Skip to main content

Advertisement

Log in

Tumor Microenvironment: A Niche for Cancer Stem Cell Immunotherapy

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Tumorigenic Cancer Stem Cells (CSCs), often called tumor-initiating cells (TICs), represent a unique subset of cells within the tumor milieu. They stand apart from the bulk of tumor cells due to their exceptional self-renewal, metastatic, and differentiation capabilities. Despite significant progress in classifying CSCs, these cells remain notably resilient to conventional radiotherapy and chemotherapy, contributing to cancer recurrence. In this review, our objective is to explore novel avenues of research that delve into the distinctive characteristics of CSCs within their surrounding tumor microenvironment (TME). We will start with an overview of the defining features of CSCs and then delve into their intricate interactions with cells from the lymphoid lineage, namely T cells, B cells, and natural killer (NK) cells. Furthermore, we will discuss their dynamic interplay with myeloid lineage cells, including macrophages, neutrophils, and myeloid-derived suppressor cells (MDSCs). Moreover, we will illuminate the crosstalk between CSCs and cells of mesenchymal origin, specifically fibroblasts, adipocytes, and endothelial cells. Subsequently, we will underscore the pivotal role of CSCs within the context of the tumor-associated extracellular matrix (ECM). Finally, we will highlight pre-clinical and clinical studies that target CSCs within the intricate landscape of the TME, including CAR-T therapy, oncolytic viruses, and CSC-vaccines, with the ultimate goal of uncovering novel avenues for CSC-based cancer immunotherapy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not Applicable.

Code Availability

Not Applicable.

References

  1. Siegel, R. L., et al. (2023). Cancer statistics, 2023. CA: A Cancer Journal for Clinicians, 73(1), 17–48.

    PubMed  Google Scholar 

  2. Ma, Z. Q., & Richardson, L. C. (2022). Cancer Screening Prevalence and Associated Factors Among US Adults. Preventing Chronic Disease, 19, E22.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sung, H., et al. (2021). Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249.

  4. Dzobo, K., et al. (2020). Advances in therapeutic targeting of cancer stem cells within the tumor microenvironment: An updated review. Cells, 9(8), 1896.

  5. O’Flaherty, J. D., et al. (2012). The cancer stem-cell hypothesis: Its emerging role in lung cancer biology and its relevance for future therapy. Journal of Thoracic Oncology, 7(12), 1880–1890.

    Article  CAS  PubMed  Google Scholar 

  6. Li, Y., et al. (2021). Drug resistance and Cancer stem cells. Cell Communication and Signaling: CCS, 19(1), 19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kovacic, B., et al. (2012). Diverging fates of cells of origin in acute and chronic leukaemia. EMBO Molecular Medicine, 4(4), 283–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Eun, K., Ham, S. W., & Kim, H. (2017). Cancer stem cell heterogeneity: Origin and new perspectives on CSC targeting. BMB Reports, 50(3), 117–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zheng, X., Yu, C., & Xu, M. (2021). Linking Tumor Microenvironment to Plasticity of Cancer Stem Cells: Mechanisms and Application in Cancer Therapy. Frontiers in Oncology, 11, 678333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nimmakayala, R. K., Batra, S. K., & Ponnusamy, M. P. (2019). Unraveling the journey of cancer stem cells from origin to metastasis. Biochimica et Biophysica Acta - Reviews on Cancer, 1871(1), 50–63.

    Article  CAS  PubMed  Google Scholar 

  11. Arneth, B. (2019). Tumor microenvironment. Medicina (Kaunas), 56(1), 15.

  12. Pattabiraman, D. R., & Weinberg, R. A. (2014). Tackling the cancer stem cells - what challenges do they pose? Nature Reviews. Drug Discovery, 13(7), 497–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, S., et al. (2018). Interplay between inflammatory tumor microenvironment and cancer stem cells. Oncology letters, 16(1), 679–686.

    PubMed  PubMed Central  Google Scholar 

  14. Langley, R. R., & Fidler, I. J. (2011). The seed and soil hypothesis revisited–the role of tumor-stroma interactions in metastasis to different organs. International Journal of Cancer, 128(11), 2527–2535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zeineddine, D., et al. (2014). The Oct4 protein: More than a magic stemness marker. Am J Stem Cells, 3(2), 74–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu, G., et al. (2015). Oct4 is a reliable marker of liver tumor propagating cells in hepatocellular carcinoma. Discovery Medicine, 20(110), 219–229.

    PubMed  Google Scholar 

  17. Hatefi, N., et al. (2012). Evaluating the expression of oct4 as a prognostic tumor marker in bladder cancer. Iranian Journal of Basic Medical Sciences, 15(6), 1154–1161.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Leis, O., et al. (2012). Sox2 expression in breast tumours and activation in breast cancer stem cells. Oncogene, 31(11), 1354–1365.

    Article  CAS  PubMed  Google Scholar 

  19. Bareiss, P. M., et al. (2013). SOX2 expression associates with stem cell state in human ovarian carcinoma. Cancer Research, 73(17), 5544–5555.

    Article  CAS  PubMed  Google Scholar 

  20. Thirusangu, P., et al. (2022). PFKFB3 regulates cancer stemness through the hippo pathway in small cell lung carcinoma. Oncogene, 41(33), 4003–4017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee, Y., et al. (2021). TMPRSS4 promotes cancer stem-like properties in prostate cancer cells through upregulation of SOX2 by SLUG and TWIST1. Journal of Experimental & Clinical Cancer Research, 40(1), 372.

    Article  CAS  Google Scholar 

  22. Chiou, S. H., et al. (2010). Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Research, 70(24), 10433–10444.

    Article  CAS  PubMed  Google Scholar 

  23. Amsterdam, A., et al. (2013). Localization of the stem cell markers LGR5 and Nanog in the normal and the cancerous human ovary and their inter-relationship. Acta Histochemica, 115(4), 330–338.

    Article  CAS  PubMed  Google Scholar 

  24. Bourguignon, L. Y., et al. (2008). Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. Journal of Biological Chemistry, 283(25), 17635–17651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zbinden, M., et al. (2010). NANOG regulates glioma stem cells and is essential in vivo acting in a cross-functional network with GLI1 and p53. EMBO Journal, 29(15), 2659–2674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jeter, C. R., et al. (2009). Functional evidence that the self-renewal gene NANOG regulates human tumor development. Stem Cells, 27(5), 993–1005.

    Article  CAS  PubMed  Google Scholar 

  27. Singh, S., et al. (2013). Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress. Free Radical Biology & Medicine, 56, 89–101.

    Article  CAS  Google Scholar 

  28. Modok, S., Mellor, H. R., & Callaghan, R. (2006). Modulation of multidrug resistance efflux pump activity to overcome chemoresistance in cancer. Current Opinion in Pharmacology, 6(4), 350–354.

    Article  CAS  PubMed  Google Scholar 

  29. Sterzyńska, K., et al. (2018). Mutual expression of ALDH1A1, LOX, and collagens in ovarian cancer cell lines as combined CSCs- and ECM-related models of drug resistance development. International Journal of Molecular Sciences, 20(1), 54.

  30. Verma, A., Kapoor, R., & Mittal, R. D. (2017). Cluster of Differentiation 44 (CD44) Gene Variants: A Putative Cancer Stem Cell Marker in Risk Prediction of Bladder Cancer in North Indian Population. Indian Journal of Clinical Biochemistry, 32(1), 74–83.

    Article  CAS  PubMed  Google Scholar 

  31. Li, J., et al. (2022). Integrin β1 in Pancreatic Cancer: Expressions, Functions, and Clinical Implications. Cancers (Basel), 14(14), 3377.

