Skip to main content

Advertisement

Log in

Comparative Analysis of the Therapeutic Effects of Fresh and Cryopreserved Human Umbilical Cord Derived Mesenchymal Stem Cells in the Treatment of Psoriasis

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Psoriasis, an inflammatory autoimmune skin disease, is characterized by scaly white or erythematous plaques, which severely influence patients’ quality of life and social activities. Mesenchymal stem cells derived from the human umbilical cord (UCMSCs) represent a promising therapeutic approach for psoriasis because of its unique superiority in ethical agreeableness, abundant source, high proliferation capacity, and immunosuppression. Although cryopreservation provided multiple benefits to the cell therapy, it also greatly compromised clinical benefits of MSCs due to impaired cell functions. The current study aims to evaluate the therapeutic efficacy of cryopreserved UCMSCs in a mouse model of psoriasis as well as in patients with psoriasis. Our results showed that cryopreserved and fresh UCMSCs have comparable effects on the suppression of psoriasis-like symptoms such as thickening, erythema, and scaling, and serum IL-17 A secretion in mice model of psoriasis. Moreover, psoriatic patients injected with cryopreserved UCMSCs had a significant improvement in the Psoriasis Area and Severity Index (PASI), Physician Global Assessment (PGA), and Patient Global Assessments (PtGAs) scores compared to baseline values. Mechanically, cryopreserved UCMSCs markedly inhibit the proliferation of PHA-activated PBMCs, type 1 T helper (Th1) and type 17 T helper (Th17) cell differentiation and secretion of inflammatory cytokines including IFN-γ, TNF-a and IL-17 A in PBMCs stimulated by anti-CD3/CD28 beads. Taken together, these data indicated that cryopreserved UCMSCs exhibited great beneficial effect on psoriasis. Thus, cryopreserved UCMSCs can be systemically administered as ‘‘off-the-shelf’’ cell product for psoriasis therapy. Trial Registration ChiCTR1800019509. Registered on November 15, 2018—Retrospectively registered, http://www.chictr.org.cn/.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data are available in the main manuscript or the supplemental information or provided upon availability and reasonable request.

Abbreviations

UCMSCs :

Umbilical cord-derived mesenchymal stem cells

IMQ :

Imiquimod

PHA :

Phytohemagglutinin

PASI :

Psoriasis Area Severity Index

H&E :

Hematoxylin and eosin

PGA :

Physician Global Assessment

PtGAs :

Patient Global Assessments

PBMC :

Peripheral blood mononuclear cell

Th1 :

Type 1 T helper

Th17 :

Type 17 T helper

UC :

Umbilical cord

UCMSCs (FL) :

Low dose of fresh UCMSCs

UCMSCs (FH) :

High dose of fresh UCMSCs

UCMSCs (CL) :

Low dose of cryopreserved UCMSCs

UCMSCs (CH) :

High dose of cryopreserved UCMSCs

SEM :

Standard error of the mean

hBMMSCs :

Human bone marrow derived MSCs

M :

Million

References

  1. Griffiths, C. E. M., van der Walt, J. M., Ashcroft, D. M., Flohr, C., Naldi, L., Nijsten, T., & Augustin, M. (2017). The global state of psoriasis disease epidemiology: A workshop report. The British Journal of Dermatology, 177, e4–e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Naik, P. P. (2022). Stem cell therapy as a potential treatment option for psoriasis. Anais Brasileiros de Dermatologia, 97, 471–4773.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhou, X., Chen, Y., Cui, L., Shi, Y., & Guo, C. (2022). Advances in the pathogenesis of psoriasis: From keratinocyte perspective. Cell Death & Disease, 13, 81.

    Article  CAS  Google Scholar 

  4. Armstrong, A. W., & Read, C. (2020). Pathophysiology, clinical presentation, and treatment of psoriasis: A review. JAMA, 323, 1945–1960.

    Article  CAS  PubMed  Google Scholar 

  5. Chiricozzi, A., Guttman-Yassky, E., Suárez-Fariñas, M., Nograles, K. E., Tian, S., Cardinale, I., Chimenti, S., & Krueger, J. G. (2011). Integrative responses to IL-17 and TNF-α in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis. The Journal of Investigative Dermatology, 131, 677–687.

    Article  CAS  PubMed  Google Scholar 

  6. Monteleone, G., Pallone, F., MacDonald, T. T., Chimenti, S., & Costanzo, A. (2011). Psoriasis: From pathogenesis to novel therapeutic approaches. Clinical Science (London England: 1979), 120, 1–11.

