Skip to main content

Advertisement

Log in

B Cell Aberrance in Lupus: the Ringleader and the Solution

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease with high heterogeneity but the common characterization of numerous autoantibodies and systemic inflammation which lead to the damage of multiple organs. Aberrance of B cells plays a pivotal role in the immunopathogenesis of SLE via both antibody-dependent and antibody-independent manners. Escape of autoreactive B cells from the central and peripheral tolerance checkpoints, over-activation of B cells and their excessive cytokines release which drive T cells and dendritic cells stimulation, and dysregulated surface molecules, as well as intracellular signal pathways involved in B cell biology, are all contributing to B cell aberrance and participating in the pathogenesis of SLE. Based on that rationale, targeting aberrance of B cells and relevant molecules and pathways is expected to be a promising strategy for lupus control. Multiple approaches targeting B cells through different mechanisms have been attempted, including B-cell depletion via monoclonal antibodies against B-cell-specific molecules, blockade of B-cell survival and activation factors, suppressing T-B crosstalk by interrupting costimulatory molecules and inhibiting intracellular activation signaling cascade by targeting pathway molecules in B cells. Though most attempts ended in failure, the efficacy of B-cell targeting has been encouraged by the FDA approval of belimumab that blocks B cell-activating factor (BAFF) and the recommended use of anti-CD20 as a remedial therapy in refractory lupus. Still, quantities of clinical trials targeting B cells or relevant molecules are ongoing and some of them have displayed promising preliminary results. Additionally, advances in multi-omics studies help deepen our understandings of B cell biology in lupus and may promote the discovery of novel potential therapeutic targets. The combination of real-world data with basic research achievements may pave the road to conquering lupus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yap DY, Lai KN (2015) Pathogenesis of renal disease in systemic lupus erythematosus–the role of autoantibodies and lymphocytes subset abnormalities. Int J Mol Sci 16(4):7917–7931. https://doi.org/10.3390/ijms16047917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100(1):157–168. https://doi.org/10.1016/s0092-8674(00)81692-x

    Article  CAS  PubMed  Google Scholar 

  3. Melchers F (2005) The pre-B-cell receptor: selector of fitting immunoglobulin heavy chains for the B-cell repertoire. Nat Rev Immunol 5(7):578–584. https://doi.org/10.1038/nri1649

    Article  CAS  PubMed  Google Scholar 

  4. Sabatino JJ, Pröbstel A-K, Zamvil SS (2019) B cells in autoimmune and neurodegenerative central nervous system diseases. Nat Rev Neurosci 20(12):728–745. https://doi.org/10.1038/s41583-019-0233-2

    Article  CAS  PubMed  Google Scholar 

  5. Goodnow CC, Adelstein S, Basten A (1990) The need for central and peripheral tolerance in the B cell repertoire. Science (New York, NY) 248 (4961):1373-1379. https://doi.org/10.1126/science.2356469

  6. Manjarrez-Orduño N, Quách TD, Sanz I (2009) B cells and immunological tolerance. J Invest Dermatol 129(2):278–288. https://doi.org/10.1038/jid.2008.240

    Article  CAS  PubMed  Google Scholar 

  7. Hwang JK, Alt FW, Yeap LS (2015) Related Mechanisms of Antibody Somatic Hypermutation and Class Switch Recombination. Microbiology spectrum 3 (1):Mdna3–0037–2014. https://doi.org/10.1128/microbiolspec.MDNA3-0037-2014

  8. Wu BX, Zhao LD, Zhang X (2019) CXCR4 and CXCR5 orchestrate dynamic germinal center reactions and may contribute to the pathogenesis of systemic lupus erythematosus. Cell Mol Immunol 16(8):724–726. https://doi.org/10.1038/s41423-019-0244-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nutt SL, Hodgkin PD, Tarlinton DM, Corcoran LM (2015) The generation of antibody-secreting plasma cells. Nat Rev Immunol 15(3):160–171. https://doi.org/10.1038/nri3795

    Article  CAS  PubMed  Google Scholar 

  10. Radbruch A, Muehlinghaus G, Luger EO, Inamine A, Smith KG, Dörner T, Hiepe F (2006) Competence and competition: the challenge of becoming a long-lived plasma cell. Nat Rev Immunol 6(10):741–750. https://doi.org/10.1038/nri1886

    Article  CAS  PubMed  Google Scholar 

  11. Malkiel S, Barlev AN, Atisha-Fregoso Y, Suurmond J, Diamond B (2018) Plasma cell differentiation pathways in systemic lupus erythematosus. Frontiers in immunology 9:427. https://doi.org/10.3389/fimmu.2018.00427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schatz DG, Oettinger MA, Schlissel MS (1992) V(D)J recombination: molecular biology and regulation. Annu Rev Immunol 10:359–383. https://doi.org/10.1146/annurev.iy.10.040192.002043

    Article  CAS  PubMed  Google Scholar 

  13. Shlomchik MJ (2008) Sites and stages of autoreactive B cell activation and regulation. Immunity 28(1):18–28. https://doi.org/10.1016/j.immuni.2007.12.004

    Article  CAS  PubMed  Google Scholar 

  14. von Boehmer H, Melchers F (2010) Checkpoints in lymphocyte development and autoimmune disease. Nat Immunol 11(1):14–20. https://doi.org/10.1038/ni.1794

    Article  CAS  Google Scholar 

  15. Halverson R, Torres RM, Pelanda R (2004) Receptor editing is the main mechanism of B cell tolerance toward membrane antigens. Nat Immunol 5(6):645–650. https://doi.org/10.1038/ni1076

    Article  CAS  PubMed  Google Scholar 

  16. Zouali M (2014) Transcriptional and metabolic pre-B cell receptor-mediated checkpoints: implications for autoimmune diseases. Mol Immunol 62(2):315–320. https://doi.org/10.1016/j.molimm.2014.01.009

    Article  CAS  PubMed  Google Scholar 

  17. Goodnow CC, Crosbie J, Adelstein S, Lavoie TB, Smith-Gill SJ, Brink RA, Pritchard-Briscoe H, Wotherspoon JS, Loblay RH, Raphael K et al (1988) Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature 334(6184):676–682. https://doi.org/10.1038/334676a0

    Article  CAS  PubMed  Google Scholar 

  18. Goodnow CC, Brink R, Adams E (1991) Breakdown of self-tolerance in anergic B lymphocytes. Nature 352(6335):532–536. https://doi.org/10.1038/352532a0

    Article  CAS  PubMed  Google Scholar 

  19. Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ (2009) Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev 229(1):152–172. https://doi.org/10.1111/j.1600-065X.2009.00782.x

    Article  CAS  Google Scholar 

  20. Bouaziz JD, Yanaba K, Venturi GM, Wang Y, Tisch RM, Poe JC, Tedder TF (2007) Therapeutic B cell depletion impairs adaptive and autoreactive CD4+ T cell activation in mice. Proc Natl Acad Sci USA 104(52):20878–20883. https://doi.org/10.1073/pnas.0709205105

    Article  PubMed  PubMed Central  Google Scholar 

  21. Haynes NM, Allen CD, Lesley R, Ansel KM, Killeen N, Cyster JG (2007) Role of CXCR5 and CCR7 in follicular Th cell positioning and appearance of a programmed cell death gene-1high germinal center-associated subpopulation. Journal of immunology (Baltimore, Md : 1950) 179 (8):5099–5108. doi:https://doi.org/10.4049/jimmunol.179.8.5099

  22. Nurieva RI, Chung Y, Hwang D, Yang XO, Kang HS, Ma L, Wang YH, Watowich SS, Jetten AM, Tian Q, Dong C (2008) Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 29(1):138–149. https://doi.org/10.1016/j.immuni.2008.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tumanov A, Kuprash D, Lagarkova M, Grivennikov S, Abe K, Shakhov A, Drutskaya L, Stewart C, Chervonsky A, Nedospasov S (2002) Distinct role of surface lymphotoxin expressed by B cells in the organization of secondary lymphoid tissues. Immunity 17(3):239–250. https://doi.org/10.1016/s1074-7613(02)00397-7

    Article  CAS  PubMed  Google Scholar 

  24. Jackson SW, Jacobs HM, Arkatkar T, Dam EM, Scharping NE, Kolhatkar NS, Hou B, Buckner JH, Rawlings DJ (2016) B cell IFN-γ receptor signaling promotes autoimmune germinal centers via cell-intrinsic induction of BCL-6. J Exp Med 213(5):733–750. https://doi.org/10.1084/jem.20151724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Meffre E (2011) The establishment of early B cell tolerance in humans: lessons from primary immunodeficiency diseases. Ann N Y Acad Sci 1246:1–10. https://doi.org/10.1111/j.1749-6632.2011.06347.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lian ZX, Kita H, Okada T, Hsu T, Shultz LD, Dorshkind K, Ansari AA, Ikehara S, Naiki M, Gershwin ME (2002) Increased frequency of pre-pro B cells in the bone marrow of New Zealand Black (NZB) mice: implications for a developmental block in B cell differentiation. Dev Immunol 9(1):35–45. https://doi.org/10.1080/1044667021000003961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bouillet P, Metcalf D, Huang DC, Tarlinton DM, Kay TW, Köntgen F, Adams JM, Strasser A (1999) Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science (New York, NY) 286 (5445):1735-1738. https://doi.org/10.1126/science.286.5445.1735

  28. Tsuiji M, Yurasov S, Velinzon K, Thomas S, Nussenzweig MC, Wardemann H (2006) A checkpoint for autoreactivity in human IgM+ memory B cell development. J Exp Med 203(2):393–400. https://doi.org/10.1084/jem.20052033

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC (2003) Predominant autoantibody production by early human B cell precursors. Science (New York, NY) 301 (5638):1374-1377. https://doi.org/10.1126/science.1086907

  30. Girschick HJ, Grammer AC, Nanki T, Vazquez E, Lipsky PE (2002) Expression of recombination activating genes 1 and 2 in peripheral B cells of patients with systemic lupus erythematosus. Arthritis Rheum 46(5):1255–1263. https://doi.org/10.1002/art.10264

    Article  CAS  PubMed  Google Scholar 

  31. Brink R, Phan TG (2018) Self-reactive B cells in the germinal center reaction. Annu Rev Immunol 36:339–357. https://doi.org/10.1146/annurev-immunol-051116-052510

    Article  CAS  PubMed  Google Scholar 

  32. Sinai P, Dozmorov IM, Song R, Schwartzberg PL, Wakeland EK, Wülfing C (2014) T/B-cell interactions are more transient in response to weak stimuli in SLE-prone mice. Eur J Immunol 44(12):3522–3531. https://doi.org/10.1002/eji.201444602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Davis DM (2009) Mechanisms and functions for the duration of intercellular contacts made by lymphocytes. Nat Rev Immunol 9(8):543–555. https://doi.org/10.1038/nri2602