  32. Condello, S., et al. (2018). Tissue Tranglutaminase Regulates Interactions between Ovarian Cancer Stem Cells and the Tumor Niche. Cancer Research, 78(11), 2990–3001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gardelli, C., et al. (2021). Differential glycosylation of collagen modulates lung cancer stem cell subsets through β1 integrin-mediated interactions. Cancer Science, 112(1), 217–230.

    Article  CAS  PubMed  Google Scholar 

  34. Vadhan, A., et al. (2022). CD44 promotes breast cancer metastasis through AKT-mediated downregulation of nuclear FOXA2. Biomedicines, 10(10), 2488.

  35. Zhang, Q., Cai, D. J., & Li, B. (2015). Ovarian cancer stem-like cells elicit the polarization of M2 macrophages. Molecular Medicine Reports, 11(6), 4685–4693.

    Article  CAS  PubMed  Google Scholar 

  36. Zöller, M. (2015). CD44, Hyaluronan, the Hematopoietic Stem Cell, and Leukemia-Initiating Cells. Frontiers in Immunology, 6, 235.

    PubMed  PubMed Central  Google Scholar 

  37. Connor, E. V., et al. (2019). Thy-1 predicts poor prognosis and is associated with self-renewal in ovarian cancer. Journal of Ovarian Research, 12(1), 112.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Luo, J., et al. (2016). The Notch pathway promotes the cancer stem cell characteristics of CD90+ cells in hepatocellular carcinoma. Oncotarget, 7(8), 9525–9537.

    Article  PubMed  Google Scholar 

  39. Zhu, J., et al. (2014). Overexpression of CD90 (Thy-1) in pancreatic adenocarcinoma present in the tumor microenvironment. Plos One, 9(12), e115507.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schliekelman, M. J., et al. (2017). Thy-1(+) Cancer-associated Fibroblasts Adversely Impact Lung Cancer Prognosis. Science and Reports, 7(1), 6478.

    Article  Google Scholar 

  41. Lobba, A. R. M., et al. (2018). High CD90 (THY-1) expression positively correlates with cell transformation and worse prognosis in basal-like breast cancer tumors. PLoS ONE, 13(6), e0199254.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mazzoldi, E. L., et al. (2019). A juxtacrine/paracrine loop between C-Kit and stem cell factor promotes cancer stem cell survival in epithelial ovarian cancer. Cell Death & Disease, 10(6), 412.

    Article  Google Scholar 

  43. Harris, K. S., et al. (2021). CD117/c-kit defines a prostate CSC-like subpopulation driving progression and TKI resistance. Science and Reports, 11(1), 1465.

    Article  CAS  Google Scholar 

  44. Park, J., et al. (2021). Role of CD133/NRF2 Axis in the Development of Colon Cancer Stem Cell-Like Properties. Frontiers in Oncology, 11, 808300.

    Article  CAS  PubMed  Google Scholar 

  45. Hu, Z., et al. (2017). Targeting tissue factor as a novel therapeutic oncotarget for eradication of cancer stem cells isolated from tumor cell lines, tumor xenografts and patients of breast, lung and ovarian cancer. Oncotarget, 8(1), 1481–1494.

    Article  PubMed  Google Scholar 

  46. Liu, F., & Qian, Y. (2021). The role of CD133 in hepatocellular carcinoma. Cancer Biology & Therapy, 22(4), 291–300.

    Article  CAS  Google Scholar 

  47. Yin, W., et al. (2022). Inhibition of autophagy promotes the elimination of liver cancer stem cells by CD133 aptamer-targeted delivery of doxorubicin. Biomolecules, 12(11), 1623.

  48. Zhao, Q., et al. (2016). Prognostic value of the expression of cancer stem cell-related markers CD133 and CD44 in hepatocellular carcinoma: From patients to patient-derived tumor xenograft models. Oncotarget, 7(30), 47431–47443.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Horst, D., et al. (2009). Prognostic significance of the cancer stem cell markers CD133, CD44, and CD166 in colorectal cancer. Cancer Investigation, 27(8), 844–850.

    Article  PubMed  Google Scholar 

  50. Kim, W. T., & Ryu, C. J. (2017). Cancer stem cell surface markers on normal stem cells. BMB Reports, 50(6), 285–298.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Liao, W. T., et al. (2014). Metastatic cancer stem cells: From the concept to therapeutics. American Journal of Stem Cells, 3(2), 46–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Dieter, S. M., et al. (2011). Distinct types of tumor-initiating cells form human colon cancer tumors and metastases. Cell Stem Cell, 9(4), 357–365.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, S. S., et al. (2012). CD133(+)CXCR4(+) colon cancer cells exhibit metastatic potential and predict poor prognosis of patients. BMC Medicine, 10, 85.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Roato, I. & Ferracini, R. (2018). Cancer stem cells, bone and tumor microenvironment: Key players in bone metastases. Cancers (Basel), 10(2), 56.

  55. Wu, Y., & Wu, P. Y. (2009). CD133 as a marker for cancer stem cells: Progresses and concerns. Stem Cells and Development, 18(8), 1127–1134.

    Article  CAS  PubMed  Google Scholar 

  56. Frank, N. Y., Schatton, T., & Frank, M. H. (2010). The therapeutic promise of the cancer stem cell concept. The Journal of Clinical Investigation, 120(1), 41–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ruivo, C. F., et al. (2022). Extracellular Vesicles from Pancreatic Cancer Stem Cells Lead an Intratumor Communication Network (EVNet) to fuel tumour progression. Gut, 71(10), 2043–2068.

    Article  CAS  PubMed  Google Scholar 

  58. Kakarala, M., & Wicha, M. S. (2007). Cancer stem cells: Implications for cancer treatment and prevention. Cancer Journal, 13(5), 271–275.

    Article  CAS  PubMed  Google Scholar 

  59. Gasch, C., et al. (2017). Catching moving targets: Cancer stem cell hierarchies, therapy-resistance & considerations for clinical intervention. Molecular Cancer, 16(1), 43.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Liu, A., Yu, X., & Liu, S. (2013). Pluripotency transcription factors and cancer stem cells: Small genes make a big difference. Chinese Journal of Cancer, 32(9), 483–487.

    PubMed  PubMed Central  Google Scholar 

  61. Matsui, W. H. (2016). Cancer stem cell signaling pathways. Medicine (Baltimore), 95(1 Suppl 1), S8-s19.

    Article  CAS  PubMed  Google Scholar 

  62. Rahman, M., et al. (2016). Stem cell and cancer stem cell: A Tale of Two Cells. Progress in Stem Cell, 3(2), 97–108.

  63. Wang, H., et al. (2021). Colorectal Cancer Stem Cell States Uncovered by Simultaneous Single-Cell Analysis of Transcriptome and Telomeres. Adv Sci (Weinh), 8(8), 2004320.

    Article  CAS  PubMed  Google Scholar 

  64. Luo, M., et al. (2020). Stem cell quiescence and its clinical relevance. World Journal of Stem Cells, 12(11), 1307–1326.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Plaks, V., Kong, N., & Werb, Z. (2015). The cancer stem cell niche: How essential is the niche in regulating stemness of tumor cells? Cell Stem Cell, 16(3), 225–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Malta, T. M., et al. (2018). Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation. Cell, 173(2), 338-354.e15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Borlongan, M. C., & Wang, H. (2023). Profiling and targeting cancer stem cell signaling pathways for cancer therapeutics. Frontiers in Cell and Developmental Biology, 11, 1125174.

