Skip to main content

Advertisement

Log in

Biodistribution-based Administration of cGMP-compliant Human Umbilical Cord Mesenchymal Stem Cells Affects the Therapeutic Effect of Wound Healing

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Background

Although mesenchymal stem cells (MSCs) are used as therapeutic agents for skin injury therapy, few studies have reported the effects of dosing duration and delivery frequency on wound healing. In addition, before the clinical application of MSCs, it is important to assess whether their usage might influence tumor occurrence.

Methods

We described the metabolic patterns of subcutaneous injection of hUC-MSCs using fluorescence tracing and qPCR methods and applied them to the development of drug delivery strategies for promoting wound healing.

Results

(i) We developed cGMP-compliant hUC-MSC products with critical quality control points for wound healing; (ii) The products did not possess any tumorigenic or tumor-promoting/inhibiting ability in vivo; (iii) Fluorescence tracing and qPCR analyses showed that the subcutaneous application of hUC-MSCs did not result in safety-relevant biodistribution or ectopic migration; (iv) Reinjecting hUC-MSCs after significant consumption significantly improved reepithelialization and dermal regeneration.

Conclusions

Our findings provided a reference for controlling the quality of MSC products used for wound healing and highlighted the importance of delivery time and frequency for designing in vivo therapeutic studies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Code Availability

Not applicable.

References

  1. Bowers, S., & Franco, E. (2020). Chronic wounds: Evaluation and management. American Family Physician, 101(3), 159–166.

    PubMed  Google Scholar 

  2. Bjarnsholt, T., et al. (2008). Why chronic wounds will not heal: A novel hypothesis. Wound Repair and Regeneration, 16(1), 2–10.

    Article  PubMed  Google Scholar 

  3. Bian, D., et al. (2022). The application of mesenchymal stromal cells (MSCs) and their derivative exosome in skin wound healing: A comprehensive review. Stem Cell Research & Therapy, 13(1), 24.

    Article  CAS  Google Scholar 

  4. Tottoli, E. M., et al. (2020). Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics, 12(8), 735.

  5. Bray, E. R., Kirsner, R. S., & Badiavas, E. V. (2022). Mesenchymal stem cell–derived extracellular vesicles as an advanced therapy for chronic wounds. Cold Spring Harbor Perspectives in Biology, 14(10), a041227.

  6. Schneider, C., Stratman, S., & Kirsner, R. S. (2021). Lower extremity ulcers. Medical Clinics of North America, 105(4), 663–679.

    Article  PubMed  Google Scholar 

  7. Stupin, V., et al. (2020). The effect of inflammation on the healing process of acute skin wounds under the treatment of wounds with injections in rats. Journal of Experimental Pharmacology, 12, 409–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Galderisi, U., Peluso, G., & Di Bernardo, G. (2021). Clinical trials based on mesenchymal stromal cells are exponentially increasing: Where are we in recent years? Stem Cell Reviews and Reports, 18(1), 23–36.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Squillaro, T., Peluso, G., & Galderisi, U. (2016). Clinical trials with mesenchymal stem cells: An update. Cell Transplantation, 25(5), 829–848.

    Article  PubMed  Google Scholar 

  10. Vaes, B., et al. (2012). Application of MultiStem® allogeneic cells for immunomodulatory therapy: Clinical progress and pre-clinical challenges in prophylaxis for graft versus host disease. Frontiers in Immunology, 3, 345.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Konishi, A., et al. (2016). First approval of regenerative medical products under the PMD act in Japan. Cell Stem Cell, 18(4), 434–435.

    Article  CAS  PubMed  Google Scholar 

  12. Hashmi, S., et al. (2016). Survival after mesenchymal stromal cell therapy in steroid-refractory acute graft-versus-host disease: Systematic review and meta-analysis. The Lancet Haematology, 3(1), e45–e52.

    Article  PubMed  Google Scholar 

  13. Wang, X., et al. (2022). Secretome of human umbilical cord mesenchymal stem cell maintains skin homeostasis by regulating multiple skin physiological function. Cell and Tissue Research, 391(1), 111–125.

    Article  PubMed  Google Scholar 

  14. Ra, J. C., et al. (2011). Stem cell treatment for patients with autoimmune disease by systemic infusion of culture-expanded autologous adipose tissue derived mesenchymal stem cells. Journal of Translational Medicine, 9(1), 181.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Le Blanc, K., & Ringdén, O. (2007). Immunomodulation by mesenchymal stem cells and clinical experience. Journal of Internal Medicine, 262(5), 509–525.