    Article  CAS  PubMed  Google Scholar 

  34. Tipton CM, Fucile CF, Darce J, Chida A, Ichikawa T, Gregoretti I, Schieferl S, Hom J, Jenks S, Feldman RJ, Mehr R, Wei C, Lee FE, Cheung WC, Rosenberg AF, Sanz I (2015) Diversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosus. Nat Immunol 16(7):755–765. https://doi.org/10.1038/ni.3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. William J, Euler C, Christensen S, Shlomchik MJ (2002) Evolution of autoantibody responses via somatic hypermutation outside of germinal centers. Science (New York, NY) 297 (5589):2066-2070. https://doi.org/10.1126/science.1073924

  36. Butt D, Chan TD, Bourne K, Hermes JR, Nguyen A, Statham A, O’Reilly LA, Strasser A, Price S, Schofield P, Christ D, Basten A, Ma CS, Tangye SG, Phan TG, Rao VK, Brink R (2015) FAS inactivation releases unconventional germinal center B cells that escape antigen control and drive IgE and autoantibody production. Immunity 42(5):890–902. https://doi.org/10.1016/j.immuni.2015.04.010

    Article  CAS  PubMed  Google Scholar 

  37. Cappione AJ, Pugh-Bernard AE, Anolik JH, Sanz I (2004) Lupus IgG VH4.34 antibodies bind to a 220-kDa glycoform of CD45/B220 on the surface of human B lymphocytes. Journal of immunology (Baltimore, Md : 1950) 172 (7):4298–4307. https://doi.org/10.4049/jimmunol.172.7.4298

  38. Wehr C, Eibel H, Masilamani M, Illges H, Schlesier M, Peter HH, Warnatz K (2004) A new CD21low B cell population in the peripheral blood of patients with SLE. Clinical immunology (Orlando, Fla) 113 (2):161-171. https://doi.org/10.1016/j.clim.2004.05.010

  39. Sims GP, Ettinger R, Shirota Y, Yarboro CH, Illei GG, Lipsky PE (2005) Identification and characterization of circulating human transitional B cells. Blood 105(11):4390–4398. https://doi.org/10.1182/blood-2004-11-4284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gao N, Dresel J, Eckstein V, Gellert R, Störch H, Venigalla RK, Schwenger V, Max R, Blank N, Lorenz HM, Tretter T (2014) Impaired suppressive capacity of activation-induced regulatory B cells in systemic lupus erythematosus. Arthritis & rheumatology (Hoboken, NJ) 66 (10):2849-2861. https://doi.org/10.1002/art.38742

  41. Folzenlogen D, Hofer MF, Leung DY, Freed JH, Newell MK (1997) Analysis of CD80 and CD86 expression on peripheral blood B lymphocytes reveals increased expression of CD86 in lupus patients. Clin Immunol Immunopathol 83(3):199–204. https://doi.org/10.1006/clin.1997.4353

    Article  CAS  PubMed  Google Scholar 

  42. Grammer AC, Slota R, Fischer R, Gur H, Girschick H, Yarboro C, Illei GG, Lipsky PE (2003) Abnormal germinal center reactions in systemic lupus erythematosus demonstrated by blockade of CD154-CD40 interactions. J Clin Investig 112(10):1506–1520. https://doi.org/10.1172/jci19301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rahman A, Isenberg DA (2008) Systemic lupus erythematosus. N Engl J Med 358(9):929–939. https://doi.org/10.1056/NEJMra071297

    Article  CAS  PubMed  Google Scholar 

  44. Furie R, Stohl W, Ginzler EM, Becker M, Mishra N, Chatham W, Merrill JT, Weinstein A, McCune WJ, Zhong J, Cai W, Freimuth W (2008) Biologic activity and safety of belimumab, a neutralizing anti-B-lymphocyte stimulator (BLyS) monoclonal antibody: a phase I trial in patients with systemic lupus erythematosus. Arthritis Res Ther 10(5):R109. https://doi.org/10.1186/ar2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Moore PA, Belvedere O, Orr A, Pieri K, LaFleur DW, Feng P, Soppet D, Charters M, Gentz R, Parmelee D, Li Y, Galperina O, Giri J, Roschke V, Nardelli B, Carrell J, Sosnovtseva S, Greenfield W, Ruben SM, Olsen HS, Fikes J, Hilbert DM (1999) BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science (New York, NY) 285 (5425):260-263. https://doi.org/10.1126/science.285.5425.260

  46. Gross JA, Johnston J, Mudri S, Enselman R, Dillon SR, Madden K, Xu W, Parrish-Novak J, Foster D, Lofton-Day C, Moore M, Littau A, Grossman A, Haugen H, Foley K, Blumberg H, Harrison K, Kindsvogel W, Clegg CH (2000) TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature 404(6781):995–999. https://doi.org/10.1038/35010115

    Article  CAS  PubMed  Google Scholar 

  47. Hsu BL, Harless SM, Lindsley RC, Hilbert DM, Cancro MP (2002) Cutting edge: BLyS enables survival of transitional and mature B cells through distinct mediators. Journal of immunology (Baltimore, Md : 1950) 168 (12):5993–5996. https://doi.org/10.4049/jimmunol.168.12.5993

  48. Wallweber HJ, Compaan DM, Starovasnik MA, Hymowitz SG (2004) The crystal structure of a proliferation-inducing ligand, APRIL. J Mol Biol 343(2):283–290. https://doi.org/10.1016/j.jmb.2004.08.040

    Article  CAS  PubMed  Google Scholar 

  49. Belnoue E, Pihlgren M, McGaha TL, Tougne C, Rochat AF, Bossen C, Schneider P, Huard B, Lambert PH, Siegrist CA (2008) APRIL is critical for plasmablast survival in the bone marrow and poorly expressed by early-life bone marrow stromal cells. Blood 111(5):2755–2764. https://doi.org/10.1182/blood-2007-09-110858

    Article  CAS  PubMed  Google Scholar 

  50. Craxton A, Draves KE, Gruppi A, Clark EA (2005) BAFF regulates B cell survival by downregulating the BH3-only family member Bim via the ERK pathway. J Exp Med 202(10):1363–1374. https://doi.org/10.1084/jem.20051283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kayagaki N, Yan M, Seshasayee D, Wang H, Lee W, French DM, Grewal IS, Cochran AG, Gordon NC, Yin J, Starovasnik MA, Dixit VM (2002) BAFF/BLyS receptor 3 binds the B cell survival factor BAFF ligand through a discrete surface loop and promotes processing of NF-kappaB2. Immunity 17(4):515–524. https://doi.org/10.1016/s1074-7613(02)00425-9

    Article  CAS  PubMed  Google Scholar 

  52. Cheema GS, Roschke V, Hilbert DM, Stohl W (2001) Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum 44(6):1313–1319. https://doi.org/10.1002/1529-0131(200106)44:6%3c1313::Aid-art223%3e3.0.Co;2-s

    Article  CAS  PubMed  Google Scholar 

  53. Stohl W, Metyas S, Tan SM, Cheema GS, Oamar B, Xu D, Roschke V, Wu Y, Baker KP, Hilbert DM (2003) B lymphocyte stimulator overexpression in patients with systemic lupus erythematosus: longitudinal observations. Arthritis Rheum 48(12):3475–3486. https://doi.org/10.1002/art.11354

    Article  PubMed  Google Scholar 

  54. Stohl W, Merrill JT, Looney RJ, Buyon J, Wallace DJ, Weisman MH, Ginzler EM, Cooke B, Holloway D, Kaliyaperumal A, Kuchimanchi KR, Cheah TC, Rasmussen E, Ferbas J, Belouski SS, Tsuji W, Zack DJ (2015) Treatment of systemic lupus erythematosus patients with the BAFF antagonist “peptibody” blisibimod (AMG 623/A-623): results from randomized, double-blind phase 1a and phase 1b trials. Arthritis Res Ther 17(1):215. https://doi.org/10.1186/s13075-015-0741-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lesley R, Kelly LM, Xu Y, Cyster JG (2006) Naive CD4 T cells constitutively express CD40L and augment autoreactive B cell survival. Proceedings of the National Academy of Sciences of the United States of America 103(28):10717–10722. https://doi.org/10.1073/pnas.0601539103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Aloui C, Prigent A, Sut C, Tariket S, Hamzeh-Cognasse H, Pozzetto B, Richard Y, Cognasse F, Laradi S, Garraud O (2014) The signaling role of CD40 ligand in platelet biology and in platelet component transfusion. Int J Mol Sci 15(12):22342–22364. https://doi.org/10.3390/ijms151222342

    Article  CAS  PubMed  Google Scholar 

  57. Ström L, Laurencikiené J, Miskiniené A, Severinson E (1999) Characterization of CD40-dependent immunoglobulin class switching. Scand J Immunol 49(5):523–532. https://doi.org/10.1046/j.1365-3083.1999.00539.x

    Article  PubMed  Google Scholar 

  58. Karnell JL, Rieder SA, Ettinger R, Kolbeck R (2019) Targeting the CD40-CD40L pathway in autoimmune diseases: humoral immunity and beyond. Adv Drug Deliv Rev 141:92–103. https://doi.org/10.1016/j.addr.2018.12.005

    Article  CAS  Google Scholar 

  59. Voynova E, Mahmoud T, Woods LT, Weisman GA, Ettinger R, Braley-Mullen H (2018) Requirement for CD40/CD40L interactions for development of autoimmunity differs depending on specific checkpoint and costimulatory pathways. ImmunoHorizons 2(1):54–66. https://doi.org/10.4049/immunohorizons.1700069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lederman S, Yellin MJ, Cleary AM, Pernis A, Inghirami G, Cohn LE, Covey LR, Lee JJ, Rothman P, Chess L (1994) T-BAM/CD40-L on helper T lymphocytes augments lymphokine-induced B cell Ig isotype switch recombination and rescues B cells from programmed cell death. Journal of immunology (Baltimore, Md : 1950) 152 (5):2163–2171

  61. Zhang W, Shi Q, Xu X, Chen H, Lin W, Zhang F, Zeng X, Zhang X, Ba D, He W (2012) Aberrant CD40-induced NF-κB activation in human lupus B lymphocytes. PLoS ONE 7(8):e41644. https://doi.org/10.1371/journal.pone.0041644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Higuchi T, Aiba Y, Nomura T, Matsuda J, Mochida K, Suzuki M, Kikutani H, Honjo T, Nishioka K, Tsubata T (2002) Cutting Edge: Ectopic expression of CD40 ligand on B cells induces lupus-like autoimmune disease. Journal of immunology (Baltimore, Md : 1950) 168 (1):9–12. https://doi.org/10.4049/jimmunol.168.1.9

  63. Toubi E, Shoenfeld Y (2004) The role of CD40-CD154 interactions in autoimmunity and the benefit of disrupting this pathway. Autoimmunity 37(6–7):457–464. https://doi.org/10.1080/08916930400002386

    Article  CAS  PubMed  Google Scholar 

  64. Lu R, Munroe ME, Guthridge JM, Bean KM, Fife DA, Chen H, Slight-Webb SR, Keith MP, Harley JB, James JA (2016) Dysregulation of innate and adaptive serum mediators precedes systemic lupus erythematosus classification and improves prognostic accuracy of autoantibodies. J Autoimmun 74:182–193. https://doi.org/10.1016/j.jaut.2016.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Munroe ME, Lu R, Zhao YD, Fife DA, Robertson JM, Guthridge JM, Niewold TB, Tsokos GC, Keith MP, Harley JB, James JA (2016) Altered type II interferon precedes autoantibody accrual and elevated type I interferon activity prior to systemic lupus erythematosus classification. Ann Rheum Dis 75(11):2014–2021. https://doi.org/10.1136/annrheumdis-2015-208140