  68. Bocci, F., et al. (2019). Toward understanding cancer stem cell heterogeneity in the tumor microenvironment. Proceedings of the National Academy of Sciences of the United States of America, 116(1), 148–157.

    Article  CAS  PubMed  Google Scholar 

  69. Shibue, T., & Weinberg, R. A. (2017). EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nature Reviews Clinical Oncology, 14(10), 611–629.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lu, W., & Kang, Y. (2019). Epithelial-Mesenchymal Plasticity in Cancer Progression and Metastasis. Developmental Cell, 49(3), 361–374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Constant, S. L., & Bottomly, K. (1997). Induction of Th1 and Th2 CD4+ T cell responses: The alternative approaches. Annual Review of Immunology, 15, 297–322.

    Article  CAS  PubMed  Google Scholar 

  72. Philip, M., & Schietinger, A. (2022). CD8+ T cell differentiation and dysfunction in cancer. Nature Reviews Immunology, 22(4), 209–223.

    Article  CAS  PubMed  Google Scholar 

  73. Choo, S. Y. (2007). The HLA system: Genetics, immunology, clinical testing, and clinical implications. Yonsei Medical Journal, 48(1), 11–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Müller, L., et al. (2020). Bidirectional Crosstalk Between Cancer Stem Cells and Immune Cell Subsets. Frontiers in Immunology, 11, 140–140.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Di Tomaso, T., et al. (2010). Immunobiological characterization of cancer stem cells isolated from glioblastoma patients. Clinical Cancer Research, 16(3), 800–813.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Hirohashi, Y., et al. (2016). Immune responses to human cancer stem-like cells/cancer-initiating cells. Cancer Science, 107(1), 12–17.

    Article  CAS  PubMed  Google Scholar 

  77. Tsuchiya, H., & Shiota, G. (2021). Immune evasion by cancer stem cells. Regenerative Therapy, 17, 20–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Aramini, B., et al. (2021). Cancer stem cells and macrophages: Molecular connections and future perspectives against cancer. Oncotarget, 12(3), 230–250.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kondĕlková, K., et al. (2010). Regulatory T cells (TREG) and their roles in immune system with respect to immunopathological disorders. Acta Medica (Hradec Kralove), 53(2), 73–77.

    Article  PubMed  Google Scholar 

  80. Chen, P., et al. (2021). Cancer Stemness Meets Immunity: From Mechanism to Therapy. Cell Reports, 34(1), 108597.

    Article  CAS  PubMed  Google Scholar 

  81. Yu, X., Li, H., & Ren, X. (2012). Interaction between regulatory T cells and cancer stem cells. International Journal of Cancer, 131(7), 1491–1498.

    Article  CAS  PubMed  Google Scholar 

  82. Munn, D. H. (2011). Indoleamine 2,3-dioxygenase, Tregs and cancer. Current Medicinal Chemistry, 18(15), 2240–2246.

    Article  CAS  PubMed  Google Scholar 

  83. Tesmer, L. A., et al. (2008). Th17 cells in human disease. Immunological Reviews, 223, 87–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cancro, M. P., & Tomayko, M. M. (2021). Memory B cells and plasma cells: The differentiative continuum of humoral immunity. Immunological Reviews, 303(1), 72–82.

    Article  CAS  PubMed  Google Scholar 

  85. Shahaf, G., et al. (2016). B cell development in the bone marrow is regulated by homeostatic feedback exerted by mature B cells. Frontiers in Immunology, 7, 77.

  86. de la Morena, M. (2008). CHAPTER 10 - Immunologic Development and Susceptibility to Infection. In S. S. Long (Ed.), Principles and Practice of Pediatric Infectious Disease (Third Edition) (pp. 86–94). W.B. Saunders.

    Chapter  Google Scholar 

  87. Kurosaki, T., Kometani, K., & Ise, W. (2015). Memory B cells. Nature Reviews Immunology, 15(3), 149–159.

    Article  CAS  PubMed  Google Scholar 

  88. Rosser, E. C., & Mauri, C. (2015). Regulatory B cells: Origin, phenotype, and function. Immunity, 42(4), 607–612.

    Article  CAS  PubMed  Google Scholar 

  89. Franchina, D. G., Grusdat, M., & Brenner, D. (2018). B-Cell Metabolic Remodeling and Cancer. Trends Cancer, 4(2), 138–150.

    Article  CAS  PubMed  Google Scholar 

  90. Walcher, L., et al. (2020). Cancer Stem Cells-Origins and Biomarkers: Perspectives for Targeted Personalized Therapies. Frontiers in Immunology, 11, 1280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bruce, W. R., & Van Der Gaag, H. (1963). A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature, 199, 79–80.

    Article  CAS  PubMed  Google Scholar 

  92. Gross, E., et al. (2011). Cancer stem cells of differentiated B-cell malignancies: Models and consequences. Cancers (Basel), 3(2), 1566–1579.

    Article  CAS  PubMed  Google Scholar 

  93. Fearon, D. T., Manders, P., & Wagner, S. D. (2001). Arrested differentiation, the self-renewing memory lymphocyte, and vaccination. Science, 293(5528), 248–250.

    Article  CAS  PubMed  Google Scholar 

  94. Yang, H., & Green M. R. (2019). Epigenetic programing of B-cell lymphoma by BCL6 and its genetic deregulation. Frontiers in Cell and Developmental Biology, 7, 272.

  95. Jamieson, C. H., et al. (2004). Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. New England Journal of Medicine, 351(7), 657–667.

    Article  CAS  PubMed  Google Scholar 

  96. Song, S., et al. (2020). Cancer Stem Cells of Diffuse Large B Cell Lymphoma Are Not Enriched in the CD45(+)CD19(-) cells but in the ALDH(high) Cells. Journal of Cancer, 11(1), 142–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Suárez-Sánchez, F.J., et al. (2021) Tumor-Infiltrating CD20(+) B Lymphocytes: Significance and Prognostic Implications in Oral Cancer Microenvironment. Cancers (Basel), 13(3)

  98. DiLillo, D. J., Yanaba, K., & Tedder, T. F. (2010). B cells are required for optimal CD4+ and CD8+ T cell tumor immunity: Therapeutic B cell depletion enhances B16 melanoma growth in mice. The Journal of Immunology, 184(7), 4006–4016.

    Article  CAS  PubMed  Google Scholar 

  99. Luckey, C. J., et al. (2006). Memory T and memory B cells share a transcriptional program of self-renewal with long-term hematopoietic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 103(9), 3304–3309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bhattacharya, R., et al. (2015). Bmi-1: At the crossroads of physiological and pathological biology. Genes & Diseases, 2(3), 225–239.

    Article  Google Scholar 

  101. Chang, K.-C., et al. (2020). Stem cell characteristics promote aggressiveness of diffuse large B-cell lymphoma. Scientific Reports, 10(1), 21342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Downs-Canner, S. M., et al. (2022). B Cell Function in the Tumor Microenvironment. Annual Review of Immunology, 40(1), 169–193.

    Article  CAS  PubMed  Google Scholar 

  103. PereraMolligodaArachchige, A. S. (2021). Human NK cells: From development to effector functions. The Innate and Adaptive Immune Systems, 27(3), 212–229.

    Article  CAS  Google Scholar 

  104. Vivier, E., et al. (2011). Innate or adaptive immunity? The example of natural killer cells. Science, 331(6013), 44–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lei, M. M. L., & Lee, T. K. W. (2021). Cancer Stem Cells: Emerging Key Players in Immune Evasion of Cancers. Front Cell Dev Biol, 9, 692940.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Luna, J. I., et al. (2017). Targeting Cancer Stem Cells with Natural Killer Cell Immunotherapy. Expert Opinion on Biological Therapy, 17(3), 313–324.

