Skip to main content
Log in

The Role of PHF6 in Hematopoiesis and Hematologic Malignancies

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Epigenetic regulation of gene expression represents an important mechanism in the maintenance of stem cell function. Alterations in epigenetic regulation contribute to the pathogenesis of hematological malignancies. Plant homeodomain finger protein 6 (PHF6) is a member of the plant homeodomain (PHD)-like zinc finger family of proteins that is involved in transcriptional regulation through the modification of the chromatin state. Germline mutation of PHF6 is the causative genetic alteration of the X-linked mental retardation Borjeson–Forssman–Lehmann syndrome (BFLS). Somatic mutations in PHF6 are identified in human leukemia, such as adult T-cell acute lymphoblastic leukemia (T-ALL, ~ 38%), pediatric T-ALL (~ 16%), acute myeloid leukemia (AML, ~ 3%), chronic myeloid leukemia (CML, ~ 2.5%), mixed phenotype acute leukemia (MPAL, ~ 20%), and high-grade B-cell lymphoma (HGBCL, ~ 3%). More recent studies imply an oncogenic effect of PHF6 in B-cell acute lymphoblastic leukemia (B-ALL) and solid tumors. These data demonstrate that PHF6 could act as a double-edged sword, either a tumor suppressor or an oncogene, in a lineage-dependent manner. However, the underlying mechanisms of PHF6 in normal hematopoiesis and leukemogenesis remain largely unknown. In this review, we summarize current knowledge of PHF6, emphasizing the role of PHF6 in hematological malignancies.

Graphical abstract

Epigenetic regulation of PHF6 in B-ALL. PHF6 maintains a chromatin structure that is permissive to B-cell identity genes, but not T-cell-specific genes (left). Loss of PHF6 leads to aberrant expression of B-cell- and T-cell-specific genes resulting from lineage promiscuity and binding of T-cell transcription factors (right).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Lower, K. M., Turner, G., Kerr, B. A., et al. (2002). Mutations in PHF6 are associated with Börjeson-Forssman-Lehmann syndrome. Nature Genetics, 32(4), 661–665. https://doi.org/10.1038/ng1040

    Article  CAS  Google Scholar 

  2. Vallée, D., Chevrier, E., Graham, G. E., et al. (2004). A novel PHF6 mutation results in enhanced exon skipping and mild Börjeson-Forssman-Lehmann syndrome. Journal of Medical Genetics, 41(10), 778–783. https://doi.org/10.1136/jmg.2004.020370

    Article  CAS  Google Scholar 

  3. Voss, A. K., Gamble, R., Collin, C., et al. (2007). Protein and gene expression analysis of Phf6, the gene mutated in the Börjeson-Forssman-Lehmann Syndrome of intellectual disability and obesity. Gene Expression Patterns, 7(8), 858–871. https://doi.org/10.1016/j.modgep.2007.06.007

    Article  CAS  Google Scholar 

  4. Todd, M. A., & Picketts, D. J. (2012). PHF6 interacts with the nucleosome remodeling and deacetylation (NuRD) complex. Journal of Proteome Research, 11(8), 4326–4337. https://doi.org/10.1021/pr3004369

    Article  CAS  Google Scholar 

  5. Perry, J. (2006). The Epc-N domain: A predicted protein-protein interaction domain found in select chromatin associated proteins. BMC Genomics, 7, 6. https://doi.org/10.1186/1471-2164-7-6

    Article  CAS  Google Scholar 

  6. Kurzer, J. H., & Weinberg, O. K. (2021). PHF6 Mutations in Hematologic Malignancies. Frontiers in Oncology, 11, 704471. https://doi.org/10.3389/fonc.2021.704471

    Article  Google Scholar 

  7. Grossmann, V., Haferlach, C., Weissmann, S., et al. (2013). The molecular profile of adult T-cell acute lymphoblastic leukemia: Mutations in RUNX1 and DNMT3A are associated with poor prognosis in T-ALL. Genes, Chromosomes & Cancer, 52(4), 410–422. https://doi.org/10.1002/gcc.22039

    Article  CAS  Google Scholar 

  8. Van Vlierberghe, P., Palomero, T., Khiabanian, H., et al. (2010). PHF6 mutations in T-cell acute lymphoblastic leukemia. Nature Genetics, 42(4), 338–342. https://doi.org/10.1038/ng.542