    Article  CAS  PubMed  Google Scholar 

  66. Kitani A, Hara M, Hirose T, Harigai M, Suzuki K, Kawakami M, Kawaguchi Y, Hidaka T, Kawagoe M, Nakamura H (1992) Autostimulatory effects of IL-6 on excessive B cell differentiation in patients with systemic lupus erythematosus: analysis of IL-6 production and IL-6R expression. Clin Exp Immunol 88(1):75–83. https://doi.org/10.1111/j.1365-2249.1992.tb03042.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Arkatkar T, Du SW, Jacobs HM, Dam EM, Hou B, Buckner JH, Rawlings DJ, Jackson SW (2017) B cell-derived IL-6 initiates spontaneous germinal center formation during systemic autoimmunity. J Exp Med 214(11):3207–3217. https://doi.org/10.1084/jem.20170580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ryffel B, Car BD, Gunn H, Roman D, Hiestand P, Mihatsch MJ (1994) Interleukin-6 exacerbates glomerulonephritis in (NZB x NZW)F1 mice. Am J Pathol 144(5):927–937

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Finck BK, Chan B, Wofsy D (1994) Interleukin 6 promotes murine lupus in NZB/NZW F1 mice. J Clin Investig 94(2):585–591. https://doi.org/10.1172/jci117373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liang B, Gardner DB, Griswold DE, Bugelski PJ, Song XY (2006) Anti-interleukin-6 monoclonal antibody inhibits autoimmune responses in a murine model of systemic lupus erythematosus. Immunology 119(3):296–305. https://doi.org/10.1111/j.1365-2567.2006.02433.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tsai CY, Wu TH, Yu CL, Lu JY, Tsai YY (2000) Increased excretions of beta2-microglobulin, IL-6, and IL-8 and decreased excretion of Tamm-Horsfall glycoprotein in urine of patients with active lupus nephritis. Nephron 85(3):207–214. https://doi.org/10.1159/000045663

    Article  CAS  PubMed  Google Scholar 

  72. Herrera-Esparza R, Barbosa-Cisneros O, Villalobos-Hurtado R, Avalos-Díaz E (1998) Renal expression of IL-6 and TNFalpha genes in lupus nephritis. Lupus 7(3):154–158. https://doi.org/10.1191/096120398678919949

    Article  CAS  PubMed  Google Scholar 

  73. Parrish-Novak J, Dillon SR, Nelson A, Hammond A, Sprecher C, Gross JA, Johnston J, Madden K, Xu W, West J, Schrader S, Burkhead S, Heipel M, Brandt C, Kuijper JL, Kramer J, Conklin D, Presnell SR, Berry J, Shiota F, Bort S, Hambly K, Mudri S, Clegg C, Moore M, Grant FJ, Lofton-Day C, Gilbert T, Rayond F, Ching A, Yao L, Smith D, Webster P, Whitmore T, Maurer M, Kaushansky K, Holly RD, Foster D (2000) Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 408(6808):57–63. https://doi.org/10.1038/35040504

    Article  CAS  PubMed  Google Scholar 

  74. Spolski R, Leonard WJ (2008) Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu Rev Immunol 26:57–79. https://doi.org/10.1146/annurev.immunol.26.021607.090316

    Article  CAS  PubMed  Google Scholar 

  75. Kasaian MT, Whitters MJ, Carter LL, Lowe LD, Jussif JM, Deng B, Johnson KA, Witek JS, Senices M, Konz RF, Wurster AL, Donaldson DD, Collins M, Young DA, Grusby MJ (2002) IL-21 limits NK cell responses and promotes antigen-specific T cell activation: a mediator of the transition from innate to adaptive immunity. Immunity 16(4):559–569. https://doi.org/10.1016/s1074-7613(02)00295-9

    Article  CAS  PubMed  Google Scholar 

  76. Good KL, Bryant VL, Tangye SG (2006) Kinetics of human B cell behavior and amplification of proliferative responses following stimulation with IL-21. Journal of immunology (Baltimore, Md : 1950) 177 (8):5236–5247. https://doi.org/10.4049/jimmunol.177.8.5236

  77. Jin H, Carrio R, Yu A, Malek TR (2004) Distinct activation signals determine whether IL-21 induces B cell costimulation, growth arrest, or Bim-dependent apoptosis. Journal of immunology (Baltimore, Md : 1950) 173 (1):657–665. https://doi.org/10.4049/jimmunol.173.1.657

  78. Torices R, Gómez JM, Pannell JR (2018) Kin discrimination allows plants to modify investment towards pollinator attraction. Nat Commun 9(1):2018. https://doi.org/10.1038/s41467-018-04378-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nakayama Y, Kosek J, Capone L, Hur EM, Schafer PH, Ringheim GE (2017) Aiolos overexpression in systemic lupus erythematosus B cell subtypes and BAFF-induced memory B cell differentiation are reduced by CC-220 modulation of cereblon activity. Journal of immunology (Baltimore, Md : 1950) 199 (7):2388–2407. https://doi.org/10.4049/jimmunol.1601725

  80. Ozaki K, Spolski R, Ettinger R, Kim HP, Wang G, Qi CF, Hwu P, Shaffer DJ, Akilesh S, Roopenian DC, Morse HC, 3rd, Lipsky PE, Leonard WJ (2004) Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. Journal of immunology (Baltimore, Md : 1950) 173 (9):5361–5371. https://doi.org/10.4049/jimmunol.173.9.5361

  81. Bubier JA, Sproule TJ, Foreman O, Spolski R, Shaffer DJ, Morse HC 3rd, Leonard WJ, Roopenian DC (2009) A critical role for IL-21 receptor signaling in the pathogenesis of systemic lupus erythematosus in BXSB-Yaa mice. Proc Natl Acad Sci USA 106(5):1518–1523. https://doi.org/10.1073/pnas.0807309106

    Article  PubMed  PubMed Central  Google Scholar 

  82. Herber D, Brown TP, Liang S, Young DA, Collins M, Dunussi-Joannopoulos K (2007) IL-21 has a pathogenic role in a lupus-prone mouse model and its blockade with IL-21R.Fc reduces disease progression. Journal of immunology (Baltimore, Md : 1950) 178 (6):3822–3830. https://doi.org/10.4049/jimmunol.178.6.3822

  83. Sawalha AH, Kaufman KM, Kelly JA, Adler AJ, Aberle T, Kilpatrick J, Wakeland EK, Li QZ, Wandstrat AE, Karp DR, James JA, Merrill JT, Lipsky P, Harley JB (2008) Genetic association of interleukin-21 polymorphisms with systemic lupus erythematosus. Ann Rheum Dis 67(4):458–461. https://doi.org/10.1136/ard.2007.075424

    Article  CAS  PubMed  Google Scholar 

  84. Webb R, Merrill JT, Kelly JA, Sestak A, Kaufman KM, Langefeld CD, Ziegler J, Kimberly RP, Edberg JC, Ramsey-Goldman R, Petri M, Reveille JD, Alarcón GS, Vilá LM, Alarcón-Riquelme ME, James JA, Gilkeson GS, Jacob CO, Moser KL, Gaffney PM, Vyse TJ, Nath SK, Lipsky P, Harley JB, Sawalha AH (2009) A polymorphism within IL21R confers risk for systemic lupus erythematosus. Arthritis Rheum 60(8):2402–2407. https://doi.org/10.1002/art.24658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nakou M, Papadimitraki ED, Fanouriakis A, Bertsias GK, Choulaki C, Goulidaki N, Sidiropoulos P, Boumpas DT (2013) Interleukin-21 is increased in active systemic lupus erythematosus patients and contributes to the generation of plasma B cells. Clin Exp Rheumatol 31(2):172–179

    PubMed  Google Scholar 

  86. Clark EA (1993) CD22, a B cell-specific receptor, mediates adhesion and signal transduction. Journal of immunology (Baltimore, Md : 1950) 150 (11):4715–4718

  87. Daridon C, Blassfeld D, Reiter K, Mei HE, Giesecke C, Goldenberg DM, Hansen A, Hostmann A, Frölich D, Dörner T (2010) Epratuzumab targeting of CD22 affects adhesion molecule expression and migration of B-cells in systemic lupus erythematosus. Arthritis Res Ther 12(6):R204. https://doi.org/10.1186/ar3179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Frangou E, Georgakis S, Bertsias G (2020) Update on the cellular and molecular aspects of lupus nephritis. Clin Immunol 216:108445. https://doi.org/10.1016/j.clim.2020.108445

    Article  CAS  PubMed  Google Scholar 

  89. Gagneux P, Cheriyan M, Hurtado-Ziola N, van der Linden EC, Anderson D, McClure H, Varki A, Varki NM (2003) Human-specific regulation of alpha 2–6-linked sialic acids. J Biol Chem 278(48):48245–48250. https://doi.org/10.1074/jbc.M309813200

    Article  CAS  PubMed  Google Scholar 

  90. Tedder TF, Poe JC, Haas KM (2005) CD22: a multifunctional receptor that regulates B lymphocyte survival and signal transduction. Adv Immunol 88:1–50. https://doi.org/10.1016/s0065-2776(05)88001-0

    Article  CAS  PubMed  Google Scholar 

  91. Doody GM, Justement LB, Delibrias CC, Matthews RJ, Lin J, Thomas ML, Fearon DT (1995) A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP. Science (New York, NY) 269 (5221):242-244. https://doi.org/10.1126/science.7618087

  92. Tamir I, Dal Porto JM, Cambier JC (2000) Cytoplasmic protein tyrosine phosphatases SHP-1 and SHP-2: regulators of B cell signal transduction. Curr Opin Immunol 12(3):307–315. https://doi.org/10.1016/s0952-7915(00)00092-3

    Article  CAS  PubMed  Google Scholar 

  93. Daëron M (1997) Fc receptor biology. Annu Rev Immunol 15:203–234. https://doi.org/10.1146/annurev.immunol.15.1.203

    Article  PubMed  Google Scholar 

  94. Amigorena S, Bonnerot C, Drake JR, Choquet D, Hunziker W, Guillet JG, Webster P, Sautes C, Mellman I, Fridman WH (1992) Cytoplasmic domain heterogeneity and functions of IgG Fc receptors in B lymphocytes. Science (New York, NY) 256 (5065):1808-1812. https://doi.org/10.1126/science.1535455

  95. Muta T, Kurosaki T, Misulovin Z, Sanchez M, Nussenzweig MC, Ravetch JV (1994) A 13-amino-acid motif in the cytoplasmic domain of Fc gamma RIIB modulates B-cell receptor signalling. Nature 369(6478):340. https://doi.org/10.1038/369340a0

    Article  CAS  PubMed  Google Scholar 

  96. Ono M, Bolland S, Tempst P, Ravetch JV (1996) Role of the inositol phosphatase SHIP in negative regulation of the immune system by the receptor Fc(gamma)RIIB. Nature 383(6597):263–266. https://doi.org/10.1038/383263a0

