Skip to main content

Advertisement

Log in

Induced Pluripotent Stem Cell-Derived Corneal Cells: Current Status and Application

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Deficiency and dysfunction of corneal cells leads to the blindness observed in corneal diseases such as limbal stem cell deficiency (LSCD) and bullous keratopathy. Regenerative cell therapies and engineered corneal tissue are promising treatments for these diseases [1]. However, these treatments are not yet clinically feasible due to inadequate cell sources. The discovery of induced pluripotent stem cells (iPSCs) by Shinya Yamanaka has provided a multitude of opportunities in research because iPSCs can be generated from somatic cells, thus providing an autologous and unlimited source for corneal cells. Compared to other stem cell sources such as mesenchymal and embryonic, iPSCs have advantages in differentiation potential and ethical concerns, respectively. Efforts have been made to use iPSCs to model corneal disorders and diseases, drug testing [2], and regenerative medicine [1]. Autologous treatments based on iPSCs can be exorbitantly expensive and time-consuming, but development of stem cell banks with human leukocyte antigen (HLA)- homozygous cell lines can provide cost- and time-efficient allogeneic alternatives. In this review, we discuss the early development of the cornea because protocols differentiating iPSCs toward corneal lineages rely heavily upon recapitulating this development. Differentiation of iPSCs toward corneal cell phenotypes have been analyzed with an emphasis on feeder-free, xeno-free, and well-defined protocols, which have clinical relevance. The application, challenges, and potential of iPSCs in corneal research are also discussed with a focus on hurdles that prevent clinical translation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

Abbreviations

AQP1:

Aquaporin 1

bFGF:

Basic fibroblast growth factor

BMP:

Bone morphogenetic protein

CEndoC:

Corneal endothelial cells

CEpiC:

Corneal epithelial cells

CGMP:

Current Good Manufacturing Practices

CK:

Cytokeratin

CLAU:

Conjunctival Limbal Autograft

CLET:

Cultivated Limbal Epithelial Transplantation

Dkk2:

Dickkopf WNT Signaling Pathway Inhibitor 2

EGF:

Epidermal growth factor

ESC:

Embryonic stem cells

FACS:

Fluorescence-activated cell sorting

FGF:

Fibroblast growth factor

HLA:

Human leukocyte antigen

iPSCs:

Induced pluripotent stem cells

LSC:

Limbal stem cell

LSCD:

Limbal stem cell deficiency

MACS:

Magnetic cell sorting

NCC:

Neural crest cells

PDGF-BB:

Platelet-derived growth factor B

SEAM:

Self-formed ectodermal autonomous multi-zones

SLC4A11:

Solute carrier family 4-member 11

SLC4A4:

Sodium bicarbonate cotransporter 1

SLET:

Simple Limbal Epithelial Transplantation

TGF-β:

Transforming growth factor beta

Wnt:

Wingless-related integration site

ZO-1:

Zonula occludens-1

References

  1. Griffith, M., Polisetti, N., Kuffova, L., Gallar, J., Forrester, J., Vemuganti, G. K., & Fuchsluger, T. A. (2012). Regenerative approaches as alternatives to donor allografting for restoration of corneal function. The Ocular Surface, 10(3), 170–183.

    Article  PubMed  Google Scholar 

  2. Boutin, M. E., Hampton, C., Quinn, R., Ferrer, M., & Song, M. J. (2019). 3D engineering of ocular tissues for disease modeling and drug testing. In Pluripotent Stem Cells in Eye Disease Therapy (pp. 171–193). Springer. https://link.springer.com/chapter/10.1007/978-3-030-28471-8_7#citeas

  3. Centers of Disease Control and Prevention. (n.d.). Fast Facts of Common Eye Disorders. U.S. Department of Health & Human Services. Retrieved November 9, 2021, from https://www.cdc.gov/visionhealth/basics/ced/fastfacts.htm

  4. Whitcher, J. P., Srinivasan, M., & Upadhyay, M. P. (2001). Corneal blindness: A global perspective. Bulletin of the World Health Organization, 79, 214–221.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gain, P., Jullienne, R., He, Z., et al. (2015). Global Survey of Corneal Transplantation and Eye Banking. JAMA Ophthalmology, 1342, 1–8.