    Article  CAS  Google Scholar 

  9. Loontiens, S., Dolens, A. C., Strubbe, S., et al. (2020). PHF6 Expression Levels Impact Human Hematopoietic Stem Cell Differentiation. Frontiers in Cellular Developmental Biology, 8, 599472. https://doi.org/10.3389/fcell.2020.599472

    Article  Google Scholar 

  10. Visootsak, J., Rosner, B., Dykens, E., et al. (2004). Clinical and behavioral features of patients with Borjeson-Forssman-Lehmann syndrome with mutations in PHF6. Journal of Pediatrics, 145(6), 819–825. https://doi.org/10.1016/j.jpeds.2004.07.041

    Article  Google Scholar 

  11. Soto-Feliciano, Y. M., Bartlebaugh, J. M. E., Liu, Y., et al. (2017). PHF6 regulates phenotypic plasticity through chromatin organization within lineage-specific genes. Genes & Development, 31(10), 973–989. https://doi.org/10.1101/gad.295857.117

    Article  CAS  Google Scholar 

  12. Liu, Z., Li, F., Ruan, K., et al. (2014). Structural and functional insights into the human Börjeson-Forssman-Lehmann syndrome-associated protein PHF6. Journal of Biological Chemistry, 289(14), 10069–10083. https://doi.org/10.1074/jbc.M113.535351

    Article  CAS  Google Scholar 

  13. Xue, Y., Wong, J., Moreno, G. T., Young, M. K., Côté, J., & Wang, W. (1998). NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Molecular Cell, 2(6), 851–861. https://doi.org/10.1016/s1097-2765(00)80299-3

    Article  CAS  Google Scholar 

  14. Potts, R. C., Zhang, P., Wurster, A. L., et al. (2011). CHD5, a brain-specific paralog of Mi2 chromatin remodeling enzymes, regulates expression of neuronal genes. PLoS One, 6(9), e24515. https://doi.org/10.1371/journal.pone.0024515

    Article  CAS  Google Scholar 

  15. Yoshida, T., Hazan, I., Zhang, J., et al. (2008). The role of the chromatin remodeler Mi-2beta in hematopoietic stem cell self-renewal and multilineage differentiation. Genes & Development, 22(9), 1174–1189. https://doi.org/10.1101/gad.1642808

    Article  CAS  Google Scholar 

  16. Shi, X., Hong, T., Walter, K. L., et al. (2006). ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature, 442(7098), 96–99. https://doi.org/10.1038/nature04835

    Article  CAS  Google Scholar 

  17. Oh, S., Boo, K., Kim, J., et al. (2020). The chromatin-binding protein PHF6 functions as an E3 ubiquitin ligase of H2BK120 via H2BK12Ac recognition for activation of trophectodermal genes. Nucleic Acids Research, 48(16), 9037–9052. https://doi.org/10.1093/nar/gkaa626

    Article  CAS  Google Scholar 

  18. Wang, J., Leung, J. W., Gong, Z., Feng, L., Shi, X., & Chen, J. (2013). PHF6 regulates cell cycle progression by suppressing ribosomal RNA synthesis. Journal of Biological Chemistry, 288(5), 3174–3183. https://doi.org/10.1074/jbc.M112.414839

    Article  CAS  Google Scholar 

  19. Zhang, C., Mejia, L. A., Huang, J., et al. (2013). The X-linked intellectual disability protein PHF6 associates with the PAF1 complex and regulates neuronal migration in the mammalian brain. Neuron, 78(6), 986–993. https://doi.org/10.1016/j.neuron.2013.04.021

    Article  CAS  Google Scholar 

  20. Warmerdam, D. O., Alonso-de Vega, I., Wiegant, W. W., et al. (2020). PHF6 promotes non-homologous end joining and G2 checkpoint recovery. EMBO Reports, 21(1), e48460. https://doi.org/10.15252/embr.201948460

    Article  CAS  Google Scholar 

  21. Turner, G., Lower, K. M., White, S. M., et al. (2004). The clinical picture of the Börjeson-Forssman-Lehmann syndrome in males and heterozygous females with PHF6 mutations. Clinical Genetics, 65(3), 226–232. https://doi.org/10.1111/j.0009-9163.2004.00215.x

    Article  CAS  Google Scholar 

  22. Borjeson, M., Forssman, H., & Lehmann, O. (1962). An X-linked, recessively inherited syndrome characterized by grave mental deficiency, epilepsy, and endocrine disorder. Acta Medica Scandinavica, 171, 13–21. https://doi.org/10.1111/j.0954-6820.1962.tb04162.x