    Article  CAS  PubMed  Google Scholar 

  107. Hazini, A., Fisher K., & Seymour, L. (2021). Deregulation of HLA-I in cancer and its central importance for immunotherapy. The Journal for ImmunoTherapy of Cancer, 9(8), e002899.

  108. Wang, B., et al. (2014). Metastatic consequences of immune escape from NK cell cytotoxicity by human breast cancer stem cells. Cancer Research, 74(20), 5746–5757.

    Article  CAS  PubMed  Google Scholar 

  109. Galland, S., et al. (2017). Tumor-Derived Mesenchymal Stem Cells Use Distinct Mechanisms to Block the Activity of Natural Killer Cell Subsets. Cell Reports, 20(12), 2891–2905.

    Article  CAS  PubMed  Google Scholar 

  110. Malaer, J. D., & Mathew, P. A. (2020). Role of LLT1 and PCNA as Natural Killer Cell Immune Evasion Strategies of HCT 116 Cells. Anticancer Research, 40(12), 6613.

    Article  CAS  PubMed  Google Scholar 

  111. Beano, A., et al. (2008). Correlation between NK function and response to trastuzumab in metastatic breast cancer patients. Journal of translational medicine, 6, 25–25.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Huergo-Zapico, L., et al. (2018). NK-cell Editing Mediates Epithelial-to-Mesenchymal Transition via Phenotypic and Proteomic Changes in Melanoma Cell Lines. Cancer Research, 78(14), 3913–3925.

    Article  CAS  PubMed  Google Scholar 

  113. Zaidi, M. R. (2019). The Interferon-Gamma Paradox in Cancer. Journal of Interferon and Cytokine Research, 39(1), 30–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cruceriu, D., et al. (2020). The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: Molecular insights and therapeutic approaches. Cellular Oncology (Dordrecht), 43(1), 1–18.

    Article  CAS  PubMed  Google Scholar 

  115. Liu, W., et al. (2020). TNF-α increases breast cancer stem-like cells through up-regulating TAZ expression via the non-canonical NF-κB pathway. Science and Reports, 10(1), 1804.

    Article  CAS  Google Scholar 

  116. Hirayama, D., Iida, T., & Nakase, H. (2017). The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. International Journal of Molecular Sciences, 19(1), 92.

  117. Lau, E. Y., Ho, N. P., & Lee, T. K. (2017). Cancer Stem Cells and Their Microenvironment: Biology and Therapeutic Implications. Stem Cells International, 2017, 3714190.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Italiani, P., & Boraschi, D. (2014). From Monocytes to M1/M2 Macrophages: Phenotypical vs Functional Differentiation. Frontiers in Immunology, 5, 514.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Lu, H., et al. (2014). A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nature Cell Biology, 16(11), 1105–1117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Vacchelli, E., et al. (2016). Trial Watch: Immunotherapy plus radiation therapy for oncological indications. Oncoimmunology, 5(9), e1214790.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Zhan, T., Rindtorff, N., & Boutros, M. (2017). Wnt signaling in cancer. Oncogene, 36(11), 1461–1473.

    Article  CAS  PubMed  Google Scholar 

  122. Wu, A., et al. (2010). Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro-Oncology, 12(11), 1113–1125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yang, J., et al. (2013). Tumor-associated macrophages regulate murine breast cancer stem cells through a novel paracrine EGFR/Stat3/Sox-2 signaling pathway. Stem Cells, 31(2), 248–258.

    Article  CAS  PubMed  Google Scholar 

  124. Wan, S., et al. (2014). Tumor-Associated Macrophages Produce Interleukin 6 and Signal via STAT3 to Promote Expansion of Human Hepatocellular Carcinoma Stem Cells. Gastroenterology, 147(6), 1393–1404.

    Article  CAS  PubMed  Google Scholar 

  125. Korkaya, H., Liu, S., & Wicha, M. S. (2011). Breast cancer stem cells, cytokine networks, and the tumor microenvironment. The Journal of Clinical Investigation, 121(10), 3804–3809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wu, K., et al. (2012). Hepatic transforming growth factor beta gives rise to tumor-initiating cells and promotes liver cancer development. Hepatology, 56(6), 2255–2267.

    Article  CAS  PubMed  Google Scholar 

  127. Malech, H. L., Deleo, F. R., & Quinn, M. T. (2014). The role of neutrophils in the immune system: An overview. Methods in Molecular Biology, 1124, 3–10.

    Article  CAS  PubMed  Google Scholar 

  128. Sharma, B., et al. (2013). Targeting CXCR2 enhances chemotherapeutic response, inhibits mammary tumor growth, angiogenesis, and lung metastasis. Molecular Cancer Therapeutics, 12(5), 799–808.

    Article  CAS  PubMed  Google Scholar 

  129. Chao, T., Furth, E. E., & Vonderheide, R. H. (2016). CXCR2-Dependent Accumulation of Tumor-Associated Neutrophils Regulates T-cell Immunity in Pancreatic Ductal Adenocarcinoma. Cancer Immunology Research, 4(11), 968–982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Fridlender, Z. G., et al. (2009). Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell, 16(3), 183–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ohms, M., Möller, S., & Laskay, T. (2020). An Attempt to Polarize Human Neutrophils Toward N1 and N2 Phenotypes in vitro. Frontiers in Immunology, 11, 532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Casbon, A. J., et al. (2015). Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils. Proceedings of the National Academy of Sciences of the United States of America, 112(6), E566–E575.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Andzinski, L., et al. (2016). Type I IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human. International Journal of Cancer, 138(8), 1982–1993.

    Article  CAS  PubMed  Google Scholar 

  134. Hwang, W.-L., et al. (2019). Tumor stem-like cell-derived exosomal RNAs prime neutrophils for facilitating tumorigenesis of colon cancer. Journal of Hematology & Oncology, 12(1), 10.

    Article  Google Scholar 

  135. Anselmi, M., et al. (2022). Melanoma stem cells educate neutrophils to support cancer progression. Cancers (Basel), 14(14), 3391.

  136. He, X., et al. (2021). Tumor-initiating stem cell shapes its microenvironment into an immunosuppressive barrier and pro-tumorigenic niche. Cell Reports, 36(10), 109674.

    Article  CAS  PubMed  Google Scholar 

  137. Zarbock, A., & Stadtmann, A. (2012). CXCR2: From bench to bedside. Frontiers in Immunology, 3, 263.

  138. Wei, B., et al. (2016). The neutrophil lymphocyte ratio is associated with breast cancer prognosis: An updated systematic review and meta-analysis. Oncotargets and Therapy, 9, 5567–5575.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Gershkovitz, M., et al. (2018). TRPM2 Mediates Neutrophil Killing of Disseminated Tumor Cells. Cancer Research, 78(10), 2680–2690.

    Article  CAS  PubMed  Google Scholar 

  140. Mensurado, S., et al. (2018). Tumor-associated neutrophils suppress pro-tumoral IL-17+ γδ T cells through induction of oxidative stress. PLoS Biology, 16(5), e2004990.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Martin, A., et al. (2018). Tumor-derived granzyme B-expressing neutrophils acquire antitumor potential after lipid A treatment. Oncotarget, 9(47), 28364–28378.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Galdiero, M. R., et al. (2013). Tumor associated macrophages and neutrophils in cancer. Immunobiology, 218(11), 1402–1410.

    Article  CAS  PubMed  Google Scholar 

  143. Gabrilovich, D. I., & Nagaraj, S. (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews Immunology, 9(3), 162–174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Safarzadeh, E., et al. (2019). Circulating myeloid-derived suppressor cells: An independent prognostic factor in patients with breast cancer. Journal of Cellular Physiology, 234(4), 3515–3525.