    Google Scholar 

  6. Ple-Plakon, P. A., & Shtein, R. M. (2014). Trends in corneal transplantation: Indications and techniques. Current Opinion in Ophthalmology, 25(4), 300–305.

    Article  PubMed  Google Scholar 

  7. Holland, G., Pandit, A., Sánchez-Abella, L., Haiek, A., Loinaz, I., Dupin, D., ... & Ritter, T. (2021). Artificial cornea: Past, current, and future directions. Frontiers in Medicine, 8, 770780.

  8. Mahabadi, N., Czyz, C. N., Tariq, M., & Havens, S. J. (2020). Corneal graft rejection. StatPearls Publishing.

    Google Scholar 

  9. De Araujo, A. L., & Gomes, J. Á. P. (2015). Corneal stem cells and tissue engineering: Current advances and future perspectives. World Journal of Stem Cells, 7(5), 806.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Huang, Y. X., & Li, Q. H. (2007). An active artificial cornea with the function of inducing new corneal tissue generation in vivo—A new approach to corneal tissue engineering. Biomedical Materials, 2(3), S121.

    Article  CAS  PubMed  Google Scholar 

  11. Germain, L., Carrier, P., Auger, F. A., Salesse, C., & Guérin, S. L. (2000). Can we produce a human corneal equivalent by tissue engineering? Progress in Retinal and Eye Research, 19(5), 497–527.

    Article  CAS  PubMed  Google Scholar 

  12. Kong, B., Sun, W., Chen, G., Tang, S., Li, M., Shao, Z., & Mi, S. (2017). Tissue-engineered cornea constructed with compressed collagen and laser-perforated electrospun mat. Scientific Reports, 7(1), 1–13.

    Article  Google Scholar 

  13. Bouchard, C. (2010, February 25). Simplified surgical technique for harvesting corneal stem cells. Healio. https://www.healio.com/news/ophthalmology/20120331/simplified-surgical-technique-for-harvesting-corneal-stem-cells

  14. Hayashi, R., Ishikawa, Y., Ito, M., et al. (2012). Generation of Corneal Epithelial Cells from Induced Pluripotent Stem Cells Derived from Human Dermal Fibroblast and Corneal Limbal Epithelium. PLoS ONE, 79, e45435.

    Article  Google Scholar 

  15. Shalom-Feuerstein, R., Serror, L., De La Forest Divonne, S., Petit, I., Aberdam, E., Camargo, L., et al. (2012). Pluripotent stem cell model reveals essential roles for miR-450b-5p and miR-184 in embryonic corneal lineage specification. Stem Cells, 30(5), 898–909.

    Article  CAS  PubMed  Google Scholar 

  16. Ahmad, S., Stewart, R., Yung, S., Kolli, S., Armstrong, L., Stojkovic, M., et al. (2007). Differentiation of human embryonic stem cells into corneal epithelial-like cells by in vitro replication of the corneal epithelial stem cell niche. Stem Cells, 25(5), 1145–1155.

    Article  CAS  PubMed  Google Scholar 

  17. Brzeszczynska, J., Samuel, K., Greenhough, S., Ramaesh, K., Dhillon, B., Hay, D. C., & Ross, J. A. (2014). Differentiation and molecular profiling of human embryonic stem cell-derived corneal epithelial cells. International Journal of Molecular Medicine, 33(6), 1597–1606.

    Article  CAS  PubMed  Google Scholar 

  18. Miesfeld, J. B., & Brown, N. L. (2019). Eye organogenesis: A hierarchical view of ocular development. Current Topics in Developmental Biology, 132, 351–393.

    Article  PubMed  Google Scholar 

  19. Graw, J. (2010). Eye development. Current Topics in Developmental Biology, 90, 343–386.

    Article  PubMed  Google Scholar 

  20. DelMonte, D. W., & Kim, T. (2011). Anatomy and physiology of the cornea. Journal of Cataract & Refractive Surgery, 37(3), 588–598.