    Article  PubMed  Google Scholar 

  7. Lowes, M. A., Kikuchi, T., Fuentes-Duculan, J., Cardinale, I., Zaba, L. C., Haider, A. S., Bowman, E. P., & Krueger, J. G. (2008). Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. The Journal of Investigative Dermatology, 128, 1207–1211.

    Article  CAS  PubMed  Google Scholar 

  8. Ariza, M. E., Williams, M. V., & Wong, H. K. (2013). Targeting IL-17 in psoriasis: From cutaneous immunobiology to clinical application. Clinical Immunology (Orlando Fla), 146, 131–139.

    Article  CAS  PubMed  Google Scholar 

  9. Leonardi, C., Matheson, R., Zachariae, C., Cameron, G., Li, L., Edson-Heredia, E., Braun, D., & Banerjee, S. (2012). Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. The New England Journal of Medicine, 366, 1190–1199.

    Article  CAS  PubMed  Google Scholar 

  10. Papp, K. A., Langley, R. G., Sigurgeirsson, B., Abe, M., Baker, D. R., Konno, P., Haemmerle, S., Thurston, H. J., Papavassilis, C., & Richards, H. B. (2013). Efficacy and safety of secukinumab in the treatment of moderate-to-severe plaque psoriasis: A randomized, double-blind, placebo-controlled phase II dose-ranging study. The British Journal of Dermatology, 168, 412–421.

    Article  CAS  PubMed  Google Scholar 

  11. Coates, L. C., Merola, J. F., Grieb, S. M., Mease, P. J., & Duffin, C. (2020). Methotrexate in psoriasis and psoriatic arthritis. The Journal of Rheumatology Supplement, 96, 31–35.

    Article  CAS  PubMed  Google Scholar 

  12. Mozzanica, N., Pigatto, P. D., & Finzi, A. F. (1993). Cyclosporin in psoriasis: Pathophysiology and experimental data. Dermatology (Basel Switzerland), 187(Suppl 1), 3–7.

    Article  PubMed  Google Scholar 

  13. Gooderham, M., Posso-De Los Rios, C. J., Rubio-Gomez, G. A., & Papp, K. (2015). Interleukin-17 (IL-17) inhibitors in the treatment of plaque psoriasis: A review. Skin Therapy Letter, 20, 1–5.

    CAS  PubMed  Google Scholar 

  14. Al-Janabi, A., & Yiu, Z. Z. N. (2022). Biologics in psoriasis: Updated perspectives on long-term safety and risk management. Psoriasis (Auckland N Z), 12, 1–14.

    CAS  PubMed  Google Scholar 

  15. Chen, M., Peng, J., Xie, Q., Xiao, N., Su, X., Mei, H., Lu, Y., Zhou, J., Dai, Y., Wang, S., Li, C., Lin, G., & Cheng, L. (2019). Mesenchymal stem cells alleviate moderate-to-severe psoriasis by reducing the production of type I interferon (IFN-I) by plasmacytoid dendritic cells (pDCs). Stem Cells International, 2019, 6961052.

  16. Lin, Y., Wang, H., Jiang, C., Chen, C., Shen, D., Xie, F., Zhang, H., Yang, J., & Wang, H. (2022). Effects of different concentrations of human umbilical cord mesenchymal stem cells to ameliorate psoriasis-like skin lesions in BALB/c mice. Annals of Translational Medicine, 10, 86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ahn, H., Lee, S. Y., Jung, W. J., Pi, J., & Lee, K. H. (2021). Psoriasis treatment using minimally manipulated umbilical cord-derived mesenchymal stem cells: A case report. World Journal of Clinical Cases, 9, 6798–6803.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chen, Y., Hu, Y., Zhou, X., Zhao, Z., Yu, Q., Chen, Z., Wang, Y., Xu, P., Yu, Z., Guo, C., Zhang, X., & Shi, Y. (2022). Human umbilical cord-derived mesenchymal stem cells ameliorate psoriasis-like dermatitis by suppressing IL-17-producing γδ T cells. Cell and Tissue Research, 388, 549–563.

    Article  CAS  PubMed  Google Scholar 

  19. Woods, E. J., Thirumala, S., Badhe-Buchanan, S. S., Clarke, D., & Mathew, A. J. (2016). Off the shelf cellular therapeutics: Factors to consider during cryopreservation and storage of human cells for clinical use. Cytotherapy, 18, 697–71120.