    Article  CAS  Google Scholar 

  23. Gécz, J., Turner, G., Nelson, J., & Partington, M. (2006). The Börjeson-Forssman-Lehman syndrome (BFLS, MIM #301900). European Journal of Human Genetics, 14(12), 1233–1237. https://doi.org/10.1038/sj.ejhg.5201639

    Article  CAS  Google Scholar 

  24. Todd, M. A., Ivanochko, D., & Picketts, D. J. (2015). PHF6 Degrees of Separation: The Multifaceted Roles of a Chromatin Adaptor Protein. Genes (Basel), 6(2), 325–352. https://doi.org/10.3390/genes6020325

    Article  CAS  Google Scholar 

  25. Berland, S. (2011). PHF6 deletions may cause borjeson-forssman-lehmann syndrome in females. Molecular Syndromology. https://doi.org/10.1159/000330111

    Article  Google Scholar 

  26. Mt, C. (2009). Further clinical delineation of the Börjeson–Forssman–Lehmann syndrome in patients with PHF6 mutations. American Journal of Medical Genetics. https://doi.org/10.1002/ajmg.a.32624

    Article  Google Scholar 

  27. Crawford, J., Lower, K. M., Hennekam, R. C., et al. (2006). Mutation screening in Borjeson-Forssman-Lehmann syndrome: Identification of a novel de novo PHF6 mutation in a female patient. Journal of Medical Genetics, 43(3), 238–243. https://doi.org/10.1136/jmg.2005.033084

    Article  CAS  Google Scholar 

  28. Zweier, C., Kraus, C., Brueton, L., et al. (2013). A new face of Borjeson-Forssman-Lehmann syndrome? De novo mutations in PHF6 in seven females with a distinct phenotype. Journal of Medical Genetics, 50(12), 838–847. https://doi.org/10.1136/jmedgenet-2013-101918

    Article  CAS  Google Scholar 

  29. Cheng, C., Deng, P. Y., Ikeuchi, Y., et al. (2018). Characterization of a Mouse Model of Börjeson-Forssman-Lehmann Syndrome. Cell Reports, 25(6), 1404-1414.e6. https://doi.org/10.1016/j.celrep.2018.10.043

    Article  CAS  Google Scholar 

  30. McRae, H. M., Eccles, S., Whitehead, L., et al. (2020). Downregulation of the GHRH/GH/IGF1 axis in a mouse model of Börjeson-Forssman-Lehman syndrome. Development, 147(21). https://doi.org/10.1242/dev.187021

  31. Ferrando, A. A., Neuberg, D. S., Staunton, J., et al. (2002). Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell, 1(1), 75–87. https://doi.org/10.1016/s1535-6108(02)00018-1

    Article  CAS  Google Scholar 

  32. Wendorff, A. A., Quinn, S. A., Rashkovan, M., et al. (2019). Phf6 Loss Enhances HSC Self-Renewal Driving Tumor Initiation and Leukemia Stem Cell Activity in T-ALL. Cancer Discovery, 9(3), 436–451. https://doi.org/10.1158/2159-8290.Cd-18-1005

    Article  CAS  Google Scholar 

  33. Ahmed, R., Sarwar, S., Hu, J., et al. (2021). Transgenic mice with an R342X mutation in Phf6 display clinical features of Börjeson-Forssman-Lehmann Syndrome. Human Molecular Genetics, 30(7), 575–594. https://doi.org/10.1093/hmg/ddab081

    Article  CAS  Google Scholar 

  34. Ogilvy, S., Elefanty, A. G., Visvader, J., Bath, M. L., Harris, A. W., & Adams, J. M. (1998). Transcriptional regulation of vav, a gene expressed throughout the hematopoietic compartment. Blood, 91(2), 419–430.

    Article  CAS  Google Scholar 

  35. Van Vlierberghe, P., Patel, J., Abdel-Wahab, O., et al. (2011). PHF6 mutations in adult acute myeloid leukemia. Leukemia, 25(1), 130–134. https://doi.org/10.1038/leu.2010.247

    Article  CAS  Google Scholar 

  36. Karrman, K., Castor, A., Behrendtz, M., et al. (2015). Deep sequencing and SNP array analyses of pediatric T-cell acute lymphoblastic leukemia reveal NOTCH1 mutations in minor subclones and a high incidence of uniparental isodisomies affecting CDKN2A. Journal of Hematology & Oncology, 8, 42. https://doi.org/10.1186/s13045-015-0138-0