    Article  Google Scholar 

  21. Lwigale, P. Y. (2015). Corneal development: Different cells from a common progenitor. Progress in Molecular Biology and Translational Science, 134, 43–59.

    Article  PubMed  Google Scholar 

  22. Gage, P. J., Kuang, C., & Zacharias, A. L. (2014). The homeodomain transcription factor PITX2 is required for specifying correct cell fates and establishing angiogenic privilege in the developing cornea. Developmental Dynamics, 243(11), 1391–1400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, J., Upadhya, D., Lu, L., & Reneker, L. W. (2015). Fibroblast growth factor receptor 2 (FGFR2) is required for corneal epithelial cell proliferation and differentiation during embryonic development. PLoS One, 10(1), e0117089.

  24. Li, G., Xu, F., Zhu, J., Krawczyk, M., Zhang, Y., Yuan, J., Patel, S., et al. (2015). Transcription factor PAX6 (paired box 6) controls limbal stem cell lineage in development and disease. Journal of Biological Chemistry, 290(33), 20448–20454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Collomb, E., Yang, Y., Foriel, S., Cadau, S., Pearton, D. J., & Dhouailly, D. (2013). The corneal epithelium and lens develop independently from a common pool of precursors. Developmental Dynamics, 242(5), 401–413.

    Article  CAS  PubMed  Google Scholar 

  26. Dhouailly, D., Pearton, D. J., & Michon, F. (2014). The vertebrate corneal epithelium: From early specification to constant renewal. Developmental Dynamics, 243(10), 1226–1241.

    Article  PubMed  Google Scholar 

  27. Mukhopadhyay, M., Gorivodsky, M., Shtrom, S., Grinberg, A., Niehrs, C., Morasso, M. I., & Westphal, H. (2006). Dkk2 plays an essential role in the corneal fate of the ocular surface epithelium. Development, 133(11), 2149–2154.

    Article  CAS  PubMed  Google Scholar 

  28. Rodrigues, M., Ben-Zvi, A., Krachmer, J., Schermer, A., & Sun, T. T. (1987). Suprabasal expression of a 64-kilodalton keratin (no. 3) in developing human corneal epithelium. Differentiation, 34(1), 60–67.

  29. Gage, P. J., & Zacharias, A. L. (2009). Signaling “cross-talk” is integrated by transcription factors in the development of the anterior segment in the eye. Developmental dynamics: An official publication of the American Association of Anatomists, 238(9), 2149–2162.

    Article  CAS  Google Scholar 

  30. Wurdak, H., Ittner, L. M., Lang, K. S., Leveen, P., Suter, U., Fischer, J. A., et al. (2005). Inactivation of TGFβ signaling in neural crest stem cells leads to multiple defects reminiscent of DiGeorge syndrome. Genes & Development, 19(5), 530–535.

    Article  CAS  Google Scholar 

  31. Berry, F. B., Lines, M. A., Oas, J. M., Footz, T., Underhill, D. A., Gage, P. J., & Walter, M. A. (2006). Functional interactions between FOXC1 and PITX2 underlie the sensitivity to FOXC1 gene dose in Axenfeld-Rieger syndrome and anterior segment dysgenesis. Human Molecular Genetics, 15(6), 905–919.

    Article  CAS  PubMed  Google Scholar 

  32. Silla, Z. T., Naidoo, J., Kidson, S. H., & Sommer, P. (2014). Signals from the lens and Foxc1 regulate the expression of key genes during the onset of corneal endothelial development. Experimental Cell Research, 322(2), 381–388.

    Article  CAS  PubMed  Google Scholar 

  33. Matt, N., Ghyselinck, N. B., Pellerin, I., & Dupé, V. (2008). Impairing retinoic acid signalling in the neural crest cells is sufficient to alter entire eye morphogenesis. Developmental Biology, 320(1), 140–148.

