzuki H et al (2010) Clinical characteristics of patients with Kawasaki disease and levels of peripheral endothelial progenitor cells and blood monocyte subpopulations. Circ J 74(12):2720–2725

    Article  CAS  PubMed  Google Scholar 

  65. Xu MG, Men LN, Zhao CY et al (2010) The number and function of circulating endothelial progenitor cells in patients with Kawasaki disease. Eur J Pediatr 169(3):289–296

    Article  PubMed  Google Scholar 

  66. Farinacci M, Krahn T, Dinh W et al (2018) Circulating endothelial cells as biomarker for cardiovascular diseases. Res Pract Thromb Haemost 3(1):49–58

    Article  PubMed  PubMed Central  Google Scholar 

  67. Liu JF, Du ZD, Chen Z et al (2012) Endothelial progenitor cell down-regulation in a mouse model of Kawasaki disease. Chin Med J (Engl) 125(3):496–501

    PubMed  Google Scholar 

  68. Morishita T, Uzui H, Nakano A, Mitsuke Y, Geshi T, Ueda T, Lee JD (2012) Number of endothelial progenitor cells in peripheral artery disease as a marker of severity and association with pentraxin-3, malondialdehyde-modified low-density lipoprotein and membrane type-1 matrix metalloproteinase. J Atheroscler Thromb 19(2):149–158

    Article  CAS  PubMed  Google Scholar 

  69. Gao L, Fu S, Wang W, Xie C, Zhang Y, Gong F (2017) Notch4 signaling pathway in a Kawasaki disease mouse model induced by Lactobacillus casei cell wall extract. Exp Ther Med 3(6):3438–3442

    Article  Google Scholar 

  70. Lau WB, Ohashi K, Wang Y, Ogawa H, Murohara T et al (2017) Role of adipokines in cardiovascular disease. Circ J 81(7):920–928

    Article  CAS  PubMed  Google Scholar 

  71. Ouchi N (2016) Adipocytokines in cardiovascular and metabolic diseases. J Atheroscler Thromb 23(6):645–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Brezovec N, Perdan-Pirkmajer K, Čučnik S, Sodin-Šemrl S, Varga J, Lakota K (2021) Adiponectin deregulation in systemic autoimmune rheumatic diseases. Int J Mol Sci 22(8):4095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Neumann E, Hasseli R, Ohl S, Lange U, Frommer KW, Müller-Ladner U (2021) Adipokines and autoimmunity in inflammatory arthritis. Cells 10(2):216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Huang M, Dong QH, Jiang HY, Zhang JY, Shi XJ (2015) Serum adiponectin levels in children with Kawasaki disease. Zhongguo Dang Dai Er Ke Za Zhi 17:35–39

    CAS  PubMed  Google Scholar 

  75. Kemmotsu Y, Saji T, Kusunoki N, Tanaka N, Nishimura C et al (2012) (2012) Serum adipokine profiles in Kawasaki disease. Mod Rheumatol 22:66–72

    Article  CAS  PubMed  Google Scholar 

  76. Takeshita S, Takabayashi H, Yoshida N (2006) Circulating adiponectin levels in Kawasaki disease. Acta Paediatr 95:1312–1314

    Article  PubMed  Google Scholar 

  77. Cai X, Zhu Q, Wu T, Zhu B, Liu S et al (2020) Association of circulating resistin and adiponectin levels with Kawasaki disease: a meta-analysis. Exp Ther Med 19(2):1033–1041

    CAS  PubMed  Google Scholar 

  78. Almehed K, d’Elia HF, Bokarewa M, Carlsten H (2008) Role of resistin as a marker of inflammation in systemic lupus erythematosus. Arthritis Res Ther 10(1):R15

    Article  PubMed  PubMed Central  Google Scholar 

  79. Jamaluddin MS, Weakley SM, Yao Q, Chen C (2012) Resistin: functional roles and therapeutic considerations for cardiovascular disease. Br J Pharmacol 165(3):622–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nozue H, Imai H, Saitoh H, Aoki T, Ichikawa K, Kamoda T (2010) Serum resistin concentrations in children with Kawasaki disease. Inflamm Res 59(11):915–920

    Article  CAS  PubMed  Google Scholar 

  81. Praharaj DL, Rawat A, Gupta A, Arora K, Pilania RK et al (2022) Adipocytokine profile in children with Kawasaki disease at a mean follow-up period of 5.5 years: a study from North India. World J Clin Pediatr 11(4):360–368