    Article  CAS  Google Scholar 

  37. Yoo, N. J., Kim, Y. R., & Lee, S. H. (2012). Somatic mutation of PHF6 gene in T-cell acute lymphoblatic leukemia, acute myelogenous leukemia and hepatocellular carcinoma. Acta Oncologica, 51(1), 107–111. https://doi.org/10.3109/0284186x.2011.592148

    Article  CAS  Google Scholar 

  38. Spinella, J. F., Cassart, P., Richer, C., et al. (2016). Genomic characterization of pediatric T-cell acute lymphoblastic leukemia reveals novel recurrent driver mutations. Oncotarget, 7(40), 65485–65503. https://doi.org/10.18632/oncotarget.11796

    Article  Google Scholar 

  39. Wang, Q., Qiu, H., Jiang, H., et al. (2011). Mutations of PHF6 are associated with mutations of NOTCH1, JAK1 and rearrangement of SET-NUP214 in T-cell acute lymphoblastic leukemia. Haematologica, 96(12), 1808–1814. https://doi.org/10.3324/haematol.2011.043083

    Article  CAS  Google Scholar 

  40. Alexander, T. B., Gu, Z., Iacobucci, I., et al. (2018). The genetic basis and cell of origin of mixed phenotype acute leukaemia. Nature, 562(7727), 373–379. https://doi.org/10.1038/s41586-018-0436-0

    Article  CAS  Google Scholar 

  41. Xiao, W., Bharadwaj, M., Levine, M., et al. (2018). PHF6 and DNMT3A mutations are enriched in distinct subgroups of mixed phenotype acute leukemia with T-lineage differentiation. Blood Advances, 2(23), 3526–3539. https://doi.org/10.1182/bloodadvances.2018023531

    Article  CAS  Google Scholar 

  42. Mi, X., Griffin, G., Lee, W., et al. (2018). Genomic and clinical characterization of B/T mixed phenotype acute leukemia reveals recurrent features and T-ALL like mutations. American Journal of Hematology, 93(11), 1358–1367. https://doi.org/10.1002/ajh.25256

    Article  CAS  Google Scholar 

  43. Mori, T., Nagata, Y., Makishima, H., et al. (2016). Somatic PHF6 mutations in 1760 cases with various myeloid neoplasms. Leukemia, 30(11), 2270–2273. https://doi.org/10.1038/leu.2016.212

    Article  CAS  Google Scholar 

  44. Xiao, W., Pastore, F., Getta, B., et al. (2017). PHF6 Mutations Defines a Subgroup of Mixed Phenotype of Acute Leukemia with Aberrant T-Cell Differentiation. Blood, 130(Supplement 1), 1384–1384. https://doi.org/10.1182/blood.V130.Suppl_1.1384.1384

    Article  Google Scholar 

  45. de Rooij, J. D., van den Heuvel-Eibrink, M. M., van de Rijdt, N. K., et al. (2016). PHF6 mutations in paediatric acute myeloid leukaemia. British Journal of Haematology, 175(5), 967–971. https://doi.org/10.1111/bjh.13891

    Article  CAS  Google Scholar 

  46. Li, X., Yao, H., Chen, Z., Wang, Q., Zhao, Y., & Chen, S. (2013). Somatic mutations of PHF6 in patients with chronic myeloid leukemia in blast crisis. Leukaemia & Lymphoma, 54(3), 671–672. https://doi.org/10.3109/10428194.2012.725203

    Article  CAS  Google Scholar 

  47. Huh, H. J., Lee, S. H., Yoo, K. H., et al. (2013). Gene mutation profiles and prognostic implications in Korean patients with T-lymphoblastic leukemia. Annals of Hematology, 92(5), 635–644. https://doi.org/10.1007/s00277-012-1664-2

    Article  CAS  Google Scholar 

  48. Stengel, A., Kern, W., Meggendorfer, M., Haferlach, T., & Haferlach, C. (2017). High Grade B Cell Lymphoma with MYC and BCL2 and/or BCL6 Rearrangements Depict a High Complexity on the Cytogenetic, but Not on the Molecular Genetic Level and Show MYC Mutations As Prognostic Marker. Blood, 130(Supplement 1), 4001–4001. https://doi.org/10.1182/blood.V130.Suppl_1.4001.4001

    Article  Google Scholar 

  49. Ueno, H., Yoshida, K., Shiozawa, Y., et al. (2020). Landscape of driver mutations and their clinical impacts in pediatric B-cell precursor acute lymphoblastic leukemia. Blood Advances, 4(20), 5165–5173. https://doi.org/10.1182/bloodadvances.2019001307

