Skip to main content
Log in

BMSCs-derived Mitochondria Improve Osteoarthritis by Ameliorating Mitochondrial Dysfunction and Promoting Mitochondrial Biogenesis in Chondrocytes

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Bone marrow mesenchymal stem cells (BMSCs)—derived exosomes and microvesicles can effectively improve knee osteoarthritis. We found that microvesicles performed a superior effect on improving mitochondrial function in chondrocytes than exosomes, which may be related to the ability of microvesicles carrying active mitochondria to replace damaged ones in chondrocytes. This study investigated the therapeutic effect of direct mitochondrial transplantation (MT) on knee osteoarthritis. IL-1β stimulated the osteoarthritis phenotype of rat chondrocytes, and the effect of BMSCs-derived mitochondria transplantation was observed in vitro. Knee osteoarthritis rat model was established by collagenase induction to observe the effect of intra-articular injection of mitochondria. Results showed that the mitochondria of BMSCs could be ingested by rat chondrocytes via co-incubation in vitro, and significantly improved osteoarthritis phenotype and mitochondrial function, and inhibited chondrocytes apoptosis. In vivo, BMSCs-derived mitochondria could be ingested by cartilage via intra-articular injection, ameliorated pathological cartilage injury, suppressed inflammation, inhibited chondrocytes apoptosis, and improved osteoarthritis phenotype. In addition, MT promoted mitochondrial biogenesis in chondrocytes by activating PGC-1α signaling. All above results suggest that BMSCs-derived mitochondria transplantation ameliorates knee osteoarthritis by improving chondrocytes mitochondrial dysfunction and promoting mitochondrial biogenesis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are available from the corresponding author on request.

References

  1. van den Bosch, M. H. J. (2021). Osteoarthritis year in review 2020: Biology. Osteoarthritis Cartilage, 29, 143–150.

    Article  CAS  PubMed  Google Scholar 

  2. Abramoff, B., & Caldera, F. E. (2020). Osteoarthritis Pathology, Diagnosis, and Treatment Options. Medical Clinics of North America, 104, 293–311.

    Article  PubMed  Google Scholar 

  3. Li, Z., Li, M., Xu, P., Ma, J., & Zhang, R. (2020). Compositional Variation and Functional Mechanism of Exosomes in the Articular Microenvironment in Knee Osteoarthritis. Cell Transplantation, 29, 096368972096849.

    Article  Google Scholar 

  4. Barnett, R. (2018). Osteoarthritis. Lancet (London, England), 391, 1985–1985.

    Article  Google Scholar 

  5. Mustonen, A.-M., & Nieminen, P. (2021). Extracellular Vesicles and Their Potential Significance in the Pathogenesis and Treatment of Osteoarthritis. Pharmaceuticals (Basel), 14, 315.

    Article  CAS  Google Scholar 

  6. Fuente-Muñoz, C. E. D., & Arias, C. (2020). The therapeutic potential of mitochondrial transplantation for the treatment of neurodegenerative disorders. Reviews in the Neurosciences, 32, 203–217.

    Article  Google Scholar 

  7. Blanco, F. J., Rego, I., & Ruiz-Romero, C. (2011). The role of mitochondria in osteoarthritis. Nature Reviews Rheumatology, 7, 161–169.

    Article  CAS  PubMed  Google Scholar 

  8. Gollihue, J. L., & Rabchevsky, A. G. (2017). Prospects for therapeutic mitochondrial transplantation. Mitochondrion, 35, 70–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Moskowitzova, K., Orfany, A., Liu, K., Ramirez-Barbieri, G., Thedsanamoorthy, J. K., Yao, R., Guariento, A., Doulamis, I. P., Blitzer, D., Shin, B., Snay, E. R., Inkster, J. A. H., Iken, K., Packard, A. B., Cowan, D. B., Visner, G. A., Nido, P. J. D., & McCully, J. D. (2019). Mitochondrial Transplantation Enhances Murine Lung Viability and Recovery after Ischemia Reperfusion Injury. American Journal of Physiology. Lung Cellular and Molecular Physiology, 318, L78–L88.