    Article  CAS  PubMed  Google Scholar 

  34. Wulle, K. G. (1972). Electron microscopy of the fetal development of the corneal endothelium and Descemet’s membrane of the human eye. Investigative Ophthalmology & Visual Science, 11(11), 897–904.

    CAS  Google Scholar 

  35. Wulle, K. G., Ruprecht, K. W., & Windrath, L. C. (1974). Electron microscopy of the development of the cell junctions in the embryonic and fetal human corneal endothelium. Investigative Ophthalmology & Visual Science, 13(12), 923–934.

    CAS  Google Scholar 

  36. Bourne, W. M. (2003). Biology of the corneal endothelium in health and disease. Eye, 17(8), 912–918.

    Article  CAS  PubMed  Google Scholar 

  37. Gage, P. J., Suh, H., & Camper, S. A. (1999). Dosage requirement of Pitx2 for development of multiple organs. Development, 126(20), 4643–4651.

    Article  CAS  PubMed  Google Scholar 

  38. Seo, S., Chen, L., Liu, W., Zhao, D., Schultz, K. M., Sasman, A., et al. (2017). Foxc1 and foxc2 in the neural crest are required for ocular anterior segment development. Investigative Ophthalmology & Visual Science, 58(3), 1368–1377.

    Article  CAS  Google Scholar 

  39. Seo, S., Singh, H. P., Lacal, P. M., Sasman, A., Fatima, A., Liu, T., et al. (2012). Forkhead box transcription factor FoxC1 preserves corneal transparency by regulating vascular growth. Proceedings of the National Academy of Sciences, 109(6), 2015–2020.

    Article  CAS  Google Scholar 

  40. Creuzet, S., Vincent, C., & Couly, G. (2003). Neural crest derivatives in ocular and periocular structures. International Journal of Developmental Biology, 49(2–3), 161–171.

    Google Scholar 

  41. Hirsch, M., Noske, W., Prenant, G., & Renard, G. (1999). Fine structure of the developing avian corneal stroma as revealed by quick-freeze, deep-etch electron microscopy. Experimental Eye Research, 69(3), 267–277.

    Article  CAS  PubMed  Google Scholar 

  42. Doane, K. J., Ting, W. H., McLaughlin, J. S., & Birk, D. E. (1996). Spatial and temporal variations in extracellular matrix of periocular and corneal regions during corneal stromal development. Experimental Eye Research, 62(3), 285–292.

    Article  Google Scholar 

  43. Connon, C. J., Siegler, V., Meek, K. M., Hodson, S. A., Caterson, B., Kinoshita, S., & Quantock, A. J. (2003). Proteoglycan alterations and collagen reorganisation in the secondary avian cornea during development. Ophthalmic Research, 35(4), 177–184.

    Article  CAS  PubMed  Google Scholar 

  44. Theerakittayakorn, K., Thi Nguyen, H., Musika, J., Kunkanjanawan, H., Imsoonthornruksa, S., Somredngan, S., et al. (2020). Differentiation induction of human stem cells for corneal epithelial regeneration. International Journal of Molecular Sciences, 21(21), 7834.

    Article  CAS  PubMed Central  Google Scholar 

  45. Ueno, H., Kurokawa, M. S., Kayama, M., Homma, R., Kumagai, Y., Masuda, C., et al. (2007). Experimental transplantation of corneal epithelium-like cells induced by Pax6 gene transfection of mouse embryonic stem cells. Cornea, 26(10), 1220–1227.

    Article  PubMed  Google Scholar 

  46. da Mata Martins, T. M., da Silva Cunha, P., Rodrigues, M. A., de Carvalho, J. L., de Souza, J. E., de Carvalho Oliveira, J. A., et al. (2020). Epithelial basement membrane of human decellularized cornea as a suitable substrate for differentiation of embryonic stem cells into corneal epithelial-like cells. Materials Science and Engineering: C, 116, 111215.