    Article  CAS  PubMed  Google Scholar 

  97. Ono M, Okada H, Bolland S, Yanagi S, Kurosaki T, Ravetch JV (1997) Deletion of SHIP or SHP-1 reveals two distinct pathways for inhibitory signaling. Cell 90(2):293–301. https://doi.org/10.1016/s0092-8674(00)80337-2

    Article  CAS  PubMed  Google Scholar 

  98. Nimmerjahn F, Ravetch JV (2008) Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 8(1):34–47. https://doi.org/10.1038/nri2206

    Article  CAS  PubMed  Google Scholar 

  99. McGaha TL, Sorrentino B, Ravetch JV (2005) Restoration of tolerance in lupus by targeted inhibitory receptor expression. Science (New York, NY) 307 (5709):590–593. https://doi.org/10.1126/science.1105160

  100. Siriboonrit U, Tsuchiya N, Sirikong M, Kyogoku C, Bejrachandra S, Suthipinittharm P, Luangtrakool K, Srinak D, Thongpradit R, Fujiwara K, Chandanayingyong D, Tokunaga K (2003) Association of Fcgamma receptor IIb and IIIb polymorphisms with susceptibility to systemic lupus erythematosus in Thais. Tissue Antigens 61(5):374–383. https://doi.org/10.1034/j.1399-0039.2003.00047.x

    Article  CAS  PubMed  Google Scholar 

  101. Chen JY, Wang CM, Ma CC, Luo SF, Edberg JC, Kimberly RP, Wu J (2006) Association of a transmembrane polymorphism of Fcgamma receptor IIb (FCGR2B) with systemic lupus erythematosus in Taiwanese patients. Arthritis Rheum 54(12):3908–3917. https://doi.org/10.1002/art.22220

    Article  CAS  PubMed  Google Scholar 

  102. Mackay M, Stanevsky A, Wang T, Aranow C, Li M, Koenig S, Ravetch JV, Diamond B (2006) Selective dysregulation of the FcgammaIIB receptor on memory B cells in SLE. J Exp Med 203(9):2157–2164. https://doi.org/10.1084/jem.20051503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Su K, Yang H, Li X, Li X, Gibson AW, Cafardi JM, Zhou T, Edberg JC, Kimberly RP (2007) Expression profile of FcgammaRIIb on leukocytes and its dysregulation in systemic lupus erythematosus. Journal of immunology (Baltimore, Md : 1950) 178 (5):3272–3280. https://doi.org/10.4049/jimmunol.178.5.3272

  104. Grimaldi CM, Hicks R, Diamond B (2005) B cell selection and susceptibility to autoimmunity. Journal of immunology (Baltimore, Md : 1950) 174 (4):1775–1781. https://doi.org/10.4049/jimmunol.174.4.1775

  105. Lam KP, Kühn R, Rajewsky K (1997) In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 90(6):1073–1083. https://doi.org/10.1016/s0092-8674(00)80373-6

    Article  CAS  PubMed  Google Scholar 

  106. Liu JL, Chiles TC, Sen RJ, Rothstein TL (1991) Inducible nuclear expression of NF-kappa B in primary B cells stimulated through the surface Ig receptor. Journal of immunology (Baltimore, Md : 1950) 146 (5):1685–1691

  107. Srinivasan L, Sasaki Y, Calado DP, Zhang B, Paik JH, DePinho RA, Kutok JL, Kearney JF, Otipoby KL, Rajewsky K (2009) PI3 kinase signals BCR-dependent mature B cell survival. Cell 139(3):573–586. https://doi.org/10.1016/j.cell.2009.08.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tsubata T, Honjo T (2000) B cell tolerance and autoimmunity. R Immunogenet 2(1):18–25

    CAS  Google Scholar 

  109. Shultz LD, Rajan TV, Greiner DL (1997) Severe defects in immunity and hematopoiesis caused by SHP-1 protein-tyrosine-phosphatase deficiency. Trends Biotechnol 15(8):302–307. https://doi.org/10.1016/s0167-7799(97)01060-3

    Article  CAS  PubMed  Google Scholar 

  110. Kono H, Kyogoku C, Suzuki T, Tsuchiya N, Honda H, Yamamoto K, Tokunaga K, Honda Z (2005) FcgammaRIIB Ile232Thr transmembrane polymorphism associated with human systemic lupus erythematosus decreases affinity to lipid rafts and attenuates inhibitory effects on B cell receptor signaling. Hum Mol Genet 14(19):2881–2892. https://doi.org/10.1093/hmg/ddi320

    Article  CAS  PubMed  Google Scholar 

  111. Norvell A, Mandik L, Monroe JG (1995) Engagement of the antigen-receptor on immature murine B lymphocytes results in death by apoptosis. Journal of immunology (Baltimore, Md : 1950) 154 (9):4404–4413

  112. Gonzalez M, Mackay F, Browning JL, Kosco-Vilbois MH, Noelle RJ (1998) The sequential role of lymphotoxin and B cells in the development of splenic follicles. J Exp Med 187(7):997–1007. https://doi.org/10.1084/jem.187.7.997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Song K, Liu L, Zhang X, Chen X (2020) An update on genetic susceptibility in lupus nephritis. Clin Immunol 210:108272. https://doi.org/10.1016/j.clim.2019.108272

    Article  CAS  PubMed  Google Scholar 

  114. Rieck M, Arechiga A, Onengut-Gumuscu S, Greenbaum C, Concannon P, Buckner JH (2007) Genetic variation in PTPN22 corresponds to altered function of T and B lymphocytes. Journal of immunology (Baltimore, Md : 1950) 179 (7):4704–4710. https://doi.org/10.4049/jimmunol.179.7.4704

  115. Vang T, Congia M, Macis MD, Musumeci L, Orrú V, Zavattari P, Nika K, Tautz L, Taskén K, Cucca F, Mustelin T, Bottini N (2005) Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat Genet 37(12):1317–1319. https://doi.org/10.1038/ng1673

    Article  CAS  PubMed  Google Scholar 

  116. Rawlings DJ, Dai X, Buckner JH (2015) The role of PTPN22 risk variant in the development of autoimmunity: finding common ground between mouse and human. Journal of immunology (Baltimore, Md : 1950) 194 (7):2977–2984. https://doi.org/10.4049/jimmunol.1403034

  117. Kyogoku C, Langefeld CD, Ortmann WA, Lee A, Selby S, Carlton VE, Chang M, Ramos P, Baechler EC, Batliwalla FM, Novitzke J, Williams AH, Gillett C, Rodine P, Graham RR, Ardlie KG, Gaffney PM, Moser KL, Petri M, Begovich AB, Gregersen PK, Behrens TW (2004) Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am J Hum Genet 75(3):504–507. https://doi.org/10.1086/423790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Habib T, Funk A, Rieck M, Brahmandam A, Dai X, Panigrahi AK, Luning Prak ET, Meyer-Bahlburg A, Sanda S, Greenbaum C, Rawlings DJ, Buckner JH (2012) Altered B cell homeostasis is associated with type I diabetes and carriers of the PTPN22 allelic variant. Journal of immunology (Baltimore, Md : 1950) 188 (1):487–496. https://doi.org/10.4049/jimmunol.1102176

  119. Menard L, Saadoun D, Isnardi I, Ng YS, Meyers G, Massad C, Price C, Abraham C, Motaghedi R, Buckner JH, Gregersen PK, Meffre E (2011) The PTPN22 allele encoding an R620W variant interferes with the removal of developing autoreactive B cells in humans. J Clin Investig 121(9):3635–3644. https://doi.org/10.1172/jci45790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. O'Connor BP, Vogel LA, Zhang W, Loo W, Shnider D, Lind EF, Ratliff M, Noelle RJ, Erickson LD (2006) Imprinting the fate of antigen-reactive B cells through the affinity of the B cell receptor. Journal of immunology (Baltimore, Md : 1950) 177 (11):7723–7732. https://doi.org/10.4049/jimmunol.177.11.7723

  121. Satterthwaite AB (2017) Bruton’s tyrosine kinase, a component of B cell signaling pathways, has multiple roles in the pathogenesis of lupus. Front Immunol 8:1986. https://doi.org/10.3389/fimmu.2017.01986

    Article  CAS  PubMed  Google Scholar 

  122. Crofford LJ, Nyhoff LE, Sheehan JH, Kendall PL (2016) The role of Bruton’s tyrosine kinase in autoimmunity and implications for therapy. Expert Rev Clin Immunol 12(7):763–773. https://doi.org/10.1586/1744666x.2016.1152888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Halcomb KE, Musuka S, Gutierrez T, Wright HL, Satterthwaite AB (2008) Btk regulates localization, in vivo activation, and class switching of anti-DNA B cells. Mol Immunol 46(2):233–241. https://doi.org/10.1016/j.molimm.2008.08.278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kil LP, de Bruijn MJ, van Nimwegen M, Corneth OB, van Hamburg JP, Dingjan GM, Thaiss F, Rimmelzwaan GF, Elewaut D, Delsing D, van Loo PF, Hendriks RW (2012) Btk levels set the threshold for B-cell activation and negative selection of autoreactive B cells in mice. Blood 119(16):3744–3756. https://doi.org/10.1182/blood-2011-12-397919

    Article  CAS  PubMed  Google Scholar 

  125. Amin RH, Schlissel MS (2008) Foxo1 directly regulates the transcription of recombination-activating genes during B cell development. Nat Immunol 9(6):613–622. https://doi.org/10.1038/ni.1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Dengler HS, Baracho GV, Omori SA, Bruckner S, Arden KC, Castrillon DH, DePinho RA, Rickert RC (2008) Distinct functions for the transcription factor Foxo1 at various stages of B cell differentiation. Nat Immunol 9(12):1388–1398. https://doi.org/10.1038/ni.1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Browne CD, Del Nagro CJ, Cato MH, Dengler HS, Rickert RC (2009) Suppression of phosphatidylinositol 3,4,5-trisphosphate production is a key determinant of B cell anergy. Immunity 31(5):749–760. https://doi.org/10.1016/j.immuni.2009.08.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Limon JJ, Fruman DA (2010) B cell receptor signaling: picky about PI3Ks. Science signaling 3 (134):pe25. https://doi.org/10.1126/scisignal.3134pe25

  129. Suárez-Fueyo A, Barber DF, Martínez-Ara J, Zea-Mendoza AC, Carrera AC (2011) Enhanced phosphoinositide 3-kinase δ activity is a frequent event in systemic lupus erythematosus that confers resistance to activation-induced T cell death. Journal of immunology (Baltimore, Md : 1950) 187 (5):2376–2385. https://doi.org/10.4049/jimmunol.1101602

  130. Zhao LD, Liang D, Wu XN, Li Y, Niu JW, Zhou C, Wang L, Chen H, Zheng WJ, Fei YY, Tang FL, Li YZ, Zhang FC, He W, Cao XT, Zhang X (2017) Contribution and underlying mechanisms of CXCR4 overexpression in patients with systemic lupus erythematosus. Cell Mol Immunol 14(10):842–849. https://doi.org/10.1038/cmi.2016.47