    Article  PubMed  Google Scholar 

  16. Dai, Y., et al. (2007). Skin epithelial cells in mice from umbilical cord blood mesenchymal stem cells. Burns, 33(4), 418–428.

    Article  PubMed  Google Scholar 

  17. Lataillade, J. J., et al. (2007). New approach to radiation burn treatment by dosimetry-guided surgery combined with autologous mesenchymal stem cell therapy. Regenerative Medicine, 2(5), 785–794.

    Article  CAS  PubMed  Google Scholar 

  18. Vojtassák, J., et al. (2006). Autologous biograft and mesenchymal stem cells in treatment of the diabetic foot. Neuro Endocrinology Letters, 27(Suppl 2), 134–137.

    PubMed  Google Scholar 

  19. Zhang, Q.-Z., et al. (2010). Human Gingiva-derived mesenchymal stem cells elicit polarization of M2 macrophages and enhance cutaneous wound healing. Stem Cells, 28(10), 1856–1868.

    Article  CAS  PubMed  Google Scholar 

  20. Bozza, P., et al. (2008). Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS ONE, 3(4), e1886.

    Article  Google Scholar 

  21. Singer, N. G., & Caplan, A. I. (2011). Mesenchymal stem cells: mechanisms of inflammation. Annual Review of Pathology: Mechanisms of Disease, 6(1), 457–478.

    Article  CAS  Google Scholar 

  22. Sasaki, M., et al. (2008). Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. The Journal of Immunology, 180(4), 2581–2587.

    Article  CAS  PubMed  Google Scholar 

  23. Altman, A. M., et al. (2008). Dermal matrix as a carrier for in vivo delivery of human adipose-derived stem cells. Biomaterials, 29(10), 1431–1442.

    Article  CAS  PubMed  Google Scholar 

  24. Shumakov, V. I., et al. (2003). Mesenchymal bone marrow stem cells more effectively stimulate regeneration of deep burn wounds than embryonic fibroblasts. Bulletin of Experimental Biology and Medicine, 136(2), 192–195.

    Article  CAS  PubMed  Google Scholar 

  25. Kwon, D. S., et al. (2008). Treatment with bone marrow-derived stromal cells accelerates wound healing in diabetic rats. International Wound Journal, 5(3), 453–463.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wu, Y., et al. (2014). Bone marrow-derived mesenchymal stem cell attenuates skin fibrosis development in mice. International Wound Journal, 11(6), 701–710.

    Article  PubMed  Google Scholar 

  27. Han, Y., et al. (2019). Mesenchymal stem cells for regenerative medicine. Cells, 8(8), 886.

  28. Körbling, M., et al. (2002). Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells. New England Journal of Medicine, 346(10), 738–746.

    Article  PubMed  Google Scholar 

  29. Murata, H., et al. (2006). Donor-derived cells and human graft-versus-host disease of the skin. Blood, 109(6), 2663–2665.

    Article  PubMed  Google Scholar 

  30. Kumamoto, T., et al. (2003). Hair follicles serve as local reservoirs of skin mast cell precursors. Blood, 102(5), 1654–1660.

    Article  CAS  PubMed  Google Scholar 

  31. Lako, M., et al. (2002). Hair follicle dermal cells repopulate the mouse haematopoietic system. Journal of Cell Science, 115(20), 3967–3974.

    Article  CAS  PubMed  Google Scholar 

  32. Cho, D.-I., et al. (2014). Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Experimental & Molecular Medicine, 46(1), e70–e70.

    Article  CAS  Google Scholar 

  33. Dameshghi, S., et al. (2016). Mesenchymal stem cells alter macrophage immune responses to Leishmania major infection in both susceptible and resistance mice. Immunology Letters, 170, 15–26.

    Article  CAS  PubMed  Google Scholar 

  34. Hu, Y., et al. (2016). Mesenchymal stem cell-educated macrophages ameliorate LPS-induced systemic response. Mediators of Inflammation, 2016, 1–12.

    Google Scholar 

  35. Jackson, W. M., Nesti, L. J., & Tuan, R. S. (2012). Mesenchymal stem cell therapy for attenuation of scar formation during wound healing. Stem Cell Research & Therapy, 3(3), 20.