    Article  Google Scholar 

  47. Cieślar-Pobuda, A., Rafat, M., Knoflach, V., Skonieczna, M., Hudecki, A., Małecki, A., et al. (2016). Human induced pluripotent stem cell differentiation and direct transdifferentiation into corneal epithelial-like cells. Oncotarget, 7(27), 42314.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mikhailova, A., Ilmarinen, T., Uusitalo, H., & Skottman, H. (2014). Small-molecule induction promotes corneal epithelial cell differentiation from human induced pluripotent stem cells. Stem Cell Reports, 2(2), 219–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hongisto, H., Ilmarinen, T., Vattulainen, M., Mikhailova, A., & Skottman, H. (2017). Xeno-and feeder-free differentiation of human pluripotent stem cells to two distinct ocular epithelial cell types using simple modifications of one method. Stem Cell Research & Therapy, 8(1), 1–15.

    Article  Google Scholar 

  50. Hongisto, H., Vattulainen, M., Ilmarinen, T., Mikhailova, A., & Skottman, H. (2018). Efficient and scalable directed differentiation of clinically compatible corneal limbal epithelial stem cells from human pluripotent stem cells. JoVE (Journal of Visualized Experiments), 140, e58279.

    Google Scholar 

  51. Kamarudin, T. A., Bojic, S., Collin, J., Yu, M., Alharthi, S., Buck, H., et al. (2018). Differences in the activity of endogenous bone morphogenetic protein signaling impact on the ability of induced pluripotent stem cells to differentiate to corneal epithelial-like cells. Stem Cells, 36(3), 337–348.

    Article  CAS  PubMed  Google Scholar 

  52. Hayashi, R., Ishikawa, Y., Katayama, T., Quantock, A. J., & Nishida, K. (2018). CD200 facilitates the isolation of corneal epithelial cells derived from human pluripotent stem cells. Scientific Reports, 8(1), 1–11.

    Article  Google Scholar 

  53. Shibata, S., Hayashi, R., Kudo, Y., Okubo, T., Imaizumi, T., Katayama, T., et al. (2020). Cell-type-specific adhesiveness and proliferation propensity on laminin isoforms enable purification of iPSC-derived corneal epithelium. Stem Cell Reports, 14(4), 663–676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hayashi, R., Ishikawa, Y., Sasamoto, Y., Katori, R., Nomura, N., Ichikawa, T., et al. (2016). Co-ordinated ocular development from human iPS cells and recovery of corneal function. Nature, 531(7594), 376–380.

    Article  CAS  PubMed  Google Scholar 

  55. Hayashi, R., Ishikawa, Y., Katori, R., Sasamoto, Y., Taniwaki, Y., Takayanagi, H., et al. (2017). Coordinated generation of multiple ocular-like cell lineages and fabrication of functional corneal epithelial cell sheets from human iPS cells. Nature Protocols, 12(4), 683–696.

    Article  CAS  PubMed  Google Scholar 

  56. Shibata, S., Hayashi, R., Okubo, T., Kudo, Y., Katayama, T., Ishikawa, Y., et al. (2018). Selective laminin-directed differentiation of human induced pluripotent stem cells into distinct ocular lineages. Cell Reports, 25(6), 1668–1679.

    Article  CAS  PubMed  Google Scholar 

  57. Sareen, D., Saghizadeh, M., Ornelas, L., Winkler, M. A., Narwani, K., Sahabian, A., et al. (2014). Differentiation of human limbal-derived induced pluripotent stem cells into limbal-like epithelium. Stem Cells Translational Medicine, 3(9), 1002–1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang, K., Pang, K., & Wu, X. (2014). Isolation and transplantation of corneal endothelial cell–like cells derived from in-vitro-differentiated human embryonic stem cells. Stem Cells and Development, 23(12), 1340–1354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen, P., Chen, J. Z., Shao, C. Y., Li, C. Y., Zhang, Y. D., Lu, W. J., et al. (2015). Treatment with retinoic acid and lens epithelial cell-conditioned medium in vitro directed the differentiation of pluripotent stem cells towards corneal endothelial cell-like cells. Experimental and Therapeutic Medicine, 9(2), 351–360.