    Article  CAS  PubMed  Google Scholar 

  131. Anzelon AN, Wu H, Rickert RC (2003) Pten inactivation alters peripheral B lymphocyte fate and reconstitutes CD19 function. Nat Immunol 4(3):287–294. https://doi.org/10.1038/ni892

    Article  CAS  PubMed  Google Scholar 

  132. Suzuki A, de la Pompa JL, Stambolic V, Elia AJ, Sasaki T, del Barco Barrantes I, Ho A, Wakeham A, Itie A, Khoo W, Fukumoto M, Mak TW (1998) High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Current biology : CB 8 (21):1169-1178. https://doi.org/10.1016/s0960-9822(07)00488-5

  133. Wu XN, Ye YX, Niu JW, Li Y, Li X, You X, Chen H, Zhao LD, Zeng XF, Zhang FC, Tang FL, He W, Cao XT, Zhang X, Lipsky PE (2014) Defective PTEN regulation contributes to B cell hyperresponsiveness in systemic lupus erythematosus. Science translational medicine 6 (246):246ra299. https://doi.org/10.1126/scitranslmed.3009131

  134. Wang M, Chen H, Qiu J, Yang HX, Zhang CY, Fei YY, Zhao LD, Zhou JX, Wang L, Wu QJ, Zhou YZ, Zhang W, Zhang FC, Zhang X, Lipsky PE (2020) Antagonizing miR-7 suppresses B cell hyperresponsiveness and inhibits lupus development. J Autoimmun 109:102440. https://doi.org/10.1016/j.jaut.2020.102440

    Article  CAS  PubMed  Google Scholar 

  135. Agrawal S, Gupta S (2011) TLR1/2, TLR7, and TLR9 signals directly activate human peripheral blood naive and memory B cell subsets to produce cytokines, chemokines, and hematopoietic growth factors. J Clin Immunol 31(1):89–98. https://doi.org/10.1007/s10875-010-9456-8

    Article  CAS  PubMed  Google Scholar 

  136. Bekeredjian-Ding I, Jego G (2009) Toll-like receptors–sentries in the B-cell response. Immunology 128(3):311–323. https://doi.org/10.1111/j.1365-2567.2009.03173.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Viglianti GA, Lau CM, Hanley TM, Miko BA, Shlomchik MJ, Marshak-Rothstein A (2003) Activation of autoreactive B cells by CpG dsDNA. Immunity 19(6):837–847. https://doi.org/10.1016/s1074-7613(03)00323-6

    Article  CAS  PubMed  Google Scholar 

  138. Krieg AM, Vollmer J (2007) Toll-like receptors 7, 8, and 9: linking innate immunity to autoimmunity. Immunol Rev 220:251–269. https://doi.org/10.1111/j.1600-065X.2007.00572.x

    Article  CAS  PubMed  Google Scholar 

  139. Papadimitraki ED, Choulaki C, Koutala E, Bertsias G, Tsatsanis C, Gergianaki I, Raptopoulou A, Kritikos HD, Mamalaki C, Sidiropoulos P, Boumpas DT (2006) Expansion of toll-like receptor 9-expressing B cells in active systemic lupus erythematosus: implications for the induction and maintenance of the autoimmune process. Arthritis Rheum 54(11):3601–3611. https://doi.org/10.1002/art.22197

    Article  CAS  PubMed  Google Scholar 

  140. Fairhurst AM, Hwang SH, Wang A, Tian XH, Boudreaux C, Zhou XJ, Casco J, Li QZ, Connolly JE, Wakeland EK (2008) Yaa autoimmune phenotypes are conferred by overexpression of TLR7. Eur J Immunol 38(7):1971–1978. https://doi.org/10.1002/eji.200838138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Santiago-Raber ML, Dunand-Sauthier I, Wu T, Li QZ, Uematsu S, Akira S, Reith W, Mohan C, Kotzin BL, Izui S (2010) Critical role of TLR7 in the acceleration of systemic lupus erythematosus in TLR9-deficient mice. J Autoimmun 34(4):339–348. https://doi.org/10.1016/j.jaut.2009.11.001

    Article  CAS  PubMed  Google Scholar 

  142. Subramanian S, Tus K, Li QZ, Wang A, Tian XH, Zhou J, Liang C, Bartov G, McDaniel LD, Zhou XJ, Schultz RA, Wakeland EK (2006) A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc Natl Acad Sci USA 103(26):9970–9975. https://doi.org/10.1073/pnas.0603912103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Shen N, Fu Q, Deng Y, Qian X, Zhao J, Kaufman KM, Wu YL, Yu CY, Tang Y, Chen JY, Yang W, Wong M, Kawasaki A, Tsuchiya N, Sumida T, Kawaguchi Y, Howe HS, Mok MY, Bang SY, Liu FL, Chang DM, Takasaki Y, Hashimoto H, Harley JB, Guthridge JM, Grossman JM, Cantor RM, Song YW, Bae SC, Chen S, Hahn BH, Lau YL, Tsao BP (2010) Sex-specific association of X-linked Toll-like receptor 7 (TLR7) with male systemic lupus erythematosus. Proc Natl Acad Sci USA 107(36):15838–15843. https://doi.org/10.1073/pnas.1001337107

    Article  PubMed  PubMed Central  Google Scholar 

  144. Deng Y, Zhao J, Sakurai D, Kaufman KM, Edberg JC, Kimberly RP, Kamen DL, Gilkeson GS, Jacob CO, Scofield RH, Langefeld CD, Kelly JA, Ramsey-Goldman R, Petri MA, Reveille JD, Vilá LM, Alarcón GS, Vyse TJ, Pons-Estel BA, Freedman BI, Gaffney PM, Sivils KM, James JA, Gregersen PK, Anaya JM, Niewold TB, Merrill JT, Criswell LA, Stevens AM, Boackle SA, Cantor RM, Chen W, Grossman JM, Hahn BH, Harley JB, Alarcόn-Riquelme ME, Brown EE, Tsao BP (2013) MicroRNA-3148 modulates allelic expression of toll-like receptor 7 variant associated with systemic lupus erythematosus. PLoS Genet 9(2):e1003336. https://doi.org/10.1371/journal.pgen.1003336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Nickerson KM, Christensen SR, Shupe J, Kashgarian M, Kim D, Elkon K, Shlomchik MJ (2010) TLR9 regulates TLR7- and MyD88-dependent autoantibody production and disease in a murine model of lupus. Journal of immunology (Baltimore, Md : 1950) 184 (4):1840–1848. https://doi.org/10.4049/jimmunol.0902592

  146. Nickerson KM, Christensen SR, Cullen JL, Meng W, Luning Prak ET, Shlomchik MJ (2013) TLR9 promotes tolerance by restricting survival of anergic anti-DNA B cells, yet is also required for their activation. Journal of immunology (Baltimore, Md : 1950) 190 (4):1447–1456. https://doi.org/10.4049/jimmunol.1202115

  147. Nickerson KM, Cullen JL, Kashgarian M, Shlomchik MJ (2013) Exacerbated autoimmunity in the absence of TLR9 in MRL.Fas(lpr) mice depends on Ifnar1. Journal of immunology (Baltimore, Md : 1950) 190 (8):3889–3894. https://doi.org/10.4049/jimmunol.1203525

  148. Koh YT, Scatizzi JC, Gahan JD, Lawson BR, Baccala R, Pollard KM, Beutler BA, Theofilopoulos AN, Kono DH (2013) Role of nucleic acid-sensing TLRs in diverse autoantibody specificities and anti-nuclear antibody-producing B cells. Journal of immunology (Baltimore, Md : 1950) 190 (10):4982–4990. https://doi.org/10.4049/jimmunol.1202986

  149. Murayama G, Furusawa N, Chiba A, Yamaji K, Tamura N, Miyake S (2017) Enhanced IFN-α production is associated with increased TLR7 retention in the lysosomes of palasmacytoid dendritic cells in systemic lupus erythematosus. Arthritis Res Ther 19(1):234. https://doi.org/10.1186/s13075-017-1441-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sakata K, Nakayamada S, Miyazaki Y, Kubo S, Ishii A, Nakano K, Tanaka Y (2018) Up-regulation of TLR7-mediated IFN-α production by plasmacytoid dendritic cells in patients with systemic lupus erythematosus. Front Immunol 9:1957. https://doi.org/10.3389/fimmu.2018.01957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Merrill JT, Neuwelt CM, Wallace DJ, Shanahan JC, Latinis KM, Oates JC, Utset TO, Gordon C, Isenberg DA, Hsieh HJ, Zhang D, Brunetta PG (2010) Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum 62(1):222–233. https://doi.org/10.1002/art.27233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Rovin BH, Furie R, Latinis K, Looney RJ, Fervenza FC, Sanchez-Guerrero J, Maciuca R, Zhang D, Garg JP, Brunetta P, Appel G (2012) Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum 64(4):1215–1226. https://doi.org/10.1002/art.34359

    Article  CAS  PubMed  Google Scholar 

  153. Murray E, Perry M (2010) Off-label use of rituximab in systemic lupus erythematosus: a systematic review. Clin Rheumatol 29(7):707–716. https://doi.org/10.1007/s10067-010-1387-5

    Article  PubMed  PubMed Central  Google Scholar 

  154. Chen H, Zheng W, Su J, Xu D, Wang Q, Leng X, Zhang W, Li M, Tang F, Zhang X, Zeng X, Zhao Y, Zhang F (2011) Low-dose rituximab therapy for refractory thrombocytopenia in patients with systemic lupus erythematosus—a prospective pilot study. Rheumatology 50(9):1640–1644. https://doi.org/10.1093/rheumatology/ker176%JRheumatology

    Article  CAS  PubMed  Google Scholar 

  155. Zheng WJ, Zhang X, Wang Q, Xu D, Zeng XF, Zhang FC (2009) Refractory severe connective tissue disease thrombocytopenia: is rituximab treatment effective and safe? Ann Rheum Dis 68(6):1077–1078. https://doi.org/10.1136/ard.2008.098293

    Article  CAS  PubMed  Google Scholar 

  156. Hahn BH, McMahon MA, Wilkinson A, Wallace WD, Daikh DI, Fitzgerald JD, Karpouzas GA, Merrill JT, Wallace DJ, Yazdany J, Ramsey-Goldman R, Singh K, Khalighi M, Choi SI, Gogia M, Kafaja S, Kamgar M, Lau C, Martin WJ, Parikh S, Peng J, Rastogi A, Chen W, Grossman JM (2012) American College of Rheumatology guidelines for screening, treatment, and management of lupus nephritis. Arthritis Care Res 64(6):797–808. https://doi.org/10.1002/acr.21664

    Article  Google Scholar 

  157. Bertsias GK, Tektonidou M, Amoura Z, Aringer M, Bajema I, Berden JH, Boletis J, Cervera R, Dörner T, Doria A, Ferrario F, Floege J, Houssiau FA, Ioannidis JP, Isenberg DA, Kallenberg CG, Lightstone L, Marks SD, Martini A, Moroni G, Neumann I, Praga M, Schneider M, Starra A, Tesar V, Vasconcelos C, van Vollenhoven RF, Zakharova H, Haubitz M, Gordon C, Jayne D, Boumpas DT (2012) Joint European League Against Rheumatism and European Renal Association-European Dialysis and Transplant Association (EULAR/ERA-EDTA) recommendations for the management of adult and paediatric lupus nephritis. Ann Rheum Dis 71(11):1771–1782. https://doi.org/10.1136/annrheumdis-2012-201940