    Article  CAS  PubMed  Google Scholar 

  145. Allavena, P., & Mantovani, A. (2012). Immunology in the clinic review series; focus on cancer: Tumour-associated macrophages: Undisputed stars of the inflammatory tumour microenvironment. Clinical and Experimental Immunology, 167(2), 195–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Sawanobori, Y., et al. (2008). Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood, 111(12), 5457–5466.

    Article  CAS  PubMed  Google Scholar 

  147. Cui, Tracy X., et al. (2013). Myeloid-Derived Suppressor Cells Enhance Stemness of Cancer Cells by Inducing MicroRNA101 and Suppressing the Corepressor CtBP2. Immunity, 39(3), 611–621.

    Article  CAS  PubMed  Google Scholar 

  148. Panni, R. Z., et al. (2014). Tumor-induced STAT3 activation in monocytic myeloid-derived suppressor cells enhances stemness and mesenchymal properties in human pancreatic cancer. Cancer Immunology, Immunotherapy, 63(5), 513–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Welte, T., et al. (2016). Oncogenic mTOR signalling recruits myeloid-derived suppressor cells to promote tumour initiation. Nature Cell Biology, 18(6), 632–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Tracy, L. E., Minasian, R. A., & Caterson, E. J. (2016). Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound. Advances in Wound Care (New Rochelle), 5(3), 119–136.

    Article  Google Scholar 

  151. Orimo, A., et al. (2005). Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 121(3), 335–348.

    Article  CAS  PubMed  Google Scholar 

  152. De Veirman, K., et al. (2014). Cancer Associated Fibroblasts and Tumor Growth: Focus on Multiple Myeloma. Cancers, 6, 1363–1381. https://doi.org/10.3390/cancers6031363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Strutz, F., et al. (2000). Basic fibroblast growth factor expression is increased in human renal fibrogenesis and may mediate autocrine fibroblast proliferation. Kidney International, 57(4), 1521–1538.

    Article  CAS  PubMed  Google Scholar 

  154. Furuhashi, M., et al. (2004). Platelet-derived growth factor production by B16 melanoma cells leads to increased pericyte abundance in tumors and an associated increase in tumor growth rate. Cancer Research, 64(8), 2725–2733.

    Article  CAS  PubMed  Google Scholar 

  155. Ham, I. H., Lee, D., & Hur, H. (2021). Cancer-associated fibroblast-induced eesistance to chemotherapy and radiotherapy in gastrointestinal cancers. Cancers (Basel), 13(5), 1172.

  156. Vermeulen, L., et al. (2010). Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nature Cell Biology, 12(5), 468–476.

    Article  CAS  PubMed  Google Scholar 

  157. Xiong, S., et al. (2018). Cancer-associated fibroblasts promote stem cell-like properties of hepatocellular carcinoma cells through IL-6/STAT3/Notch signaling. American Journal of Cancer Research, 8(2), 302–316.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Tsuyada, A., et al. (2012). CCL2 mediates cross-talk between cancer cells and stromal fibroblasts that regulates breast cancer stem cells. Cancer Research, 72(11), 2768–2779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Chen, W.-J., et al. (2014). Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nature Communications, 5(1), 3472.

    Article  PubMed  Google Scholar 

  160. Giannoni, E., et al. (2010). Reciprocal Activation of Prostate Cancer Cells and Cancer-Associated Fibroblasts Stimulates Epithelial-Mesenchymal Transition and Cancer Stemness. Cancer Research, 70(17), 6945–6956.

    Article  CAS  PubMed  Google Scholar 

  161. Soon, P. S., et al. (2013). Breast cancer-associated fibroblasts induce epithelial-to-mesenchymal transition in breast cancer cells. Endocrine-Related Cancer, 20(1), 1–12.

    Article  CAS  PubMed  Google Scholar 

  162. Yu, Y., et al. (2014). Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-β signalling. British Journal of Cancer, 110(3), 724–732.

    Article  CAS  PubMed  Google Scholar 

  163. Huang, T. X., Guan, X. Y., & Fu, L. (2019). Therapeutic targeting of the crosstalk between cancer-associated fibroblasts and cancer stem cells. American Journal of Cancer Research, 9(9), 1889–1904.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Marlatt, K. L., & Ravussin, E. (2017). Brown Adipose Tissue: An Update on Recent Findings. Current Obesity Reports, 6(4), 389–396.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Cypess, A. M., & Kahn, C. R. (2010). The role and importance of brown adipose tissue in energy homeostasis. Current Opinion in Pediatrics, 22(4), 478–484.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Seki, T., et al. (2022). Brown-fat-mediated tumour suppression by cold-altered global metabolism. Nature, 608(7922), 421–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. De Pergola, G., & Silvestris, F. (2013). Obesity as a major risk factor for cancer. Journal of Obesity, 2013, 291546.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Maguire, O. A., et al. (2021). Creatine-mediated crosstalk between adipocytes and cancer cells regulates obesity-driven breast cancer. Cell Metabolism, 33(3), 499-512.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Huh, J. Y., et al. (2014). Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. Molecules and Cells, 37(5), 365–371.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Dirat, B., et al. (2011). Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Research, 71(7), 2455–2465.

    Article  CAS  PubMed  Google Scholar 

  171. Wu, Q., et al. (2019). Cancer-associated adipocytes: Key players in breast cancer progression. Journal of Hematology & Oncology, 12(1), 95.

    Article  CAS  Google Scholar 

  172. Rybinska, I., et al. (2021). Cancer-associated adipocytes in breast cancer: Causes and consequences. International Journal of Molecular Sciences, 22(7), 3775.

  173. Zheng, Q., et al. (2011). Leptin deficiency suppresses MMTV-Wnt-1 mammary tumor growth in obese mice and abrogates tumor initiating cell survival. Endocrine-Related Cancer, 18(4), 491–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Martínez-Sánchez, N. (2020). There and Back Again: Leptin actions in white adipose tissue. International Journal of Molecular Sciences, 21(17), 6039.

  175. Bowers, L. W., et al. (2018). Leptin Signaling Mediates Obesity-Associated CSC Enrichment and EMT in Preclinical TNBC Models. Molecular Cancer Research, 16(5), 869–879.

    Article  CAS  PubMed  Google Scholar 

  176. Choi, J., Cha, Y. J., & Koo, J. S. (2018). Adipocyte biology in breast cancer: From silent bystander to active facilitator. Progress in Lipid Research, 69, 11–20.

    Article  CAS  PubMed  Google Scholar 

  177. Han, G., et al. (2013). High expression of leptin receptor leads to temozolomide resistance with exhibiting stem/progenitor cell features in gliobalastoma. Cell Cycle, 12(24), 3833–3840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Bao, Y., et al. (2013). A prospective study of plasma adiponectin and pancreatic cancer risk in five US cohorts. Journal of the National Cancer Institute, 105(2), 95–103.

    Article  CAS  PubMed  Google Scholar 

  179. Picon-Ruiz, M., et al. (2016). Interactions between Adipocytes and Breast Cancer Cells Stimulate Cytokine Production and Drive Src/Sox2/miR-302b–Mediated Malignant Progression. Cancer Research, 76(2), 491–504.

    Article  CAS  PubMed  Google Scholar 

  180. Tang, K. D., et al. (2016). Adipocytes promote prostate cancer stem cell self-renewal through amplification of the cholecystokinin autocrine loop. Oncotarget, 7(4), 4939–4948.