    Article  PubMed  Google Scholar 

  60. McCabe, K. L., Kunzevitzky, N. J., Chiswell, B. P., Xia, X., Goldberg, J. L., & Lanza, R. (2015). Efficient generation of human embryonic stem cell-derived corneal endothelial cells by directed differentiation. PLoS One, 10(12), e0145266.

  61. Wagoner, M. D., Bohrer, L. R., Aldrich, B. T., Greiner, M. A., Mullins, R. F., Worthington, K. S., et al. (2018). Feeder-free differentiation of cells exhibiting characteristics of corneal endothelium from human induced pluripotent stem cells. Biology Open, 7(5), bio032102.

  62. Grönroos, P., Ilmarinen, T., & Skottman, H. (2021). Directed differentiation of human pluripotent stem cells towards corneal endothelial-like cells under defined conditions. Cells, 10(2), 331.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chan, A. A., Hertsenberg, A. J., Funderburgh, M. L., Mann, M. M., Du, Y., Davoli, K. A., et al. (2013). Differentiation of human embryonic stem cells into cells with corneal keratocyte phenotype. PloS one, 8(2), e56831.

  64. Naylor, R. W., McGhee, C. N., Cowan, C. A., Davidson, A. J., Holm, T. M., & Sherwin, T. (2016). Derivation of corneal keratocyte-like cells from human induced pluripotent stem cells. PLoS ONE, 11(10), e0165464.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Joseph, R., Srivastava, O. P., & Pfister, R. R. (2016). Modeling keratoconus using induced pluripotent stem cells. Investigative Ophthalmology & Visual Science, 57(8), 3685–3697.

    Article  CAS  Google Scholar 

  66. Aberdam, E., Petit, I., Sangari, L., & Aberdam, D. (2017). Induced pluripotent stem cell-derived limbal epithelial cells (LiPSC) as a cellular alternative for in vitro ocular toxicity testing. PLoS ONE, 12(6), e0179913.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Qin, S., Zheng, S., Qi, B., Guo, R., & Hou, G. (2019). Decellularized human stromal Lenticules combine with corneal epithelial-like cells: A new resource for corneal tissue engineering. Stem Cells International, 2019, 4252514.

  68. Zhao, J. J., & Afshari, N. A. (2016). Generation of human corneal endothelial cells via in vitro ocular lineage restriction of pluripotent stem cells. Investigative Ophthalmology & Visual Science, 57(15), 6878–6884.

    Article  CAS  Google Scholar 

  69. Ali, M., Khan, S. Y., Vasanth, S., Ahmed, M. R., Chen, R., Na, C. H., et al. (2018). Generation and proteome profiling of PBMC-originated, iPSC-derived corneal endothelial cells. Investigative Ophthalmology & Visual Science, 59(6), 2437–2444.

    Article  CAS  Google Scholar 

  70. Itakura, G., Kawabata, S., Ando, M., Nishiyama, Y., Sugai, K., Ozaki, M., et al. (2017). Fail-safe system against potential tumorigenicity after transplantation of iPSC derivatives. Stem Cell Reports, 8(3), 673–684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Singh, V. K., Kalsan, M., Kumar, N., Saini, A., & Chandra, R. (2015). Induced pluripotent stem cells: Applications in regenerative medicine, disease modeling, and drug discovery. Frontiers in Cell and Developmental Biology, 3, 2.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Pulimamidi, V. K., Maddileti, S., & Mariappan, I. (2021). Induced pluripotent stem-cell-derived corneal grafts and organoids. In iPSCs in Tissue Engineering (pp. 99–127). Academic Press. https://doi.org/10.1016/B978-0-12-823809-7.00005-0

  73. Kitazawa, K., Hikichi, T., Nakamura, T., Mitsunaga, K., Tanaka, A., Nakamura, M., et al. (2016). OVOL2 maintains the transcriptional program of human corneal epithelium by suppressing epithelial-to-mesenchymal transition. Cell Reports, 15(6), 1359–1368.