    Article  CAS  PubMed  Google Scholar 

  158. Condon MB, Ashby D, Pepper RJ, Cook HT, Levy JB, Griffith M, Cairns TD, Lightstone L (2013) Prospective observational single-centre cohort study to evaluate the effectiveness of treating lupus nephritis with rituximab and mycophenolate mofetil but no oral steroids. Ann Rheum Dis 72(8):1280–1286. https://doi.org/10.1136/annrheumdis-2012-202844

    Article  CAS  PubMed  Google Scholar 

  159. Mysler EF, Spindler AJ, Guzman R, Bijl M, Jayne D, Furie RA, Houssiau FA, Drappa J, Close D, Maciuca R, Rao K, Shahdad S, Brunetta P (2013) Efficacy and safety of ocrelizumab in active proliferative lupus nephritis: results from a randomized, double-blind, phase III study. Arthritis Rheum 65(9):2368–2379. https://doi.org/10.1002/art.38037

    Article  CAS  PubMed  Google Scholar 

  160. Haarhaus ML, Svenungsson E, Gunnarsson I (2016) Ofatumumab treatment in lupus nephritis patients. Clin Kidney J 9(4):552–555. https://doi.org/10.1093/ckj/sfw022

    Article  PubMed  PubMed Central  Google Scholar 

  161. Thornton CC, Ambrose N, Ioannou Y (2015) Ofatumumab: a novel treatment for severe systemic lupus erythematosus. Rheumatology (Oxford, England) 54 (3):559-560. https://doi.org/10.1093/rheumatology/keu475

  162. Reddy V, Klein C, Isenberg DA, Glennie MJ, Cambridge G, Cragg MS, Leandro MJ (2017) Obinutuzumab induces superior B-cell cytotoxicity to rituximab in rheumatoid arthritis and systemic lupus erythematosus patient samples. Rheumatology (Oxford, England) 56 (7):1227-1237. https://doi.org/10.1093/rheumatology/kex067

  163. Wallace DJ, Kalunian K, Petri MA, Strand V, Houssiau FA, Pike M, Kilgallen B, Bongardt S, Barry A, Kelley L, Gordon C (2014) Efficacy and safety of epratuzumab in patients with moderate/severe active systemic lupus erythematosus: results from EMBLEM, a phase IIb, randomised, double-blind, placebo-controlled, multicentre study. Ann Rheum Dis 73(1):183–190. https://doi.org/10.1136/annrheumdis-2012-202760

    Article  CAS  PubMed  Google Scholar 

  164. Dörner T, Shock A, Goldenberg DM, Lipsky PE (2015) The mechanistic impact of CD22 engagement with epratuzumab on B cell function: Implications for the treatment of systemic lupus erythematosus. Autoimmun Rev 14(12):1079–1086. https://doi.org/10.1016/j.autrev.2015.07.013

    Article  CAS  PubMed  Google Scholar 

  165. Dörner T, Kaufmann J, Wegener WA, Teoh N, Goldenberg DM, Burmester GR (2006) Initial clinical trial of epratuzumab (humanized anti-CD22 antibody) for immunotherapy of systemic lupus erythematosus. Arthritis Res Ther 8(3):R74. https://doi.org/10.1186/ar1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wallace DJ, Gordon C, Strand V, Hobbs K, Petri M, Kalunian K, Houssiau F, Tak PP, Isenberg DA, Kelley L, Kilgallen B, Barry AN, Wegener WA, Goldenberg DM (2013) Efficacy and safety of epratuzumab in patients with moderate/severe flaring systemic lupus erythematosus: results from two randomized, double-blind, placebo-controlled, multicentre studies (ALLEVIATE) and follow-up. Rheumatology (Oxford, England) 52 (7):1313-1322. https://doi.org/10.1093/rheumatology/ket129

  167. Clowse ME, Wallace DJ, Furie RA, Petri MA, Pike MC, Leszczyński P, Neuwelt CM, Hobbs K, Keiserman M, Duca L, Kalunian KC, Galateanu C, Bongardt S, Stach C, Beaudot C, Kilgallen B, Gordon C (2017) Efficacy and Safety of Epratuzumab in Moderately to Severely Active Systemic Lupus Erythematosus: Results From Two Phase III Randomized, Double-Blind, Placebo-Controlled Trials. Arthritis & rheumatology (Hoboken, NJ) 69 (2):362-375. https://doi.org/10.1002/art.39856

  168. Arce S, Luger E, Muehlinghaus G, Cassese G, Hauser A, Horst A, Lehnert K, Odendahl M, Hönemann D, Heller KD, Kleinschmidt H, Berek C, Dörner T, Krenn V, Hiepe F, Bargou R, Radbruch A, Manz RA (2004) CD38 low IgG-secreting cells are precursors of various CD38 high-expressing plasma cell populations. J Leukoc Biol 75(6):1022–1028. https://doi.org/10.1189/jlb.0603279

    Article  CAS  PubMed  Google Scholar 

  169. Tedder TF (2009) CD19: a promising B cell target for rheumatoid arthritis. Nat Rev Rheumatol 5(10):572–577. https://doi.org/10.1038/nrrheum.2009.184

    Article  CAS  PubMed  Google Scholar 

  170. Szili D, Cserhalmi M, Bankó Z, Nagy G, Szymkowski DE, Sármay G (2014) Suppression of innate and adaptive B cell activation pathways by antibody coengagement of FcγRIIb and CD19. mAbs 6 (4):991–999. https://doi.org/10.4161/mabs.28841

  171. Merrill JT (2018) Top-line results of a phase 2, double -blind, randomized, placebo-controlled study of a reversible B cell inhibitor, XmAb®5871, in systemic lupus erythematous (SLE) [abstract]. Arthritis & rheumatology (Hoboken, NJ) 70 ( L19)

  172. Niederer HA, Clatworthy MR, Willcocks LC, Smith KG (2010) FcgammaRIIB, FcgammaRIIIB, and systemic lupus erythematosus. Ann N Y Acad Sci 1183:69–88. https://doi.org/10.1111/j.1749-6632.2009.05132.x

    Article  CAS  PubMed  Google Scholar 

  173. Tillmanns S KC, D’Cruz DP (2014) SM101, a novel recombinant, soluble, human Fc gamma IIb receptor, in the treatment of systemic lupus erythematosus: results of a double-blind, placebo-controlled multicenter study. Arthritis and rheumatism 66

  174. Zhao L, Ye Y, Zhang X (2015) B cells biology in systemic lupus erythematosus-from bench to bedside. Sci China Life Sci 58(11):1111–1125. https://doi.org/10.1007/s11427-015-4953-x

    Article  CAS  PubMed  Google Scholar 

  175. Navarra SV, Guzmán RM, Gallacher AE, Hall S, Levy RA, Jimenez RE, Li EK, Thomas M, Kim HY, León MG, Tanasescu C, Nasonov E, Lan JL, Pineda L, Zhong ZJ, Freimuth W, Petri MA (2011) Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet (London, England) 377 (9767):721-731. https://doi.org/10.1016/s0140-6736(10)61354-2

  176. Furie RA, Wallace DJ, Aranow C, Fettiplace J, Wilson B, Mistry P, Roth DA, Gordon D (2018) Long-Term Safety and Efficacy of Belimumab in Patients With Systemic Lupus Erythematosus: A Continuation of a Seventy-Six-Week Phase III Parent Study in the United States. Arthritis & rheumatology (Hoboken, NJ) 70 (6):868-877. https://doi.org/10.1002/art.40439

  177. Stohl W, Schwarting A, Okada M, Scheinberg M, Doria A, Hammer AE, Kleoudis C, Groark J, Bass D, Fox NL, Roth D, Gordon D (2017) Efficacy and Safety of Subcutaneous Belimumab in Systemic Lupus Erythematosus: A Fifty-Two-Week Randomized, Double-Blind, Placebo-Controlled Study. Arthritis & rheumatology (Hoboken, NJ) 69 (5):1016-1027. https://doi.org/10.1002/art.40049

  178. Zhang F, Bae SC, Bass D, Chu M, Egginton S, Gordon D, Roth DA, Zheng J, Tanaka Y (2018) A pivotal phase III, randomised, placebo-controlled study of belimumab in patients with systemic lupus erythematosus located in China, Japan and South Korea. Ann Rheum Dis 77(3):355–363. https://doi.org/10.1136/annrheumdis-2017-211631

    Article  CAS  PubMed  Google Scholar 

  179. Furie R, Rovin BH, Houssiau F, Malvar A, Teng YKO, Contreras G, Amoura Z, Yu X, Mok CC, Santiago MB, Saxena A, Green Y, Ji B, Kleoudis C, Burriss SW, Barnett C, Roth DA (2020) Two-year, randomized, controlled trial of belimumab in lupus nephritis. N Engl J Med 383(12):1117–1128. https://doi.org/10.1056/NEJMoa2001180

    Article  CAS  PubMed  Google Scholar 

  180. van Vollenhoven RF, Petri MA, Cervera R, Roth DA, Ji BN, Kleoudis CS, Zhong ZJ, Freimuth W (2012) Belimumab in the treatment of systemic lupus erythematosus: high disease activity predictors of response. Ann Rheum Dis 71(8):1343–1349. https://doi.org/10.1136/annrheumdis-2011-200937

    Article  CAS  PubMed  Google Scholar 

  181. Manetta J, Bina H, Ryan P, Fox N, Witcher DR, Kikly K (2014) Generation and characterization of tabalumab, a human monoclonal antibody that neutralizes both soluble and membrane-bound B-cell activating factor. J Inflamm Res 7:121–131. https://doi.org/10.2147/jir.S67751

    Article  PubMed  PubMed Central  Google Scholar 

  182. Isenberg DA, Petri M, Kalunian K, Tanaka Y, Urowitz MB, Hoffman RW, Morgan-Cox M, Iikuni N, Silk M, Wallace DJ (2016) Efficacy and safety of subcutaneous tabalumab in patients with systemic lupus erythematosus: results from ILLUMINATE-1, a 52-week, phase III, multicentre, randomised, double-blind, placebo-controlled study. Ann Rheum Dis 75(2):323–331. https://doi.org/10.1136/annrheumdis-2015-207653

    Article  CAS  PubMed  Google Scholar 

  183. Merrill JT, van Vollenhoven RF, Buyon JP, Furie RA, Stohl W, Morgan-Cox M, Dickson C, Anderson PW, Lee C, Berclaz PY, Dörner T (2016) Efficacy and safety of subcutaneous tabalumab, a monoclonal antibody to B-cell activating factor, in patients with systemic lupus erythematosus: results from ILLUMINATE-2, a 52-week, phase III, multicentre, randomised, double-blind, placebo-controlled study. Ann Rheum Dis 75(2):332–340. https://doi.org/10.1136/annrheumdis-2015-207654