    Article  PubMed  Google Scholar 

  181. Kumar, S., et al. (2014). Functional modification of adipocytes by grape seed extract impairs their pro-tumorigenic signaling on colon cancer stem cells and the daughter cancer cells. Oncotarget, 5(20), 10151–10169.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Geevarghese, A., & Herman, I. M. (2014). Pericyte-endothelial crosstalk: Implications and opportunities for advanced cellular therapies. Translational Research, 163(4), 296–306.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Ribatti, D., Tamma, R., & Annese, T. (2021). The role of vascular niche and endothelial cells in organogenesis and regeneration. Experimental Cell Research, 398(1), 112398.

    Article  CAS  PubMed  Google Scholar 

  184. Ping, Y. F., Zhang, X., & Bian, X. W. (2016). Cancer stem cells and their vascular niche: Do they benefit from each other? Cancer Letters, 380(2), 561–567.

    Article  CAS  PubMed  Google Scholar 

  185. Carmeliet, P. (2005). VEGF as a key mediator of angiogenesis in cancer. Oncology, 69(Suppl 3), 4–10.

    Article  CAS  PubMed  Google Scholar 

  186. Levina, V., et al. (2008). Drug-selected human lung cancer stem cells: Cytokine network, tumorigenic and metastatic properties. Plos One, 3(8), e3077.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Lizárraga-Verdugo, E., et al. (2020). Cancer Stem Cells and Its Role in Angiogenesis and Vasculogenic Mimicry in Gastrointestinal Cancers. Frontiers in Oncology, 10, 413.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Zhang, Z., et al. (2014). Endothelial cell-secreted EGF induces epithelial to mesenchymal transition and endows head and neck cancer cells with stem-like phenotype. Cancer Research, 74(10), 2869–2881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Peñarando, J., et al. (2018). A role for endothelial nitric oxide synthase in intestinal stem cell proliferation and mesenchymal colorectal cancer. BMC Biology, 16(1), 3.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Zhu, T. S., et al. (2011). Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cells. Cancer Research, 71(18), 6061–6072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Lu, J., et al. (2013). Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of Jagged-1. Cancer Cell, 23(2), 171–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Akil, A., et al. (2021). Notch Signaling in Vascular Endothelial Cells, Angiogenesis, and Tumor Progression: An Update and Prospective. Frontiers in Cell and Developmental Biology, 9, 642352.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Yan, G. N., et al. (2014). Endothelial cells promote stem-like phenotype of glioma cells through activating the Hedgehog pathway. The Journal of Pathology, 234(1), 11–22.

    Article  CAS  PubMed  Google Scholar 

  194. Wang, R., et al. (2019). Endothelial Cells Promote Colorectal Cancer Cell Survival by Activating the HER3-AKT Pathway in a Paracrine Fashion. Molecular Cancer Research, 17(1), 20–29.

    Article  CAS  PubMed  Google Scholar 

  195. Hsu, H. C., et al. (2019). Sequential cetuximab/bevacizumab therapy is associated with improved outcomes in patients with wild-type KRAS exon 2 metastatic colorectal cancer. Cancer Medicine, 8(7), 3437–3446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Yue, B. (2014). Biology of the extracellular matrix: An overview. Journal of Glaucoma, 23(8 Suppl 1), S20–S23.

    Article  PubMed  Google Scholar 

  197. Tan, Y., et al. (2014). Matrix softness regulates plasticity of tumour-repopulating cells via H3K9 demethylation and Sox2 expression. Nature Communications, 5, 4619.

    Article  CAS  PubMed  Google Scholar 

  198. Pang, M. F., et al. (2016). Tissue Stiffness and Hypoxia Modulate the Integrin-Linked Kinase ILK to Control Breast Cancer Stem-like Cells. Cancer Research, 76(18), 5277–5287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Motegi, H., et al. (2014). Type 1 collagen as a potential niche component for CD133-positive glioblastoma cells. Neuropathology, 34(4), 378–385.

    Article  CAS  PubMed  Google Scholar 

  200. Begum, A., et al. (2017). The extracellular matrix and focal adhesion kinase signaling regulate cancer stem cell function in pancreatic ductal adenocarcinoma. Plos One, 12(7), e0180181.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Nissen, N. I., Karsdal, M., & Willumsen, N. (2019). Collagens and Cancer associated fibroblasts in the reactive stroma and its relation to Cancer biology. Journal of Experimental & Clinical Cancer Research, 38(1), 115.

    Article  Google Scholar 

  202. Wang, Z., et al. (2010). Type IIB procollagen NH(2)-propeptide induces death of tumor cells via interaction with integrins alpha(V)beta(3) and alpha(V)beta(5). Journal of Biological Chemistry, 285(27), 20806–20817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Januchowski, R., et al. (2016). Increased Expression of Several Collagen Genes is Associated with Drug Resistance in Ovarian Cancer Cell Lines. Journal of Cancer, 7(10), 1295–1310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Lim, Y. C., Oh, S. Y., & Kim, H. (2012). Cellular characteristics of head and neck cancer stem cells in type IV collagen-coated adherent cultures. Experimental Cell Research, 318(10), 1104–1111.

    Article  CAS  PubMed  Google Scholar 

  205. Rada, M., et al. (2018). Inhibitor of apoptosis proteins (IAPs) mediate collagen type XI alpha 1-driven cisplatin resistance in ovarian cancer. Oncogene, 37(35), 4809–4820.

    Article  CAS  PubMed  Google Scholar 

  206. Wu, Y. H., et al. (2017). Activation of TWIST1 by COL11A1 promotes chemoresistance and inhibits apoptosis in ovarian cancer cells by modulating NF-κB-mediated IKKβ expression. International Journal of Cancer, 141(11), 2305–2317.

    Article  CAS  PubMed  Google Scholar 

  207. Liu, C. C., et al. (2018). Collagen XVII/laminin-5 activates epithelial-to-mesenchymal transition and is associated with poor prognosis in lung cancer. Oncotarget, 9(2), 1656–1672.

    Article  PubMed  Google Scholar 

  208. Chang, C., et al. (2015). A laminin 511 matrix is regulated by TAZ and functions as the ligand for the α6Bβ1 integrin to sustain breast cancer stem cells. Genes & Development, 29(1), 1–6.

    Article  Google Scholar 

  209. Govaere, O., et al. (2016). Laminin-332 sustains chemoresistance and quiescence as part of the human hepatic cancer stem cell niche. Journal of Hepatology, 64(3), 609–617.

    Article  CAS  PubMed  Google Scholar 

  210. Ou, J., et al. (2013). Fibronectin extra domain A (EDA) sustains CD133(+)/CD44(+) subpopulation of colorectal cancer cells. Stem Cell Res, 11(2), 820–833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Sun, Y., et al. (2015). Targeted Therapy for Breast Cancer Stem Cells by Liposomal Delivery of siRNA against Fibronectin EDB. Advanced Healthcare Materials, 4(11), 1675–1680.

    Article  CAS  PubMed  Google Scholar 

  212. Ibrahim, S. A., et al. (2017). Syndecan-1 is a novel molecular marker for triple negative inflammatory breast cancer and modulates the cancer stem cell phenotype via the IL-6/STAT3, Notch and EGFR signaling pathways. Molecular Cancer, 16(1), 57.

    Article  PubMed  PubMed Central  Google Scholar 

  213. Sun, B., et al. (2017). Significance of Glypican-3 (GPC3) Expression in Hepatocellular Cancer Diagnosis. Medical Science Monitor, 23, 850–855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Cao, J., et al. (2018). Targeting glypican-4 overcomes 5-FU resistance and attenuates stem cell-like properties via suppression of Wnt/β-catenin pathway in pancreatic cancer cells. Journal of Cellular Biochemistry, 119(11), 9498–9512.