    Article  Google Scholar 

  36. Kanji, S., & Das, H. (2017). Advances of stem cell therapeutics in cutaneous wound healing and regeneration. Mediators of Inflammation, 2017, 1–14.

    Article  Google Scholar 

  37. Seo, B. F., & Jung, S.-N. (2016). The immunomodulatory effects of mesenchymal stem cells in prevention or treatment of excessive scars. Stem Cells International, 2016, 1–8.

    Article  Google Scholar 

  38. Wang, X. I. N., et al. (2016). Enhanced expression of polysialic acid correlates with malignant phenotype in breast cancer cell lines and clinical tissue samples. International Journal of Molecular Medicine, 37(1), 197–206.

    Article  PubMed  Google Scholar 

  39. André, F., et al. (2015). Promotion of cell migration by Neural Cell Adhesion Molecule (NCAM) is enhanced by PSA in a polysialyltransferase-specific manner. PLoS ONE, 10(4), e0124237.

    Article  Google Scholar 

  40. Zeng, C., et al. (2010). Evaluation of 5-ethynyl-2′-deoxyuridine staining as a sensitive and reliable method for studying cell proliferation in the adult nervous system. Brain Research, 1319, 21–32.

    Article  CAS  PubMed  Google Scholar 

  41. Livak, K. J., & Schmittgen, T. D. L. J. M. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25(4), 402–408.

    Article  CAS  PubMed  Google Scholar 

  42. Birch, M., Tomlinson, A., & Ferguson, M. W. (2005). Animal models for adult dermal wound healing. Methods in Molecular Medicine, 117, 223–235.

    PubMed  Google Scholar 

  43. Duffield, J. S., et al. (2013). Host responses in tissue repair and fibrosis. Annual Review of Pathology: Mechanisms of Disease, 8(1), 241–276.

    Article  CAS  Google Scholar 

  44. Galipeau, J., et al. (2016). International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy, 18(2), 151–159.

    Article  CAS  PubMed  Google Scholar 

  45. Krampera, M., et al. (2013). Immunological characterization of multipotent mesenchymal stromal cells–the International Society for Cellular Therapy (ISCT) working proposal. Cytotherapy, 15(9), 1054–1061.

    Article  PubMed  Google Scholar 

  46. Naji, A., et al. (2019). Biological functions of mesenchymal stem cells and clinical implications. Cellular and Molecular Life Sciences, 76(17), 3323–3348.

    Article  CAS  PubMed  Google Scholar 

  47. Gallant-Behm, C. L., et al. (2011). Epithelial regulation of mesenchymal tissue behavior. Journal of Investigative Dermatology, 131(4), 892–899.

    Article  CAS  PubMed  Google Scholar 

  48. Doi, H., et al. (2016). Potency of umbilical cord blood- and Wharton’s jelly-derived mesenchymal stem cells for scarless wound healing. Scientific Reports, 6(1), 18844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Maxson, S., et al. (2012). Concise review: Role of mesenchymal stem cells in wound repair. Stem Cells Translational Medicine, 1(2), 142–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sobacchi, C., et al. (2017). Soluble factors on stage to direct mesenchymal stem cells fate. Frontiers in Bioengineering and Biotechnology, 5, 32.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Joel, M. D. M., et al. (2019). MSC: Immunoregulatory effects, roles on neutrophils and evolving clinical potentials. American Journal of Translational Research, 11(6), 3890–3904.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Gurtner, G. C., et al. (2008). Wound repair and regeneration. Nature, 453(7193), 314–321.

    Article  CAS  PubMed  Google Scholar 

  53. Rhett, J. M., et al. (2008). Novel therapies for scar reduction and regenerative healing of skin wounds. Trends in Biotechnology, 26(4), 173–180.

    Article  CAS  PubMed  Google Scholar 

  54. Werner, S., & Grose, R. (2003). Regulation of wound healing by growth factors and cytokines. Physiological Reviews, 83(3), 835–870.

    Article  CAS  PubMed  Google Scholar 

  55. Guo, S.-C., et al. (2017). Exosomes derived from platelet-rich plasma promote the re-epithelization of chronic cutaneous wounds via activation of YAP in a diabetic rat model. Theranostics, 7(1), 81–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lyamina, S., et al. (2023). Mesenchymal stromal cells as a driver of inflammaging. International Journal of Molecular Sciences, 24(7), 6372.