    Article  PubMed  PubMed Central  Google Scholar 

  82. Fu SF, Yu DL, Lv DY, Chen FY (2014) Changes in serum levels of resistin and visfatin in pediatric patients with acute Kawasaki disease following intravenous immune globulin treatment. Zhongguo Dang Dai Er Ke Za Zhi 16(1):44–47

    CAS  PubMed  Google Scholar 

  83. Gao F, Si F, Feng S, Yi Q, Liu R (2016) Resistin enhances inflammatory cytokine production in coronary artery tissues by activating the NF-κB signaling. Biomed Res Int 2016:3296437

  84. Kim HJ, Choi EH, Kil HR (2014) Association between adipokines and coronary artery lesions in children with Kawasaki disease. J Korean Med Sci 29(10):1385–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang C, Chang L, Wang J, Xia L, Cao L et al (2023) Leptin and risk factors for atherosclerosis: a review. Medicine (Baltimore) 102(46):e36076

    CAS  PubMed  Google Scholar 

  86. Wallace AM, McMahon AD, Packard CJ, Kelly A, Shepherd J et al (2001) Plasma leptin and the risk of cardiovascular disease in the west of Scotland coronary prevention study (WOSCOPS). Circulation 104(25):3052–3056

    Article  CAS  PubMed  Google Scholar 

  87. Liu R, He B, Gao F, Liu Q, Yi Q (2012) Relationship between adipokines and coronary artery aneurysm in children with Kawasaki disease. Transl Res 160:131–136

    Article  CAS  PubMed  Google Scholar 

  88. Zhang XY, Yang TT, Hu XF, Wen Y, Fang F, Lu HL (2018) Circulating adipokines are associated with Kawasaki disease. Pediatr Rheumatol Online J 16(1):33

    Article  PubMed  PubMed Central  Google Scholar 

  89. Li Z, Han D, Jiang J, Chen J, Tian L, Yang Z (2017) Association of PECAM-1 gene polymorphisms with Kawasaki disease in Chinese children. Dis Markers 2017:2960502

  90. Jakob A, Schachinger E, Klau S, Hufnagel M, van der Natascha WG et al (2020) Evaluation of serum osteopontin levels as biomarkers for children with Kawasaki disease. Ann Cardiol Vasc Med 3(1):1035

    Google Scholar 

  91. Reisner A, Blackwell LS, Sayeed I, Myers HE, Wali B et al (2022) Osteopontin as a biomarker for COVID-19 severity and multisystem inflammatory syndrome in children: a pilot study. Exp Biol Med (Maywood) 247(2):145–151

    Article  CAS  PubMed  Google Scholar 

  92. Asano T, Ogawa S (2000) Expression of IL-8 in Kawasaki disease. Clin Exp Immunol 122(3):514–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Huang HC, Kuo HC, Yu HR, Huang HC, Chang JC (2021) Profile of urinary cytokines in Kawasaki disease: non-invasive markers. Diagnostics (Basel) 11(10):1857

    Article  CAS  PubMed  Google Scholar 

  94. Hoang LT, Shimizu C, Ling L, Naim AN, Khor CC (2014) Global gene expression profiling identifies new therapeutic targets in acute Kawasaki disease. Genome Med 6(11):541

    Article  PubMed  PubMed Central  Google Scholar 

  95. Chung HS, Kim HY, Kim HS, Lee HJ, Yuh JH (2004) Production of chemokines in Kawasaki disease, Henoch-Schönlein purpura and acute febrile illness. J Korean Med Sci 19(6):800–804

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kitoh T, Ohara T, Muto T, Okumura A, Baba R et al (2021) Increased pentraxin 3 levels correlate with IVIG responsiveness and coronary artery aneurysm formation in Kawasaki disease. Front Immunol 12:624802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ching LL, Nerurkar VR, Lim E, Shohet RV, Melish ME, Bratincsak A (2020) Elevated levels of pentraxin 3 correlate with neutrophilia and coronary artery dilation during acute Kawasaki disease. Front Pediatr 8:295

    Article  PubMed  PubMed Central  Google Scholar 

  98. An X, Lv H, Tian J, He X, Ling N (2016) Role of the PTEN/PI3K/VEGF pathway in the development of Kawasaki disease. Exp Ther Med 11(4):1318–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Maeno N, Takei S, Masuda K, Akaike H, Matsuo K (1998) Increased serum levels of vascular endothelial growth factor in Kawasaki disease. Pediatr Res 44(4):596–599