    Article  PubMed  Google Scholar 

  20. Marquez-Curtis, L. A., Janowska-Wieczorek, A., McGann, L. E., & Elliott, J. A. (2015). Mesenchymal stromal cells derived from various tissues: Biological, clinical and cryopreservation aspects. Cryobiology, 71, 181–197.

    Article  CAS  PubMed  Google Scholar 

  21. Müllers, Y., Meiser, I., Stracke, F., Riemann, I., Lautenschläger, F., Neubauer, J. C., & Zimmermann, H. (2019). Quantitative analysis of F-actin alterations in adherent human mesenchymal stem cells: Influence of slow-freezing and vitrification-based cryopreservation. PLoS One, 14, e0211382.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bahsoun, S., Coopman, K., & Akam, E. C. (2020). Quantitative assessment of the impact of cryopreservation on human bone marrow-derived mesenchymal stem cells: Up to 24 h post-thaw and beyond. Stem Cell Research & Therapy, 11, 540.

    Article  CAS  Google Scholar 

  23. Fu, X., Xu, B., Jiang, J., Du, X., Yu, X., Yan, Y., Li, S., Inglis, B. M., Ma, H., Wang, H., Pei, X., & Si, W. (2020). Effects of cryopreservation and long-term culture on biological characteristics and proteomic profiles of human umbilical cord-derived mesenchymal stem cells. Clinical Proteomics, 17, 15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, Z., Li, H., Fang, J., Wang, X., Dai, S., Cao, W., Guo, Y., Li, Z., & Zhu, H. (2022). Comparative analysis of the therapeutic effects of amniotic membrane and umbilical cord derived mesenchymal stem cells for the treatment of type 2 diabetes. Stem Cell Reviews and Reports, 18, 1193–1206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cai, Y. H., Lu, Z. Y., Shi, R. F., Xue, F., Chen, X. Y., Pan, M., Yuan, W. R., Xu, H., Li, W. P., & Zheng, J. (2009). Enhanced proliferation and activation of peripheral blood mononuclear cells in patients with psoriasis vulgaris mediated by streptococcal antigen with bacterial DNA. The Journal of Investigative Dermatology, 129, 2653–2660.

    Article  CAS  PubMed  Google Scholar 

  26. Kaushik, S. B., & Lebwohl, M. G. (2019). Psoriasis: Which therapy for which patient: Psoriasis comorbidities and preferred systemic agents. Journal of the American Academy of Dermatology, 80, 27–40.

    Article  PubMed  Google Scholar 

  27. Chinnadurai, R., Garcia, M. A., Sakurai, Y., Lam, W. A., Kirk, A. D., Galipeau, J., & Copland, I. B. (2014). Actin cytoskeletal disruption following cryopreservation alters the biodistribution of human mesenchymal stromal cells in vivo. Stem Cell Reports, 3, 60–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shaik, S., Wu, X., Gimble, J., & Devireddy, R. (2018). Effects of decade long freezing storage on adipose derived stem cells functionality. Scientific Reports, 8, 8162.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang, M., Zhao, Y., Wang, L., Zheng, Y., Yu, H., Dong, X., He, W., Yin, Z., & Wang, Z. (2022). Study of the biological characteristics of human umbilical cord mesenchymal stem cells after long-time cryopreservation. Cell and Tissue Banking, 23, 739–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Horie, S., Gonzalez, H., Brady, J., Devaney, J., Scully, M., O’Toole, D., & Laffey, J. G. (2021). Fresh and cryopreserved human umbilical-cord-derived mesenchymal stromal cells attenuate injury and enhance resolution and repair following ventilation-induced lung injury. International Journal of Molecular Sciences, 22, 12842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tan, Y., Salkhordeh, M., Wang, J. P., McRae, A., Souza-Moreira, L., McIntyre, L., Stewart, D. J., & Mei, S. H. J. (2019). Thawed mesenchymal stem cell product shows comparable immunomodulatory potency to cultured cells in vitro and in polymicrobial septic animals. Scientific Reports, 9, 18078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. González, M. A., Gonzalez-Rey, E., Rico, L., Büscher, D., & Delgado, M. (2009). Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology, 136, 978–989.