  57. Zangi, L., et al. (2009). Direct imaging of immune rejection and memory induction by allogeneic mesenchymal stromal cells. Stem Cells, 27(11), 2865–2874.

    Article  CAS  PubMed  Google Scholar 

  58. Vilalta, M., et al. (2008). Biodistribution, long-term survival, and safety of human adipose tissue-derived mesenchymal stem cells transplanted in nude mice by high sensitivity non-invasive bioluminescence imaging. Stem Cells and Development, 17(5), 993–1004.

    Article  PubMed  Google Scholar 

  59. Gholamrezanezhad, A., et al. (2011). In vivo tracking of 111In-oxine labeled mesenchymal stem cells following infusion in patients with advanced cirrhosis. Nuclear Medicine and Biology, 38(7), 961–967.

    Article  CAS  PubMed  Google Scholar 

  60. Djouad, F., et al. (2005). Reversal of the immunosuppressive properties of mesenchymal stem cells by tumor necrosis factor α in collagen-induced arthritis. Arthritis & Rheumatism, 52(5), 1595–1603.

    Article  CAS  Google Scholar 

  61. Zhuang, W. Z., et al. (2021). Mesenchymal stem/stromal cell-based therapy: Mechanism, systemic safety and biodistribution for precision clinical applications. Journal of Biomedical Science, 28(1), 28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wu, C., et al. (2014). Polymeric vector-mediated gene transfection of MSCs for dual bioluminescent and MRI tracking in vivo. Biomaterials, 35(28), 8249–8260.

    Article  CAS  PubMed  Google Scholar 

  63. Schächinger, V., et al. (2008). Pilot trial on determinants of progenitor cell recruitment to the infarcted human myocardium. Circulation, 118(14), 1425–1432.

    Article  PubMed  Google Scholar 

  64. Gong, M., et al. (2017). Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis. Oncotarget, 8(28), 45200–45212.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ludwig, A.-K., et al. (2018). Precipitation with polyethylene glycol followed by washing and pelleting by ultracentrifugation enriches extracellular vesicles from tissue culture supernatants in small and large scales. Journal of Extracellular Vesicles, 7(1), 1528109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yi, Y. W., et al. (2020). Advances in analysis of biodistribution of exosomes by molecular imaging. International Journal of Molecular Sciences, 21(2), 665.

  67. Wang, L.-L., et al. (2016). Pharmacological activation of cannabinoid 2 receptor attenuates inflammation, fibrogenesis, and promotes re-epithelialization during skin wound healing. European Journal of Pharmacology, 786, 128–136.

    Article  CAS  PubMed  Google Scholar 

  68. Harvey, C. (2005). Wound healing. Orthopaedic Nursing, 24(2), 143–57. quiz 158-9.

    Article  PubMed  Google Scholar 

Download references

Funding

This research was funded by Science and Technology SMEs Innovation Capacity Improvement Project of Shandong Province (Grant No. 2022TSGC1004); China National Key R&D Program during the 14th Five-year Plan Period (Grant No. 2021YFA1101500).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, W.X. and T.Y.; methodology, W.QH., W.X., M.LJ.; validation, W.QH. and T.RF.; investigation, W.X.; data curation, W.QH. and G.HZ.; writing—W.X. and T.ZQ.; supervision, T.Y. and W.X.; project administration, W.X. and T.Y. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yi Tan.

Ethics declarations

Ethical Approval

Human umbilical cords were harvested with written informed consent from the donor. All procedures performed involving human participants in experiments were carried out per ethical standards of the institutional and/or national research committee and the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The animal study was carried out in accordance with the commendations of the Institutional Animal Care and Use Committee of Northwest University. The protocol was approved by the Institutional Animal Care and Use Committee of Northwest University.

Consent to Participate

The patients/participants provided their written informed consent to participate in this study.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, Q., Meng, L. et al. Biodistribution-based Administration of cGMP-compliant Human Umbilical Cord Mesenchymal Stem Cells Affects the Therapeutic Effect of Wound Healing. Stem Cell Rev and Rep 20, 329–346 (2024). https://doi.org/10.1007/s12015-023-10644-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10644-9

Keywords

Navigation