    Article  CAS  PubMed  Google Scholar 

  215. Pang, L., et al. (2016). Membrane type 1-matrix metalloproteinase induces epithelial-to-mesenchymal transition in esophageal squamous cell carcinoma: Observations from clinical and in vitro analyses. Scientific Reports, 6(1), 22179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Raja, A. M., et al. (2015). Differential remodeling of extracellular matrices by breast cancer initiating cells. Journal of Biophotonics, 8(10), 804–815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Bourguignon, L. Y. W. (2016). Matrix Hyaluronan Promotes Specific MicroRNA Upregulation Leading to Drug Resistance and Tumor Progression. International Journal of Molecular Sciences, 17(4), 517.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Shiina, M., & Bourguignon, L. Y. (2015). Selective Activation of Cancer Stem Cells by Size-Specific Hyaluronan in Head and Neck Cancer. International Journal of Cell Biology, 2015, 989070.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Cui, X., et al. (2021). CAR-T therapy: Prospects in targeting cancer stem cells. Journal of Cellular and Molecular Medicine, 25(21), 9891–9904.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Xu, J., Melenhorst, J. J., & Fraietta, J. A. (2018). Toward precision manufacturing of immunogene T-cell therapies. Cytotherapy, 20(5), 623–638.

    Article  CAS  PubMed  Google Scholar 

  221. Locke, F. L., et al. (2019). Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): A single-arm, multicentre, phase 1–2 trial. The Lancet Oncology, 20(1), 31–42.

    Article  CAS  PubMed  Google Scholar 

  222. Boyiadzis, M. M., et al. (2018). Chimeric antigen receptor (CAR) T therapies for the treatment of hematologic malignancies: Clinical perspective and significance. Journal for Immunotherapy of Cancer, 6(1), 137.

    Article  PubMed  PubMed Central  Google Scholar 

  223. Chavez, J. C., Bachmeier, C., & Kharfan-Dabaja, M. A. (2019). CAR T-cell therapy for B-cell lymphomas: Clinical trial results of available products. Therapeutic Advances in Hematology, 10, 2040620719841581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Subklewe, M., von Bergwelt-Baildon, M., & Humpe, A. (2019). Chimeric Antigen Receptor T Cells: A Race to Revolutionize Cancer Therapy. Transfusion Medicine and Hemotherapy, 46(1), 15–24.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Lanitis, E., et al. (2013). Chimeric antigen receptor T Cells with dissociated signaling domains exhibit focused antitumor activity with reduced potential for toxicity in vivo. Cancer Immunology Research, 1(1), 43–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Yan, L. E., et al. (2020). Targeting Two Antigens Associated with B-ALL with CD19-CD123 Compound Car T Cell Therapy. Stem Cell Reviews and Reports, 16(2), 385–396.

    Article  CAS  PubMed  Google Scholar 

  227. Duan, D., et al. (2021). The BCMA-Targeted Fourth-Generation CAR-T Cells Secreting IL-7 and CCL19 for Therapy of Refractory/Recurrent Multiple Myeloma. Frontiers in Immunology, 12, 609421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Tschumi, B. O., et al. (2018). CART cells are prone to Fas- and DR5-mediated cell death. Journal for Immunotherapy of Cancer, 6(1), 71.

    Article  PubMed  PubMed Central  Google Scholar 

  229. Liu, D., Zhao, J., & Song, Y. (2019). Engineering switchable and programmable universal CARs for CAR T therapy. Journal of Hematology & Oncology, 12(1), 69.

    Article  Google Scholar 

  230. Mehrabadi, A. Z., et al. (2022). Therapeutic potential of CAR T cell in malignancies: A scoping review. Biomedicine & Pharmacotherapy, 146, 112512.

    Article  CAS  Google Scholar 

  231. Volonté, A., et al. (2014). Cancer-initiating cells from colorectal cancer patients escape from T cell-mediated immunosurveillance in vitro through membrane-bound IL-4. The Journal of Immunology, 192(1), 523–532.

    Article  PubMed  Google Scholar 

  232. Zhu, X., et al. (2015). Patient-derived glioblastoma stem cells are killed by CD133-specific CAR T cells but induce the T cell aging marker CD57. Oncotarget, 6(1), 171–184.

    Article  PubMed  Google Scholar 

  233. Feng, K. C., et al. (2017). Cocktail treatment with EGFR-specific and CD133-specific chimeric antigen receptor-modified T cells in a patient with advanced cholangiocarcinoma. Journal of Hematology & Oncology, 10(1), 4.

    Article  Google Scholar 

  234. Sun, S., et al. (2018). Immunotherapy with CAR-Modified T Cells: Toxicities and Overcoming Strategies. Journal of Immunology Research, 2018, 2386187.

    Article  PubMed  PubMed Central  Google Scholar 

  235. McLellan, A. D., & S.M. Ali Hosseini Rad. (2019). Chimeric antigen receptor T cell persistence and memory cell formation. Immunology & Cell Biology, 97(7), 664–674.

    Article  CAS  Google Scholar 

  236. Nallanthighal, S., Heiserman, J. P., & Cheon, D. J. (2019). The Role of the Extracellular Matrix in Cancer Stemness. Frontiers in Cell and Developmental Biology, 7, 86.

    Article  PubMed  PubMed Central  Google Scholar 

  237. Bao, S., et al. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 444(7120), 756–760.

    Article  CAS  PubMed  Google Scholar 

  238. Kooti, W., et al. (2021). Oncolytic Viruses and Cancer, Do You Know the Main Mechanism? Frontiers in Oncology, 11, 761015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Friedman, G. K., et al. (2012). Targeting pediatric cancer stem cells with oncolytic virotherapy. Pediatric Research, 71(4 Pt 2), 500–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Zimmerman, O., et al. (2023). Entry receptors — the gateway to alphavirus infection. The Journal of Clinical Investigation, 133(2), e165307.

  241. Liang, Z., et al. (2021). Cyr61 from adipose-derived stem cells promotes colorectal cancer metastasis and vasculogenic mimicry formation via integrin α(V) β(5). Molecular Oncology, 15(12), 3447–3467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Saha, D., Wakimoto, H., & Rabkin, S. D. (2016). Oncolytic herpes simplex virus interactions with the host immune system. Current Opinion in Virology, 21, 26–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Lemos de Matos, A., Franco, L. S., & McFadden, G. (2020). Oncolytic Viruses and the Immune System: The Dynamic Duo. Molecular Therapy Methods & Clinical Development, 17, 349–358.

    Article  CAS  Google Scholar 

  244. Saha, D., Martuza, R. L., & Rabkin, S. D. (2017). Macrophage Polarization Contributes to Glioblastoma Eradication by Combination Immunovirotherapy and Immune Checkpoint Blockade. Cancer Cell, 32(2), 253-267.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Tong, Y., et al. (2013). Potent antitumor activity of oncolytic adenovirus expressing Beclin-1 via induction of autophagic cell death in leukemia. Oncotarget, 4(6), 860–874.

