Skip to main content

Advertisement

Log in

Diagnostic Modalities in Primary Immunodeficiency

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

As the field of inborn errors of immunity expands, providers continually update and fine-tune their diagnostic approach and selection of testing modalities to increase diagnostic accuracy. Here, we first describe a mechanistic consideration of laboratory testing, highlighting both benefits and drawbacks of currently clinically available testing modalities. Next, we provide methods in evaluation of patients presenting with concern for inborn errors of immunity as defined by the International Union of Immunological Societies 2019 phenotypic categories: primary antibody deficiencies, cellular and humoral immune deficiency, disorders of the innate immune system, and syndrome-associated and primary immune regulation disorders (PIRDs). Using the suggested approach in this paper as a roadmap highlights the importance of thorough history taking and physical examination as the foundation to guide further diagnostic tests. This is followed by enumeration and functional testing. Finally, to determine the underlying molecular etiology-specific genetic panels, chromosomal microarrays, and broad genetic testing (whole exome sequencing or whole genome sequencing) are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Material

N/A.

Code Availability

N/A.

References

  1. Tangye SG, Al-Herz W, Bousfiha A et al (2020) Human inborn errors of immunity: 2019 update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 40:24–64

    Article  Google Scholar 

  2. Bacharier LB, Broide DH, Burks AW, Hershey GK, Holgate ST, O'Hehir E, Peebles RS, editors (2020) Middleton's Allergy: Principles and Practice. Elsevier 2:1183–91

  3. Darwish IA (2006) Immunoassay methods and their applications in pharmaceutical analysis: basic methodology and recent advances. Int J Biomed Sci 2:217–235

    CAS  Google Scholar 

  4. McKinnon KM (2018) Flow cytometry: an overview. Curr Protoc Immunol 120(1):5–1

  5. Heimall JR, Hagin D, Hajjar J et al (2018) Use of genetic testing for primary immunodeficiency patients. J Clin Immunol 38:320–329

    Article  CAS  Google Scholar 

  6. Fried AJ, Bonilla FA (2009) Pathogenesis, diagnosis, and management of primary antibody deficiencies and infections. Clin Microbiol Rev 22:396–414

    Article  CAS  Google Scholar 

  7. Wood P (2009) Primary antibody deficiency syndromes. Ann Clin Biochem 46:99–108

    Article  CAS  Google Scholar 

  8. Vetrie D, Vorechovsky I, Sideras P et al (1993) The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature 361:226–233

    Article  CAS  Google Scholar 

  9. Durandy A, Taubenheim N, Peron S, Fischer A (2007) Pathophysiology of B-cell intrinsic immunoglobulin class switch recombination deficiencies. Adv Immunol 94:275–306

    Article  CAS  Google Scholar 

  10. Warnatz K, Schlesier M (2008) Flowcytometric phenotyping of common variable immunodeficiency. Cytometry B Clin Cytom 74:261–271

    Article  Google Scholar 

  11. Smith LL, Buckley R, Lugar P (2014) Diagnostic immunization with bacteriophage ΦX 174 in patients with common variable immunodeficiency/hypogammaglobulinemia. Front Immunol 5:410. https://doi.org/10.3389/fimmu.2014.00410

    Article  CAS  Google Scholar 

  12. Abolhassani H, Hammarström L, Cunningham-Rundles C (2020) Current genetic landscape in common variable immune deficiency. Blood 135(9):656–667. https://doi.org/10.1182/blood.2019000929

    Article  Google Scholar 

  13. Loomba R, Shah PH, Anderson RH, Arora Y (2016) Radiologic considerations in heterotaxy: the need for detailed anatomic evaluation. Cureus 8(1):e470. https://doi.org/10.7759/cureus.470

    Article  Google Scholar 

  14. de Porto AP, Lammers AJ, Bennink RJ, ten Berge IJ, Speelman P, Hoekstra JB (2010) Assessment of splenic function. Eur J Clin Microbiol Infect Dis 29(12):1465–1473

    Article  Google Scholar 

  15. Angay O, Friedrich M, Pinnecker J, Hintzsche H, Stopper H, Hempel K, Heinze KG (2018) Image-based modeling and scoring of Howell-Jolly Bodies in human erythrocytes. Cytometry. Part A: J Int Soc Anal Cytol 93(3)305–313. https://doi.org/10.1002/cyto.a.23123

  16. Davies JM, Lewis MP, Wimperis J, Rafi I, Ladhani S, Bolton-Maggs PH, British Committee for Standards in Haematology (2011) Review of guidelines for the prevention and treatment of infection in patients with an absent or dysfunctional spleen: prepared on behalf of the British Committee for Standards in Haematology by a working party of the Haemato-Oncology task force. Br J Haematol 155(3):308–317. https://doi.org/10.1111/j.1365-2141.2011.08843.x