    Article  CAS  PubMed  Google Scholar 

  74. Brejchova, K., Dudakova, L., Skalicka, P., Dobrovolny, R., Masek, P., Putzova, M., et al. (2019). IPSC-derived corneal endothelial-like cells act as an appropriate model system to assess the impact of SLC4A11 variants on pre-mRNA splicing. Investigative Ophthalmology & Visual Science, 60(8), 3084–3090.

    Article  CAS  Google Scholar 

  75. Watanabe, S., Hayashi, R., Sasamoto, Y., Tsujikawa, M., Ksander, B. R., Frank, M. H., et al. (2021). Human iPS cells engender corneal epithelial stem cells with holoclone-forming capabilities. Iscience, 24(6), 102688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vattulainen, M., Ilmarinen, T., Viheriälä, T., Jokinen, V., & Skottman, H. (2021). Corneal epithelial differentiation of human pluripotent stem cells generates ABCB5+ and ∆Np63α+ cells with limbal cell characteristics and high wound healing capacity. Stem Cell Research & Therapy, 12(1), 1–17.

    Article  Google Scholar 

  77. Vattulainen, M., Ilmarinen, T., Koivusalo, L., Viiri, K., Hongisto, H., & Skottman, H. (2019). Modulation of Wnt/BMP pathways during corneal differentiation of hPSC maintains ABCG2-positive LSC population that demonstrates increased regenerative potential. Stem Cell Research & Therapy, 10(1), 1–15.

    Article  CAS  Google Scholar 

  78. West, J. D., Dorà, N. J., & Collinson, J. M. (2015). Evaluating alternative stem cell hypotheses for adult corneal epithelial maintenance. World Journal of Stem Cells, 7(2), 281.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Schlötzer-Schrehardt, U., & Kruse, F. E. (2005). Identification and characterization of limbal stem cells. Experimental Eye Research, 81(3), 247–264.

    Article  PubMed  Google Scholar 

  80. Guo, Z. H., Zhang, W., Jia, Y. Y. S., Liu, Q. X., Li, Z. F., & Lin, J. S. (2018). An insight into the difficulties in the discovery of specific biomarkers of limbal stem cells. International Journal of Molecular Sciences, 19(7), 1982.

    Article  PubMed Central  Google Scholar 

  81. Rama, P., Matuska, S., Paganoni, G., Spinelli, A., De Luca, M., & Pellegrini, G. (2010). Limbal stem-cell therapy and long-term corneal regeneration. New England Journal of Medicine, 363(2), 147–155.

    Article  CAS  PubMed  Google Scholar 

  82. de Paiva, C. S., Chen, Z., Corrales, R. M., Pflugfelder, S. C., & Li, D. Q. (2005). ABCG2 transporter identifies a population of clonogenic human limbal epithelial cells. Stem cells, 23(1), 63–73.

    Article  PubMed  Google Scholar 

  83. Ksander, B. R., Kolovou, P. E., Wilson, B. J., Saab, K. R., Guo, Q., Ma, J., ... & Frank, N. Y. (2014). ABCB5 is a limbal stem cell gene required for corneal development and repair. Nature, 511(7509), 353-357.

  84. Schlereth, S. L., Hos, D., Matthaei, M., Hamrah, P., Schmetterer, L., O’Leary, O., ... & Cursiefen, C. (2021). New technologies in clinical trials in corneal diseases and limbal stem cell deficiency: review from the European Vision Institute Special Interest Focus Group meeting. Ophthalmic Research, 64(2), 145-167.

  85. Singh, V., Tiwari, A., Kethiri, A. R., & Sangwan, V. S. (2021). Current perspectives of limbal-derived stem cells and its application in ocular surface regeneration and limbal stem cell transplantation. Stem Cells Translational Medicine, 10(8), 1121–1128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kate, A., & Basu, S. (2022). A Review of the Diagnosis and Treatment of Limbal Stem Cell Deficiency. Frontiers in Medicine, 9, 836009.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Sangwan, V. S., Basu, S., MacNeil, S., & Balasubramanian, D. (2012). Simple limbal epithelial transplantation (SLET): A novel surgical technique for the treatment of unilateral limbal stem cell deficiency. British Journal of Ophthalmology, 96(7), 931–934.