    Article  CAS  PubMed  Google Scholar 

  100. Yasukawa K, Terai M, Shulman ST, Toyozaki T, Yajima S (2002) Systemic production of vascular endothelial growth factor and fms-like tyrosine kinase-1 receptor in acute Kawasaki disease. Circulation 105(6):766–769

    Article  CAS  PubMed  Google Scholar 

  101. Terai M, Yasukawa K, Narumoto S, Tateno S, Oana S, Kohno Y (1999) Vascular endothelial growth factor in acute Kawasaki disease. Am J Cardiol 83(3):337–339

    Article  CAS  PubMed  Google Scholar 

  102. Huang J, Zhang S (2021) Overexpressed neuropilin-1 in endothelial cells promotes endothelial permeability through interaction with ANGPTL4 and VEGF in Kawasaki disease. Mediators Inflamm 2021:9914071

    Article  PubMed  PubMed Central  Google Scholar 

  103. Shimizu C, Jain S, Davila S, Hibberd ML, Lin KO, Molkara D (2011) Transforming growth factor-beta signaling pathway in patients with Kawasaki disease. Circ Cardiovasc Genet 4(1):16–25

    Article  CAS  PubMed  Google Scholar 

  104. Zandstra J, van de Geer A, Tanck MWT, van Stijn-Bringas Dimitriades D, Aarts CEM et al (2020) EUCLIDS Consortium, PERFORM Consortium and UK Kawasaki Disease Genetics Study Network. Biomarkers for the discrimination of acute Kawasaki disease from infections in childhood. Front Pediatr 8:355

    Article  PubMed  PubMed Central  Google Scholar 

  105. Yu X, Wu D, Song G (2022) Assessment of endothelial dysfunction in patients with Kawasaki disease: a meta-analysis Rev. Cardiovasc Med 23(8):260

    Google Scholar 

  106. Ma R, Zhang W, Wang T, He X, Huang Z (2014) Pentraxin 3, long expression in mononuclear cells of patients with acute coronary syndrome: correlation with C-reactive protein and matrix metalloproteinase-9 levels. J Int Med Res 42(3):677–683

    Article  CAS  PubMed  Google Scholar 

  107. Carrizzo A, Lenzi P, Procaccini C, Damato A, Biagioni F et al (2015) Pentraxin 3 induces vascular endothelial dysfunction through a P-selectin/matrix metalloproteinase-1 pathway. Circulation 131:1495–1505

    Article  CAS  PubMed  Google Scholar 

  108. Chen CY, Huang SH, Chien KJ, Lai TJ, Chang WH et al (2022) Reappraisal of VEGF in the pathogenesis of Kawasaki disease. Children (Basel) 9(9):1343

    PubMed  Google Scholar 

  109. Ohno T, Igarashi H, Inoue K, Akazawa K, Joho K, Hara T (2000) Serum vascular endothelial growth factor: a new predictive indicator for the occurrence of coronary artery lesions in Kawasaki disease. Eur J Pediatr 159(6):424–429

    Article  CAS  PubMed  Google Scholar 

  110. Takeshita S, Kawamura Y, Takabayashi H, Yoshida N, Nonoyama S (2005) Imbalance in the production between vascular endothelial growth factor and endostatin in Kawasaki disease. Clin Exp Immunol 139(3):575–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Singh A, Rawat A, Kaur A, Kaur A, Kumrah R et al (2022) Association of SNP (rs1042579) in thrombomodulin gene and plasma thrombomodulin level in North Indian children with Kawasaki disease. Mol Biol Rep 49(8):7399–7407

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

RK: data retrieval, compilation, and writing. TG: data retrieval and writing. AR: correction and editing of the manuscript. SS: review and approval of final manuscript. (Rajni Kumrah: RK; Taru Goyal: TG; Amit Rawat: AR; Surjit Singh: SS).

Corresponding author

Correspondence to Amit Rawat.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors provide consent for submission of manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumrah, R., Goyal, T., Rawat, A. et al. Markers of Endothelial Dysfunction in Kawasaki Disease: An Update. Clinic Rev Allerg Immunol 66, 99–111 (2024). https://doi.org/10.1007/s12016-024-08985-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-024-08985-5

Keywords

Navigation