    Article  PubMed  PubMed Central  Google Scholar 

  246. Wang, H., et al. (2012). Oncolytic vaccinia virus GLV-1h68 strain shows enhanced replication in human breast cancer stem-like cells in comparison to breast cancer cells. Journal of Translational Medicine, 10, 167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Wakimoto, H., et al. (2009). Human glioblastoma-derived cancer stem cells: Establishment of invasive glioma models and treatment with oncolytic herpes simplex virus vectors. Cancer Research, 69(8), 3472–3481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Cheema, T. A., et al. (2013). Multifaceted oncolytic virus therapy for glioblastoma in an immunocompetent cancer stem cell model. Proceedings of the National Academy of Sciences of the United States of America, 110(29), 12006–12011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Saha, D., et al. (2018). Combinatorial Effects of VEGFR Kinase Inhibitor Axitinib and Oncolytic Virotherapy in Mouse and Human Glioblastoma Stem-Like Cell Models. Clinical Cancer Research, 24(14), 3409–3422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Hu, J. C., et al. (2006). A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clinical Cancer Research, 12(22), 6737–6747.

    Article  CAS  PubMed  Google Scholar 

  251. Yang, H., et al. (2016). Treatment of colon cancer with oncolytic herpes simplex virus in preclinical models. Gene Therapy, 23(5), 450–459.

    Article  CAS  PubMed  Google Scholar 

  252. Yoo, S. Y., et al. (2016). A cancer-favoring oncolytic vaccinia virus shows enhanced suppression of stem-cell like colon cancer. Oncotarget, 7(13), 16479–16489.

    Article  PubMed  PubMed Central  Google Scholar 

  253. Bach, P., et al. (2013). Specific Elimination of CD133+ Tumor Cells with Targeted Oncolytic Measles Virus. Cancer Research, 73(2), 865–874.

    Article  CAS  PubMed  Google Scholar 

  254. Chaurasiya, S., Chen, N. G., & Warner, S. G. (2018). Oncolytic virotherapy versus cancer stem cells: A review of approaches and mechanism. Cancers (Basel), 10(4), 124.

  255. Schirrmacher, V. (2020). Cancer vaccines and oncolytic viruses exert profoundly lower side effects in cancer patients than other systemic therapies: A comparative analysis. Biomedicines 8(3), 61.

  256. Sobhani, N., et al. (2022). Therapeutic cancer vaccines: From biological mechanisms and engineering to ongoing clinical trials. Cancer Treatment Reviews, 109, 102429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Stanley, M. (2017). Tumour virus vaccines: Hepatitis B virus and human papillomavirus. Philosophical Transactions of the Royal Society B, 372(1732), 20160268.

  258. Anassi, E., & Ndefo, U. A. (2011). Sipuleucel-T (provenge) injection: The first immunotherapy agent (vaccine) for hormone-refractory prostate cancer. P t, 36(4), 197–202.

    PubMed  PubMed Central  Google Scholar 

  259. Guallar-Garrido, S., & Julián, E. (2020). Bacillus Calmette-Guérin (BCG) Therapy for Bladder Cancer: An Update. ImmunoTargets and Therapy, 9, 1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Lee, A. (2023). Nadofaragene Firadenovec: First Approval. Drugs, 83(4), 353–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Ferrucci, P. F., et al. (2021). Talimogene Laherparepvec (T-VEC): An intralesional cancer immunotherapy for advanced melanoma. Cancers (Basel), 13(6), 1383.

  262. Caudill, M. M., & Li, Z. (2001). HSPPC-96: A personalised cancer vaccine. Expert Opinion on Biological Therapy, 1(3), 539–547.

    Article  CAS  PubMed  Google Scholar 

  263. Ji, N., et al. (2018). Heat shock protein peptide complex-96 vaccination for newly diagnosed glioblastoma: a phase I, single-arm trial. JCI Insight, 3(10), e99145.

  264. Testori, A., et al. (2008). Phase III comparison of vitespen, an autologous tumor-derived heat shock protein gp96 peptide complex vaccine, with physician’s choice of treatment for stage IV melanoma: The C-100-21 Study Group. Journal of Clinical Oncology, 26(6), 955–962.

    Article  CAS  PubMed  Google Scholar 

  265. Mazzaferro, V., et al. (2003). Vaccination with autologous tumor-derived heat-shock protein gp96 after liver resection for metastatic colorectal cancer. Clinical Cancer Research, 9(9), 3235–3245.

    CAS  PubMed  Google Scholar 

  266. Wood, C. G., & Mulders, P. (2009). Vitespen: A preclinical and clinical review. Future Oncology, 5(6), 763–774.

    Article  CAS  PubMed  Google Scholar 

  267. Chu, N. R., et al. (2000). Immunotherapy of a human papillomavirus (HPV) type 16 E7-expressing tumour by administration of fusion protein comprising Mycobacterium bovis bacille Calmette-Guérin (BCG) hsp65 and HPV16 E7. Clinical and Experimental Immunology, 121(2), 216–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Ahrends, T., & Borst, J. (2018). The opposing roles of CD4(+) T cells in anti-tumour immunity. Immunology, 154(4), 582–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Guo, J., et al. (2022). Cancer vaccines from cryogenically silicified tumour cells functionalized with pathogen-associated molecular patterns. Nature Biomedical Engineering, 6(1), 19–31.

    Article  CAS  PubMed  Google Scholar 

  270. Santos, P. M., & Butterfield, L. H. (2018). Dendritic Cell-Based Cancer Vaccines. The Journal of Immunology, 200(2), 443–449.

    Article  CAS  PubMed  Google Scholar 

  271. Lin, M., et al. (2017). Development and application of cancer stem cell-targeted vaccine in cancer immunotherapy. Janssen Vaccine, 8(6), 371.

  272. Zhou, L., et al. (2015). Promise of cancer stem cell vaccine. Human Vaccines & Immunotherapeutics, 11(12), 2796–2799.

    Article  Google Scholar 

  273. Zheng, F., et al. (2018). Cancer Stem Cell Vaccination With PD-L1 and CTLA-4 Blockades Enhances the Eradication of Melanoma Stem Cells in a Mouse Tumor Model. Journal of Immunotherapy, 41(8), 361–368.

    Article  CAS  PubMed  Google Scholar 

  274. Rouzbahani, E., et al. (2022). Cancer stem cells in immunoregulation and bypassing anti-checkpoint therapy. Biomedicine & Pharmacotherapy, 156, 113906.

    Article  CAS  Google Scholar 

  275. Lu, L., et al. (2015). Abstract 4796: Cancer stem cell vaccine inhibits metastases of primary tumors and induces humoral immune responses against cancer stem cells. OncoImmunology, 4, 00–00.

    Article  Google Scholar 

  276. El-Ashmawy, N. E., et al. (2020). Dual-targeted therapeutic strategy combining CSC-DC-based vaccine and cisplatin overcomes chemo-resistance in experimental mice model. Clinical and Translational Oncology, 22(7), 1155–1165.

    Article  CAS  PubMed  Google Scholar 

  277. Wei, H. (2019). Interleukin 6 signaling maintains the stem-like properties of bladder cancer stem cells. Translational Cancer Research, 8(2), 557–566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Kumari, N., et al. (2016). Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biology, 37(9), 11553–11572.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

D.S. was supported in part by a fund from the DOD (W81XWH-20–1-0702).

Author information

Authors and Affiliations

Authors

Contributions

M.B. and H.W. contributed to the study of conception and design. M.B., D.S. and H.W. contributed literature search, data analysis, writing, and editing.

Corresponding authors

Correspondence to Dipongkor Saha or Hongbin Wang.

Ethics declarations

Conflicts of Interest/Competing Interests

Not Applicable

Ethics Approval

Not Applicable

Consent to Participate

Not Applicable.

Consent for Publication

All authors approved the version of the manuscript to be published.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borlongan, M.C., Saha, D. & Wang, H. Tumor Microenvironment: A Niche for Cancer Stem Cell Immunotherapy. Stem Cell Rev and Rep 20, 3–24 (2024). https://doi.org/10.1007/s12015-023-10639-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10639-6

Keywords

Navigation