    Article  CAS  Google Scholar 

  17. van der Burg M, Mahlaoui N, Gaspar HB, Pai SY (2019) Universal newborn screening for severe combined immunodeficiency (SCID). Front Pediatr 7:373

    Article  Google Scholar 

  18. Corneo B, Moshous D, Gungor T et al (2001) Identical mutations in RAG1 or RAG2 genes leading to defective V(D)J recombinase activity can cause either T-B-severe combined immune deficiency or Omenn syndrome. Blood 97:2772–2776

    Article  CAS  Google Scholar 

  19. Bonilla FA, Khan DA, Ballas ZK et al (2015) Practice parameter for the diagnosis and management of primary immunodeficiency. J Allergy Clin Immunol 136(1186–205):e1-78

    Google Scholar 

  20. Brodszki N, Frazer-Abel A, Grumach AS et al (2020) European Society for Immunodeficiencies (ESID) and European Reference Network on Rare Primary Immunodeficiency, Autoinflammatory and Autoimmune Diseases (ERN RITA) Complement guideline: Deficiencies, diagnosis, and management. J Clin Immunol 40(4):576–591

  21. Newburger PE, Dale DC (2013) Evaluation and management of patients with isolated neutropenia. Semin Hematol 50:198–206

    Article  Google Scholar 

  22. Jirapongsananuruk O, Malech HL, Kuhns DB et al (2003) Diagnostic paradigm for evaluation of male patients with chronic granulomatous disease, based on the dihydrorhodamine 123 assay. J Allergy Clin Immunol 111:374–379

    Article  CAS  Google Scholar 

  23. Ley K, Hoffman HM, Kubes P et al (2018) Neutrophils: new insights and open questions. Sci Immunol 3

  24. Bustamante J, Boisson-Dupuis S, Abel L, Casanova JL (2014) Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-gamma immunity. Semin Immunol 26:454–470

    Article  CAS  Google Scholar 

  25. Cook DN, Pisetsky DS, Schwartz DA (2004) Toll-like receptors in the pathogenesis of human disease. Nat Immunol 5:975–979

    Article  CAS  Google Scholar 

  26. McDonald D Toll-like receptors: roles in disease and therapy. UpToDate

  27. Deering RP, Orange JS (2006) Development of a clinical assay to evaluate toll-like receptor function. Clin Vaccine Immunol 13:68–76

    Article  CAS  Google Scholar 

  28. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  CAS  Google Scholar 

  29. Maglione PJ, Simchoni N, Cunningham-Rundles C (2015) Toll-like receptor signaling in primary immune deficiencies. Ann N Y Acad Sci 1356:1–21

    Article  CAS  Google Scholar 

  30. Vargas-Hernandez A, Forbes LR (2019) The impact of immunodeficiency on nk cell maturation and function. Curr Allergy Asthma Rep 19:2

    Article  Google Scholar 

  31. Orange JS (2013) Natural killer cell deficiency. J Allergy Clin Immunol 132:515–525

    Article  CAS  Google Scholar 

  32. McDonald-McGinn DM, Sullivan KE, Marino B et al (2015) 22q11.2 deletion syndrome. Nat Rev Dis Primers 1:15071

  33. Bousfiha A, Jeddane L, Picard C et al (2020) Human inborn errors of immunity: 2019 update of the IUIS Phenotypical Classification. J Clin Immunol 40:66–81

    Article  Google Scholar 

  34. Forbes LR, Eckstein OS, Gulati N, Peckham-Gregory EC, Ozuah NW, Lubega J, El-Mallawany NK, Agrusa JE, Poli MC, Vogel TP, Chaimowitz NS, Rider NL, Mace EM, Orange JS, Caldwell JW, Aldave-Becerra JC, Jolles S, Saettini F, Chong HJ, Stray-Pedersen A, Chinn IK (2021) Genetic errors of immunity distinguish pediatric nonmalignant lymphoproliferative disorders. J Allergy Clin Immunol S0091–6749(21)01135–0. Advance online publication. https://doi.org/10.1016/j.jaci.2021.07.015

  35. Seidel MG (2014) Autoimmune and other cytopenias in primary immunodeficiencies: Pathomechanisms, novel differential diagnoses, and treatment. Blood 124(15):2337–2344. https://doi.org/10.1182/blood-2014-06-583260

    Article  CAS  Google Scholar 

  36. Forbes LR, Vogel TP, Cooper MA, Castro-Wagner J, Schussler E, Weinacht KG, Plant AS, Su HC, Allenspach EJ, Slatter M, Abinun M, Lilic D, Cunningham-Rundles C, Eckstein O, Olbrich P, Guillerman RP, Patel NC, Demirdag YY, Zerbe C, Leiding JW (2018) Jakinibs for the treatment of immune dysregulation in patients with gain-of-function signal transducer and activator of transcription 1 (STAT1) or STAT3 mutations. Journal of Allergy and Clinical Immunology 142(5):1665–1669. https://doi.org/10.1016/j.jaci.2018.07.020