    Article  PubMed  PubMed Central  Google Scholar 

  10. McCully, J. D., Cowan, D. B., Emani, S. M., & Nido, P. J. D. (2017). Mitochondrial transplantation: From animal models to clinical use in humans. Mitochondrion, 34, 127–134.

    Article  CAS  PubMed  Google Scholar 

  11. Yamada, Y., Ito, M., Arai, M., Hibino, M., Tsujioka, T., & Harashima, H. (2020). Challenges in Promoting Mitochondrial Transplantation Therapy. International Journal of Molecular Sciences, 21, 6365.

    Article  PubMed Central  Google Scholar 

  12. Zhao, J., Wu, J., Xu, B., Yuan, Z., Leng, Y., Min, J., Lan, X., & Luo, J. (2019). Kaempferol promotes bone formation in part via the mTOR signaling pathway. Molecular Medicine Reports, 20, 5197–5207.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cosenza, S., Toupet, K., Maumus, M., Luz-Crawford, P., Blanc-Brude, O., Jorgensen, C., & Noël, D. (2018). Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics, 8, 1399–1410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Feng, K., Ge, Y., Chen, Z., Li, X., Liu, Z., Li, X., Li, H., Tang, T., Yang, F., & Wang, X. (2019). curcumin inhibits the perk-eif2α-chop pathway through promoting sirt1 expression in oxidative stress-induced rat chondrocytes and ameliorates osteoarthritis progression in a rat model. Oxidative Medicine and Cellular Longevity, 2019, 8574386–8574386.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Han, B., Li, Q., Wang, C., Chandrasekaran, P., Zhou, Y., Qin, L., Liu, X. S., Enomoto-Iwamoto, M., Kong, D., Iozzo, R. V., Birk, D. E., & Han, L. (2021). Differentiated Activities of Decorin and Biglycan in the Progression of Post-Traumatic Osteoarthritis. Osteoarthritis and Cartilage, 29, 1181–1192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mustonen, A. M., & Nieminen, P. (2021). Extracellular Vesicles and Their Potential Significance in the Pathogenesis and Treatment of Osteoarthritis. Pharmaceuticals, 14, 315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao, A. G., Shah, K., Cromer, B., & Sumer, H. (2020). Mesenchymal Stem Cell-Derived Extracellular Vesicles and Their Therapeutic Potential. Stem Cells International, 2020, 8825771.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cosenza, S., Ruiz, M., Toupet, K., Jorgensen, C., & Noël, D. (2017). Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Science and Reports, 7, 16214.

    Article  Google Scholar 

  19. Li, M., Luo, X., Long, X., Jiang, P., Jiang, Q., Guo, H., & Chen, Z. (2021). Potential role of mitochondria in synoviocytes. Clinical Rheumatology, 40, 447–457.

    Article  PubMed  Google Scholar 

  20. Mao, X., Fu, P., Wang, L., & Xiang, C. (2020). Mitochondria: Potential Targets for Osteoarthritis. Frontiers in Medicine (Lausanne), 7, 581402.

    Article  Google Scholar 

  21. Hsu, Y.-C., Wu, Y.-T., Yu, T.-H., & Wei, Y.-H. (2016). Mitochondria in mesenchymal stem cell biology and cell therapy: From cellular differentiation to mitochondrial transfer. Seminars in Cell & Developmental Biology, 52, 119–131.

    Article  CAS  Google Scholar 

  22. Paliwal, S., Chaudhuri, R., Agrawal, A., & Mohanty, S. (2018). Regenerative abilities of mesenchymal stem cells through mitochondrial transfer. Journal of Biomedical Science, 25, 31.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zheng, L., Wang, Y., Qiu, P., Xia, C., Fang, Y., Mei, S., Fang, C., Shi, Y., Wu, K., Chen, Z., Fan, S., He, D., Lin, X., & Chen, P. (2019). Primary chondrocyte exosomes mediate osteoarthritis progression by regulating mitochondrion and immune reactivity. Nanomedicine (London, England), 14, 3193–3212.