    Article  CAS  Google Scholar 

  50. Weinberg, O. K., & Arber, D. A. (2010). Mixed-phenotype acute leukemia: Historical overview and a new definition. Leukemia, 24(11), 1844–1851. https://doi.org/10.1038/leu.2010.202

    Article  CAS  Google Scholar 

  51. Eckstein, O. S., Wang, L., Punia, J. N., et al. (2016). Mixed-phenotype acute leukemia (MPAL) exhibits frequent mutations in DNMT3A and activated signaling genes. Experimental Hematology, 44(8), 740–744. https://doi.org/10.1016/j.exphem.2016.05.003

    Article  CAS  Google Scholar 

  52. De Kouchkovsky, I., & Abdul-Hay, M. (2016). Acute myeloid leukemia: A comprehensive review and 2016 update. Blood Cancer Journal, 6(7), e441. https://doi.org/10.1038/bcj.2016.50

    Article  Google Scholar 

  53. Chereda, B., & Melo, J. V. (2015). Natural course and biology of CML. Annals of Hematology, 94(Suppl 2), S107–S121. https://doi.org/10.1007/s00277-015-2325-z

    Article  CAS  Google Scholar 

  54. Yu, Q., Yin, L., Jian, Y., Li, P., Zeng, W., & Zhou, J. (2019). Downregulation of PHF6 Inhibits Cell Proliferation and Migration in Hepatocellular Carcinoma. Cancer Biotherapy & Radiopharmaceuticals, 34(4), 245–251. https://doi.org/10.1089/cbr.2018.2671

    Article  CAS  Google Scholar 

  55. Hajjari, M. (2015). The potential role of PHF6 as an oncogene: A genotranscriptomic/proteomic meta-analysis. Tumor Biology. https://doi.org/10.1007/s13277-015-4250-0

    Article  Google Scholar 

  56. Patel, J. P., Gönen, M., Figueroa, M. E., et al. (2012). Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. New England Journal of Medicine, 366(12), 1079–1089. https://doi.org/10.1056/NEJMoa1112304

    Article  CAS  Google Scholar 

  57. Xiang, J., Wang, G., Xia, T., & Chen, Z. (2019). The depletion of PHF6 decreases the drug sensitivity of T-cell acute lymphoblastic leukemia to prednisolone. Biomedicine & Pharmacotherapy, 109, 2210–2217. https://doi.org/10.1016/j.biopha.2018.11.083

    Article  CAS  Google Scholar 

  58. Meacham, C. E., Lawton, L. N., Soto-Feliciano, Y. M., et al. (2015). A genome-scale in vivo loss-of-function screen identifies Phf6 as a lineage-specific regulator of leukemia cell growth. Genes & Development, 29(5), 483–488. https://doi.org/10.1101/gad.254151.114

    Article  CAS  Google Scholar 

  59. Hsu, Y. C., Chen, T. C., Lin, C. C., et al. (2019). Phf6-null hematopoietic stem cells have enhanced self-renewal capacity and oncogenic potentials. Blood Advances, 3(15), 2355–2367. https://doi.org/10.1182/bloodadvances.2019000391

    Article  CAS  Google Scholar 

  60. McRae, H. M., Garnham, A. L., Hu, Y., et al. (2019). PHF6 regulates hematopoietic stem and progenitor cells and its loss synergizes with expression of TLX3 to cause leukemia. Blood, 133(16), 1729–1741. https://doi.org/10.1182/blood-2018-07-860726

    Article  CAS  Google Scholar 

  61. Miyagi, S., Sroczynska, P., Kato, Y., et al. (2019). The chromatin-binding protein Phf6 restricts the self-renewal of hematopoietic stem cells. Blood, 133(23), 2495–2506. https://doi.org/10.1182/blood.2019000468

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the National Institutes of Health (HL149318, HL158081, and CA172408 to F.-C.Y.).

Author information

Authors and Affiliations

Authors

Contributions

Yusra A. Eisa, Ying Guo and Feng-Chun Yang wrote the manuscript and gave final approval of the manuscript.

Corresponding author

Correspondence to Feng-Chun Yang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Institutional Review Board

Not applicable.

Informed Consent

Not applicable.

Conflicts of Interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eisa, Y.A., Guo, Y. & Yang, FC. The Role of PHF6 in Hematopoiesis and Hematologic Malignancies. Stem Cell Rev and Rep 19, 67–75 (2023). https://doi.org/10.1007/s12015-022-10447-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-022-10447-4

Keywords

Navigation