    Article  CAS  Google Scholar 

  37. Bride KL, Vincent T, Smith-Whitley K, Lambert MP, Bleesing JJ, Seif AE, Manno CS, Casper J, Grupp SA, Teachey DT (2016) Sirolimus is effective in relapsed/refractory autoimmune cytopenias: results of a prospective multi-institutional trial. Blood 127(1):17–28. https://doi.org/10.1182/blood-2015-07-657981

    Article  CAS  Google Scholar 

  38. Egg D, Rump IC, Mitsuiki N, Rojas-Restrepo J, Maccari et al (2021) Therapeutic options for CTLA-4 insufficiency. Journal of Allergy and Clinical Immunology. https://doi.org/10.1016/j.jaci.2021.04.039

    Article  Google Scholar 

  39. Chinn IK, Eckstein OS, Peckham-Gregory EC, Goldberg BR, Forbes LR, Nicholas SK, Mace EM, Vogel TP, Abhyankar HA, Diaz MI, Heslop HE, Krance RA, Martinez CA, Nguyen TC, Bashir DA, Goldman JR, Stray-Pedersen A, Pedroza LA, Poli MC, Aldave-Becerra JC, Allen CE (2018) Genetic and mechanistic diversity in pediatric hemophagocytic lymphohistiocytosis. Blood 132(1):89–100. https://doi.org/10.1182/blood-2017-11-814244

    Article  CAS  Google Scholar 

  40. Wada T, Kanegane H, Ohta K, Katoh F, Imamura T, Nakazawa Y, Miyashita R, Hara J, Hamamoto K, Yang X, Filipovich AH, Marsh RA, Yachie A (2014) Sustained elevation of serum interleukin-18 and its association with hemophagocytic lymphohistiocytosis in XIAP deficiency. Cytokine 65(1):74–78. https://doi.org/10.1016/j.cyto.2013.09.007

    Article  CAS  Google Scholar 

  41. Henter JI, Horne A, Aricó M, Egeler RM, Filipovich AH, Imashuku S, Ladisch S, McClain K, Webb D, Winiarski J, Janka G (2007) HLH-2004: diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer 48(2):124–131. https://doi.org/10.1002/pbc.21039

    Article  Google Scholar 

  42. Puel A, Cypowyj S, Maródi L, Abel L, Picard C, Casanova JL (2012) Inborn errors of human IL-17 immunity underlie chronic mucocutaneous candidiasis. Curr Opin Allergy Clin Immunol 12(6):616–622. https://doi.org/10.1097/ACI.0b013e328358cc0b

    Article  CAS  Google Scholar 

  43. Nigrovic PA, Lee PY, Hoffman HM (2020) Monogenic autoinflammatory disorders: conceptual overview, phenotype, and clinical approach. J Allergy Clin Immunol 146(5):925–937. https://doi.org/10.1016/j.jaci.2020.08.017

    Article  CAS  Google Scholar 

  44. Wilson SP, Cassel SL (2010) Inflammasome-mediated autoinflammatory disorders. Postgrad Med 122(5):125–133. https://doi.org/10.3810/pgm.2010.09.2209

    Article  Google Scholar 

  45. Volpi S, Picco P, Caorsi R, Candotti F, Gattorno M (2016) Type I interferonopathies in pediatric rheumatology. Pediatr Rheumatol Online J 14(1):35. https://doi.org/10.1186/s12969-016-0094-4

    Article  Google Scholar 

Download references

Funding

Jeffrey Modell Foundation Dr. Forbes Satter.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Raymond wrote the paper, Dr. Leiding made edits and contributed to the content as an expert, and Dr. Forbes Satter wrote, edited, and contributed to the content as an expert.

Corresponding author

Correspondence to Lisa R. Forbes-Satter.

Ethics declarations

Ethics Approval

N/A

Consent to Participate

N/A

Consent for Publication

N/A

Competing Interests

Dr. Forbes Satter: consulting and advisory board for Horizon, CSL Behring, Takeda, and ADMA. Dr. Leiding: Advisory Board: CSL-Behring, Horizon Therapeutics, Orchard Therapeutics; Consultant: Pharming; Research Grant: Prometic, Horizon Pharma; Speaker: Actimmune, CSL-Behring, Horizon Therapeutics.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raymond, L.S., Leiding, J. & Forbes-Satter, L.R. Diagnostic Modalities in Primary Immunodeficiency. Clinic Rev Allerg Immunol 63, 90–98 (2022). https://doi.org/10.1007/s12016-022-08933-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-022-08933-1

Keywords

Navigation