    Article  CAS  Google Scholar 

  24. Clark, M. A., & Shay, J. W. (1982). Mitochondrial transformation of mammalian cells. Nature, 295, 605–607.

    Article  CAS  PubMed  Google Scholar 

  25. Chernyak, B. V. (2020). Mitochondrial Transplantation: A Critical Analysis. Biochemistry (Mosc), 85, 636–641.

    Article  CAS  Google Scholar 

  26. Yan, C., Ma, Z., Ma, H., Li, Q., Zhai, Q., Jiang, T., Zhang, Z., & Wang, Q. (2020). Mitochondrial Transplantation Attenuates Brain Dysfunction in Sepsis by Driving Microglial M2 Polarization. Molecular Neurobiology, 57, 3875–3890.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, Z., Yan, C., Miao, J., Pu, K., Qiang, W., & Ma, H. (2021). Muscle-Derived Mitochondrial Transplantation Reduces Inflammation, Enhances Bacterial Clearance, and Improves Survival in Sepsis. Shock, 56, 108–118.

    Article  CAS  PubMed  Google Scholar 

  28. Chang, J.-C., Hoel, F., Liu, K.-H., Wei, Y.-H., Cheng, F.-C., Kuo, S.-J., Tronstad, K. J., & Liu, C.-S. (2017). Peptide-mediated delivery of donor mitochondria improves mitochondrial function and cell viability in human cybrid cells with the MELAS A3243G mutation. Science and Reports, 7, 10710.

    Article  Google Scholar 

  29. Wang, Y., Zhao, X., Lotz, M., Terkeltaub, R., & Liu-Bryan, R. (2015). Mitochondrial Biogenesis Is Impaired in Osteoarthritis Chondrocytes but Reversible via Peroxisome Proliferator-Activated Receptor γ Coactivator 1α. Arthritis & Rhematology, 67, 2141–2153.

    Article  CAS  Google Scholar 

  30. Popov, L.-D. (2020). Mitochondrial biogenesis: An update. Journal of Cellular and Molecular Medicine, 24, 4892–4899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Blanco, F. J., & Fernández-Moreno, M. (2020). Mitochondrial biogenesis: A potential therapeutic target for osteoarthritis. Osteoarthritis and Cartilage, 28, 1003–1006.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Key R&D Program of China (2020YFC2005800), National Natural Science Foundation of China (81760408; 8156036), Jiangxi Provincial Department of Science and Technology Project (20181BCG42001) and Natural Science Foundation of Jiangxi Province (20113BCB22005).

Author information

Authors and Affiliations

Authors

Contributions

MY: conception and design, performing research, and drafting the article. DW: performing research and revising the article. XC and DZ: acquisition of data, analysis and interpretation of data. JL: conception and approve of the manuscript.

Corresponding author

Correspondence to Jun Luo.

Ethics declarations

Ethical Approval

Animal protocols were approved by the Ethics Committee of Nanchang University.

Consent to Participate

Not applicable as it is not a clinical study.

Consent to Publish

All authors have given their consent for publication and have reviewed and approved the submission.

Competing Interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Special Issue on Exosomes & Microvesicles: from Stem Cell Biology to Translation in Human Diseases

Guest Editor: Giovanni Camussi

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Wang, D., Chen, X. et al. BMSCs-derived Mitochondria Improve Osteoarthritis by Ameliorating Mitochondrial Dysfunction and Promoting Mitochondrial Biogenesis in Chondrocytes. Stem Cell Rev and Rep 18, 3092–3111 (2022). https://doi.org/10.1007/s12015-022-10436-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-022-10436-7

Keywords

Navigation