    Article  CAS  PubMed  Google Scholar 

  184. Hsu H, Khare SD, Lee F, Miner K, Hu YL, Stolina M, Hawkins N, Chen Q, Ho SY, Min H, Xiong F, Boone T, Zack DJ (2012) A novel modality of BAFF-specific inhibitor AMG623 peptibody reduces B-cell number and improves outcomes in murine models of autoimmune disease. Clin Exp Rheumatol 30(2):197–201

    PubMed  Google Scholar 

  185. Furie RA, Leon G, Thomas M, Petri MA, Chu AD, Hislop C, Martin RS, Scheinberg MA (2015) A phase 2, randomised, placebo-controlled clinical trial of blisibimod, an inhibitor of B cell activating factor, in patients with moderate-to-severe systemic lupus erythematosus, the PEARL-SC study. Ann Rheum Dis 74(9):1667–1675. https://doi.org/10.1136/annrheumdis-2013-205144

    Article  CAS  PubMed  Google Scholar 

  186. Merrill JT, Shanahan WR, Scheinberg M, Kalunian KC, Wofsy D, Martin RS (2018) Phase III trial results with blisibimod, a selective inhibitor of B-cell activating factor, in subjects with systemic lupus erythematosus (SLE): results from a randomised, double-blind, placebo-controlled trial. Ann Rheum Dis 77(6):883–889. https://doi.org/10.1136/annrheumdis-2018-213032

    Article  CAS  PubMed  Google Scholar 

  187. Vincent FB, Morand EF, Schneider P, Mackay F (2014) The BAFF/APRIL system in SLE pathogenesis. Nat Rev Rheumatol 10(6):365–373. https://doi.org/10.1038/nrrheum.2014.33

    Article  CAS  PubMed  Google Scholar 

  188. Isenberg D, Gordon C, Licu D, Copt S, Rossi CP, Wofsy D (2015) Efficacy and safety of atacicept for prevention of flares in patients with moderate-to-severe systemic lupus erythematosus (SLE): 52-week data (APRIL-SLE randomised trial). Ann Rheum Dis 74(11):2006–2015. https://doi.org/10.1136/annrheumdis-2013-205067

    Article  CAS  PubMed  Google Scholar 

  189. Wu D LJ, XuD, WangW (2019) A human recombinant fusion protein targeting B lymphocyte stimulator (BlyS) and a proliferation-inducing ligand (APRIL), telitacicept (RC18), in systemic lupus erythematosus (SLE): results of a phase 2b study [abstract]. . Arthritis & rheumatology (Hoboken, NJ) 71

  190. Early GS, Zhao W, Burns CM (1996) Anti-CD40 ligand antibody treatment prevents the development of lupus-like nephritis in a subset of New Zealand black x New Zealand white mice. Response correlates with the absence of an anti-antibody response. Journal of immunology (Baltimore, Md : 1950) 157 (7):3159–3164

  191. Komura K, Fujimoto M, Yanaba K, Matsushita T, Matsushita Y, Horikawa M, Ogawa F, Shimizu K, Hasegawa M, Takehara K, Sato S (2008) Blockade of CD40/CD40 ligand interactions attenuates skin fibrosis and autoimmunity in the tight-skin mouse. Ann Rheum Dis 67(6):867–872. https://doi.org/10.1136/ard.2007.073387

    Article  CAS  PubMed  Google Scholar 

  192. Boumpas DT, Furie R, Manzi S, Illei GG, Wallace DJ, Balow JE, Vaishnaw A (2003) A short course of BG9588 (anti-CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis. Arthritis Rheum 48(3):719–727. https://doi.org/10.1002/art.10856

    Article  CAS  PubMed  Google Scholar 

  193. Kalunian KC, Davis JC Jr, Merrill JT, Totoritis MC, Wofsy D (2002) Treatment of systemic lupus erythematosus by inhibition of T cell costimulation with anti-CD154: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum 46(12):3251–3258. https://doi.org/10.1002/art.10681

    Article  CAS  PubMed  Google Scholar 

  194. Kawai T, Andrews D, Colvin RB, Sachs DH, Cosimi AB (2000) Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand. Nat Med 6(2):114. https://doi.org/10.1038/72162

    Article  CAS  PubMed  Google Scholar 

  195. Langer F, Ingersoll SB, Amirkhosravi A, Meyer T, Siddiqui FA, Ahmad S, Walker JM, Amaya M, Desai H, Francis JL (2005) The role of CD40 in CD40L- and antibody-mediated platelet activation. Thromb Haemost 93(6):1137–1146. https://doi.org/10.1160/th04-12-0774

    Article  CAS  PubMed  Google Scholar 

  196. Robles-Carrillo L, Meyer T, Hatfield M, Desai H, Dávila M, Langer F, Amaya M, Garber E, Francis JL, Hsu YM, Amirkhosravi A (2010) Anti-CD40L immune complexes potently activate platelets in vitro and cause thrombosis in FCGR2A transgenic mice. Journal of immunology (Baltimore, Md : 1950) 185 (3):1577–1583. https://doi.org/10.4049/jimmunol.0903888

  197. Chamberlain C, Colman PJ, Ranger AM, Burkly LC, Johnston GI, Otoul C, Stach C, Zamacona M, Dörner T, Urowitz M, Hiepe F (2017) Repeated administration of dapirolizumab pegol in a randomised phase I study is well tolerated and accompanied by improvements in several composite measures of systemic lupus erythematosus disease activity and changes in whole blood transcriptomic profiles. Ann Rheum Dis 76(11):1837–1844. https://doi.org/10.1136/annrheumdis-2017-211388

    Article  CAS  PubMed  Google Scholar 

  198. Schwabe C, Rosenstock B, Doan T, Hamilton P, Dunbar PR, Eleftheraki AG, Joseph D, Hilbert J, Schoelch C, Padula SJ, Steffgen J (2018) Safety, pharmacokinetics, and pharmacodynamics of multiple rising doses of BI 655064, an antagonistic anti-CD40 antibody, in healthy subjects: a potential novel treatment for autoimmune diseases. J Clin Pharmacol 58(12):1566–1577. https://doi.org/10.1002/jcph.1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Craft JE (2012) Follicular helper T cells in immunity and systemic autoimmunity. Nat Rev Rheumatol 8(6):337–347. https://doi.org/10.1038/nrrheum.2012.58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Hutloff A, Dittrich AM, Beier KC, Eljaschewitsch B, Kraft R, Anagnostopoulos I, Kroczek RA (1999) ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397(6716):263–266. https://doi.org/10.1038/16717

    Article  CAS  PubMed  Google Scholar 

  201. Yang JH, Zhang J, Cai Q, Zhao DB, Wang J, Guo PE, Liu L, Han XH, Shen Q (2005) Expression and function of inducible costimulator on peripheral blood T cells in patients with systemic lupus erythematosus. Rheumatology (Oxford, England) 44 (10):1245-1254. https://doi.org/10.1093/rheumatology/keh724

  202. Cheng LE, Amoura Z, Cheah B, Hiepe F, Sullivan BA, Zhou L, Arnold GE, Tsuji WH, Merrill JT, Chung JB (2018) Brief Report: A Randomized, Double-Blind, Parallel-Group, Placebo-Controlled, Multiple-Dose Study to Evaluate AMG 557 in Patients With Systemic Lupus Erythematosus and Active Lupus Arthritis. Arthritis & rheumatology (Hoboken, NJ) 70 (7):1071-1076. https://doi.org/10.1002/art.40479

  203. Linsley PS, Brady W, Urnes M, Grosmaire LS, Damle NK, Ledbetter JA (1991) CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med 174(3):561–569. https://doi.org/10.1084/jem.174.3.561

    Article  CAS  PubMed  Google Scholar 

  204. Merrill JT, Burgos-Vargas R, Westhovens R, Chalmers A, D’Cruz D, Wallace DJ, Bae SC, Sigal L, Becker JC, Kelly S, Raghupathi K, Li T, Peng Y, Kinaszczuk M, Nash P (2010) The efficacy and safety of abatacept in patients with non-life-threatening manifestations of systemic lupus erythematosus: results of a twelve-month, multicenter, exploratory, phase IIb, randomized, double-blind, placebo-controlled trial. Arthritis Rheum 62(10):3077–3087. https://doi.org/10.1002/art.27601

    Article  CAS  PubMed  Google Scholar 

  205. Furie R, Nicholls K, Cheng TT, Houssiau F, Burgos-Vargas R, Chen SL, Hillson JL, Meadows-Shropshire S, Kinaszczuk M, Merrill JT (2014) Efficacy and safety of abatacept in lupus nephritis: a twelve-month, randomized, double-blind study Arthritis & rheumatology (Hoboken, NJ) 66(2):379- 389. https://doi.org/10.1002/art.38260

  206. Tam CS, Anderson MA, Pott C, Agarwal R, Handunnetti S, Hicks RJ, Burbury K, Turner G, Di Iulio J, Bressel M, Westerman D, Lade S, Dreyling M, Dawson SJ, Dawson MA, Seymour JF, Roberts AW (2018) Ibrutinib plus Venetoclax for the Treatment of Mantle-Cell Lymphoma. N Engl J Med 378(13):1211–1223. https://doi.org/10.1056/NEJMoa1715519

    Article  CAS  PubMed  Google Scholar 

  207. Hutcheson J, Vanarsa K, Bashmakov A, Grewal S, Sajitharan D, Chang BY, Buggy JJ, Zhou XJ, Du Y, Satterthwaite AB, Mohan C (2012) Modulating proximal cell signaling by targeting Btk ameliorates humoral autoimmunity and end-organ disease in murine lupus. Arthritis Ther 14(6):R243. https://doi.org/10.1186/ar4086

    Article  CAS  Google Scholar 

  208. Mina-Osorio P, LaStant J, Keirstead N, Whittard T, Ayala J, Stefanova S, Garrido R, Dimaano N, Hilton H, Giron M, Lau KY, Hang J, Postelnek J, Kim Y, Min S, Patel A, Woods J, Ramanujam M, DeMartino J, Narula S, Xu D (2013) Suppression of glomerulonephritis in lupus-prone NZB × NZW mice by RN486, a selective inhibitor of Bruton’s tyrosine kinase. Arthritis Rheum 65(9):2380–2391. https://doi.org/10.1002/art.38047

    Article  CAS  PubMed  Google Scholar 

  209. Rankin AL, Seth N, Keegan S, Andreyeva T, Cook TA, Edmonds J, Mathialagan N, Benson MJ, Syed J, Zhan Y, Benoit SE, Miyashiro JS, Wood N, Mohan S, Peeva E, Ramaiah SK, Messing D, Homer BL, Dunussi-Joannopoulos K, Nickerson-Nutter CL, Schnute ME, Douhan J, 3rd (2013) Selective inhibition of BTK prevents murine lupus and antibody-mediated glomerulonephritis. Journal of immunology (Baltimore, Md : 1950) 191 (9):4540–4550. https://doi.org/10.4049/jimmunol.1301553