    Article  PubMed  Google Scholar 

  33. Maria, A. T., Toupet, K., Bony, C., Pirot, N., Vozenin, M. C., Petit, B., Roger, P., Batteux, F., Le Quellec, A., Jorgensen, C., Noël, D., & Guilpain, P. (2016). Antifibrotic, antioxidant, and immunomodulatory effects of mesenchymal stem cells in hocl-induced systemic sclerosis. Arthritis & Rhematology, 68, 1013–1025.

    Article  CAS  Google Scholar 

  34. Robinson, A. M., Rahman, A. A., Miller, S., Stavely, R., Sakkal, S., & Nurgali, K. (2017). The neuroprotective effects of human bone marrow mesenchymal stem cells are dose-dependent in TNBS colitis. Stem Cell Research & Therapy, 8, 87.

    Article  Google Scholar 

  35. Blauvelt, A., & Chiricozzi, A. (2018). The immunologic role of IL-17 in psoriasis and psoriatic arthritis pathogenesis. Clinical Reviews in Allergy & Immunology, 55, 379–390.

    Article  CAS  Google Scholar 

  36. Furue, K., Ito, T., & Furue, M. (2018). Differential efficacy of biologic treatments targeting the TNF-α/IL-23/IL-17 axis in psoriasis and psoriatic arthritis. Cytokine, 111, 182–188.

    Article  CAS  PubMed  Google Scholar 

  37. Shi, Y., Wang, Y., Li, Q., Liu, K., Hou, J., Shao, C., & Wang, Y. (2018). Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nature Reviews, 14, 493–507.

    CAS  PubMed  Google Scholar 

  38. Schrepfer, S., Deuse, T., Reichenspurner, H., Fischbein, M. P., Robbins, R. C., & Pelletier, M. P. (2006). Stem cell transplantation: the lung barrier. Transplantation Proceedings, 2, 573–576.

  39. Fan, J., Tang, X., Wang, Q., Zhang, Z., Wu, S., Li, W., Liu, S., Yao, G., Chen, H., & Sun, L. (2018). Mesenchymal stem cells alleviate experimental autoimmune cholangitis through immunosuppression and cytoprotective function mediated by galectin-9. Stem Cell Research & Therapy, 1, 237.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank all of the MSC donors and the patients for their willingness to participate in this study. The authors also appreciate Yu Zhang, Chenxi Ge, Ziying Lin, Zhiqian Zhou, and Ke Liu at the Sinoneural Cell Engineering Group Holdings Co., Ltd. for their help with preparation of MSCs.

Funding

This work was sponsored by grants from National Natural Science Foundation of China (No. 81872522, 82073429, 82273510, 82203908), Innovation Program of Shanghai Municipal Education Commission (No.2019-01-07-00-07-E00046), Clinical Research Plan of SHDC (No. SHDC2020CR1014B, SHDC2020CR6022, SHDC12018X06) and Program of Shanghai Academic Research Leader (No. 20XD1403300).

Author information

Authors and Affiliations

Authors

Contributions

The study was designed by Z.W., D.F.W., H.J., H.Z., and Y.S.; The experiments were carried out by Z.W., Y.H., X.W., Y.C., C.Y., J.F., C.P., L.W., Y.G., Y.L., D.W., and F.R.; Z.W., X.W., C.Y., J.F., and S.W. wrote the paper; all authors analyzed the data; H.Z., and Y.S. supervised the project. All authors approved the final submitted version.

Corresponding authors

Correspondence to Zhifeng Wang, Hao Zhu or Yuling Shi.

Ethics declarations

Ethics Approval and Consent to Participate

The number of animals used in the research as well as experimental procedures had been reviewed and approved by the Institutional Animal Care and Use Committee (IACUC No. ACU20-1719). Mouse care and experiments were performed following the National Institutes of Health Guide for the Care and Use of Laboratory Animals. The clinical study was approved by the Stem Cell Research Ethics Committee of Shanghai Tenth People’s Hospital of Tongji University, China (approval No. SC-2020-01).

Consent for Publication

Consent for publication was obtained from every participant.

Competing Interests

The authors declare no competing interests. The authors from Sinoneural Cell Engineering Group Holdings Co., Ltd. helped in the preparation of the MSCs.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(PDF 632 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Hu, Y., Wang, X. et al. Comparative Analysis of the Therapeutic Effects of Fresh and Cryopreserved Human Umbilical Cord Derived Mesenchymal Stem Cells in the Treatment of Psoriasis. Stem Cell Rev and Rep 19, 1922–1936 (2023). https://doi.org/10.1007/s12015-023-10556-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10556-8

Keywords

Navigation