  210. Hahn BH (1998) Antibodies to DNA. N Engl J Med 338(19):1359–1368. https://doi.org/10.1056/nejm199805073381906

    Article  CAS  PubMed  Google Scholar 

  211. Lefkowith JB, Kiehl M, Rubenstein J, DiValerio R, Bernstein K, Kahl L, Rubin RL, Gourley M (1996) Heterogeneity and clinical significance of glomerular-binding antibodies in systemic lupus erythematosus. J Clin Investig 98(6):1373–1380. https://doi.org/10.1172/jci118924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Chan TM, Leung JK, Ho SK, Yung S (2002) Mesangial cell-binding anti-DNA antibodies in patients with systemic lupus erythematosus. J Am Soc Nephrol: JASN 13(5):1219–1229. https://doi.org/10.1097/01.asn.0000014223.71109.13

    Article  CAS  PubMed  Google Scholar 

  213. Furie RA, Cash JM, Cronin ME, Katz RS, Weisman MH, Aranow C, Liebling MR, Hudson NP, Berner CM, Coutts S, de Haan HA (2001) Treatment of systemic lupus erythematosus with LJP 394. J Rheum 28(2):257–265

    CAS  PubMed  Google Scholar 

  214. Cardiel MH, Tumlin JA, Furie RA, Wallace DJ, Joh T, Linnik MD (2008) Abetimus sodium for renal flare in systemic lupus erythematosus: results of a randomized, controlled phase III trial. Arthritis Rheum 58(8):2470–2480. https://doi.org/10.1002/art.23673

    Article  CAS  PubMed  Google Scholar 

  215. Linnik MD, Hu JZ, Heilbrunn KR, Strand V, Hurley FL, Joh T (2005) Relationship between anti-double-stranded DNA antibodies and exacerbation of renal disease in patients with systemic lupus erythematosus. Arthritis Rheum 52(4):1129–1137. https://doi.org/10.1002/art.20980

    Article  CAS  PubMed  Google Scholar 

  216. Lavie F, Miceli-Richard C, Ittah M, Sellam J, Gottenberg JE, Mariette X (2007) Increase of B cell-activating factor of the TNF family (BAFF) after rituximab treatment: insights into a new regulating system of BAFF production. Ann Rheum Dis 66(5):700–703. https://doi.org/10.1136/ard.2006.060772

    Article  CAS  PubMed  Google Scholar 

  217. Aranow C, Dall’Era M, Byron M, Ding L, Smilek D, Diamond B, Wofsy D (2018) FRI0305 Phase 2 trial of induction therapy with anti-cd20 (RITUXIMAB) followed by maintenance therapy with anti-baff (BELIMUMAB) in patients with active lupus nephritis. Ann Rheum Dis 77 (Suppl 2):690–690. https://doi.org/10.1136/annrheumdis-2018-eular.5711

    Article  Google Scholar 

  218. Atisha-Fregoso Y, Malkiel S, Harris KM, Byron M, Ding L, Kanaparthi S, Barry WT, Gao W, Ryker K, Tosta P, Askanase AD, Boackle SA, Chatham WW, Kamen DL, Karp DR, Kirou KA, Lim SS, Marder B, McMahon M, Parikh SV, Pendergraft WF, 3rd, Podoll AS, Saxena A, Wofsy D, Diamond B, Smilek DE, Aranow C, Dall'Era M (2020) CALIBRATE: A Phase 2 Randomized Trial of Rituximab Plus Cyclophosphamide Followed by Belimumab for the Treatment of Lupus Nephritis. Arthritis Rheumatol (Hoboken, NJ). https://doi.org/10.1002/art.41466

  219. Kraaij T, Kamerling S, Rooij Ed, Daele Pv, Bajema I, Bredewold O, Huizinga T, Rabelink T, Kooten Cv, Teng Y (2017) SAT0258 Synergetic b-cell immunomodulation with rituximab and belimumab is clinically effective in severe and refractory systemic lupus erythematosus – the synbiose proof-of-concept study. Ann Rheum Dis 76 (Suppl 2):871–871. https://doi.org/10.1136/annrheumdis-2017-eular.2364

  220. Jones A, Muller P, Dore CJ, Ikeji F, Caverly E, Chowdhury K, Isenberg DA, Gordon C, Ehrenstein MR (2019) Belimumab after B cell depletion therapy in patients with systemic lupus erythematosus (BEAT Lupus) protocol: a prospective multicentre, double-blind, randomised, placebo-controlled, 52-week phase II clinical trial. BMJ open 9(12):e032569. https://doi.org/10.1136/bmjopen-2019-032569

    Article  PubMed  PubMed Central  Google Scholar 

  221. Teng YKO, Bruce IN, Diamond B, Furie RA, van Vollenhoven RF, Gordon D, Groark J, Henderson RB, Oldham M, Tak PP (2019) Phase III, multicentre, randomised, double-blind, placebo-controlled, 104-week study of subcutaneous belimumab administered in combination with rituximab in adults with systemic lupus erythematosus (SLE): BLISS-BELIEVE study protocol. BMJ open 9(3):e025687. https://doi.org/10.1136/bmjopen-2018-025687

    Article  PubMed  PubMed Central  Google Scholar 

  222. Cui Y, Sheng Y, Zhang X (2013) Genetic susceptibility to SLE: recent progress from GWAS. J Autoimmun 41:25–33. https://doi.org/10.1016/j.jaut.2013.01.008

    Article  CAS  PubMed  Google Scholar 

  223. Morris DL, Sheng Y, Zhang Y, Wang YF, Zhu Z, Tombleson P, Chen L, Cunninghame Graham DS, Bentham J, Roberts AL, Chen R, Zuo X, Wang T, Wen L, Yang C, Liu L, Yang L, Li F, Huang Y, Yin X, Yang S, Rönnblom L, Fürnrohr BG, Voll RE, Schett G, Costedoat-Chalumeau N, Gaffney PM, Lau YL, Zhang X, Yang W, Cui Y, Vyse TJ (2016) Genome-wide association meta-analysis in Chinese and European individuals identifies ten new loci associated with systemic lupus erythematosus. Nat Genet 48(8):940–946. https://doi.org/10.1038/ng.3603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Harley JB, Alarcón-Riquelme ME, Criswell LA, Jacob CO, Kimberly RP, Moser KL, Tsao BP, Vyse TJ, Langefeld CD, Nath SK, Guthridge JM, Cobb BL, Mirel DB, Marion MC, Williams AH, Divers J, Wang W, Frank SG, Namjou B, Gabriel SB, Lee AT, Gregersen PK, Behrens TW, Taylor KE, Fernando M, Zidovetzki R, Gaffney PM, Edberg JC, Rioux JD, Ojwang JO, James JA, Merrill JT, Gilkeson GS, Seldin MF, Yin H, Baechler EC, Li QZ, Wakeland EK, Bruner GR, Kaufman KM, Kelly JA (2008) Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet 40(2):204–210. https://doi.org/10.1038/ng.81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Graham RR, Kozyrev SV, Baechler EC, Reddy MV, Plenge RM, Bauer JW, Ortmann WA, Koeuth T, González Escribano MF, Pons-Estel B, Petri M, Daly M, Gregersen PK, Martín J, Altshuler D, Behrens TW, Alarcón-Riquelme ME (2006) A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat Genet 38(5):550–555. https://doi.org/10.1038/ng1782

    Article  CAS  PubMed  Google Scholar 

  226. Li X, Wu J, Carter RH, Edberg JC, Su K, Cooper GS, Kimberly RP (2003) A novel polymorphism in the Fcgamma receptor IIB (CD32B) transmembrane region alters receptor signaling. Arthritis Rheum 48(11):3242–3252. https://doi.org/10.1002/art.11313

    Article  CAS  PubMed  Google Scholar 

  227. Sun C, Molineros JE, Looger LL, Zhou XJ, Kim K, Okada Y, Ma J, Qi YY, Kim-Howard X, Motghare P, Bhattarai K, Adler A, Bang SY, Lee HS, Kim TH, Kang YM, Suh CH, Chung WT, Park YB, Choe JY, Shim SC, Kochi Y, Suzuki A, Kubo M, Sumida T, Yamamoto K, Lee SS, Kim YJ, Han BG, Dozmorov M, Kaufman KM, Wren JD, Harley JB, Shen N, Chua KH, Zhang H, Bae SC, Nath SK (2016) High-density genotyping of immune-related loci identifies new SLE risk variants in individuals with Asian ancestry. Nat Genet 48(3):323–330. https://doi.org/10.1038/ng.3496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Jeffries MA, Dozmorov M, Tang Y, Merrill JT, Wren JD, Sawalha AH (2011) Genome-wide DNA methylation patterns in CD4+ T cells from patients with systemic lupus erythematosus. Epigenetics 6(5):593–601. https://doi.org/10.4161/epi.6.5.15374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Zhang Y, Good-Jacobson KL (2019) Epigenetic regulation of B cell fate and function during an immune response. Immunol Rev 288(1):75–84. https://doi.org/10.1111/imr.12733

    Article  CAS  PubMed  Google Scholar 

  230. Syrett CM, Sierra I, Beethem ZT, Dubin AH, Anguera MC (2020) Loss of epigenetic modifications on the inactive X chromosome and sex-biased gene expression profiles in B cells from NZB/W F1 mice with lupus-like disease. J Autoimmun 107:102357. https://doi.org/10.1016/j.jaut.2019.102357

    Article  CAS  PubMed  Google Scholar 

  231. Wu H, Deng Y, Feng Y, Long D, Ma K, Wang X, Zhao M, Lu L, Lu Q (2018) Epigenetic regulation in B-cell maturation and its dysregulation in autoimmunity. Cell Mol Immunol 15(7):676–684. https://doi.org/10.1038/cmi.2017.133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Zhang B, Wang Y, Yuan Y, Sun J, Liu L, Huang D, Hu J, Wang M, Li S, Song W, Chen H, Zhou D, Zhang X (2020) In vitro elimination of autoreactive B cells from rheumatoid arthritis patients by universal chimeric antigen receptor T cells. Ann Rheum Dis. https://doi.org/10.1136/annrheumdis-2020-217844

    Article  PubMed  Google Scholar 

  233. Catalina MD, Owen KA, Labonte AC, Grammer AC, Lipsky PE (2020) The pathogenesis of systemic lupus erythematosus: Harnessing big data to understand the molecular basis of lupus. J Autoimmun 110:102359. https://doi.org/10.1016/j.jaut.2019.102359

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by grants from the National Natural Science Foundation of China (81788101, 81630044, 81771763), Chinese Academy of Medical Science Innovation Fund for Medical Sciences (CIFMS2017-12M-1-008, 2016-12M-1-003, 2017-I2M-3-011, 2016-12M-1-008), Beijing Capital Health Development Fund (2020-2-4019), and Grant from Medical Epigenetics Research Center, Chinese Academy of Medical Sciences (2017PT31035).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lidan Zhao or Xuan Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, Y., Zhao, L. & Zhang, X. B Cell Aberrance in Lupus: the Ringleader and the Solution. Clinic Rev Allerg Immunol 62, 301–323 (2022). https://doi.org/10.1007/s12016-020-08820-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-020-08820-7

Keywords

Navigation