    Article  PubMed  Google Scholar 

  88. Thokala, P., Singh, A., Singh, V. K., Rathi, V. M., Basu, S., Singh, V., ... & Sangwan, V. S. (2021). Economic, clinical and social impact of simple limbal epithelial transplantation for limbal stem cell deficiency.British Journal of Ophthalmology, 106, 923-928.

  89. Shanbhag, S. S., Patel, C. N., Goyal, R., Donthineni, P. R., Singh, V., & Basu, S. (2019). Simple limbal epithelial transplantation (SLET): Review of indications, surgical technique, mechanism, outcomes, limitations, and impact. Indian Journal of Ophthalmology, 67(8), 1265–1277.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ghareeb, A. E., Lako, M., & Figueiredo, F. C. (2020). Recent advances in stem cell therapy for limbal stem cell deficiency: A narrative review. Ophthalmology and Therapy, 9(4), 809–831.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Vazirani, J., Mariappan, I., Ramamurthy, S., Fatima, S., Basu, S., & Sangwan, V. S. (2016). Surgical management of bilateral limbal stem cell deficiency. The Ocular Surface, 14(3), 350–364.

    Article  PubMed  Google Scholar 

  92. Sun, B., Bikkuzin, T., Li, X., Shi, Y., & Zhang, H. (2021). Human-Induced Pluripotent Stem Cells-Derived Corneal Endothelial-Like Cells Promote Corneal Transparency in a Rabbit Model of Bullous Keratopathy. Stem Cells and Development, 30(17), 856–864.

    Article  CAS  PubMed  Google Scholar 

  93. Ali, M., Khan, S. Y., Gottsch, J. D., Hutchinson, E. K., Khan, A., & Riazuddin, S. A. (2021). Pluripotent stem cell–derived corneal endothelial cells as an alternative to donor corneal endothelium in keratoplasty. Stem Cell Reports, 16(9), 2320–2335.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hatou, S., Sayano, T., Higa, K., Inagaki, E., Okano, Y., Sato, Y., et al. (2021). Transplantation of iPSC-derived corneal endothelial substitutes in a monkey corneal edema model. Stem Cell Research, 55, 102497.

    Article  CAS  PubMed  Google Scholar 

  95. Cyranoski, D. (2019). Japan poised to allow’reprogrammed’stem-cell therapy for damaged corneas. Nature. https://doi.org/10.1038/d41586-019-00860-0

    Article  PubMed  Google Scholar 

  96. Japan team proves iPS-based cornea transplant safe in world-1st trial. (2022). Kyodo Newshttps://english.kyodonews.net/news/2022/04/c8af6b7913b2-japan-team-proves-ips-based-cornea-transplant-safe-in-world-1st-trial.html. Accessed 20 May 2022

  97. Sorkio, A., Koch, L., Koivusalo, L., Deiwick, A., Miettinen, S., Chichkov, B., & Skottman, H. (2018). Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Biomaterials, 171, 57–71.

    Article  CAS  PubMed  Google Scholar 

  98. Anton-Sales, I., Koivusalo, L., Skottman, H., Laromaine, A., & Roig, A. (2021). Limbal stem cells on bacterial nanocellulose carriers for ocular surface regeneration. Small (Weinheim an der Bergstrasse, Germany), 17(10), 2003937.

    Article  CAS  Google Scholar 

  99. Koivusalo, L., Kauppila, M., Samanta, S., Parihar, V. S., Ilmarinen, T., Miettinen, S., et al. (2019). Tissue adhesive hyaluronic acid hydrogels for sutureless stem cell delivery and regeneration of corneal epithelium and stroma. Biomaterials, 225, 119516.

    Article  CAS  PubMed  Google Scholar 

  100. Ahearne, M., Fernández-Pérez, J., Masterton, S., Madden, P. W., & Bhattacharjee, P. (2020). Designing scaffolds for corneal regeneration. Advanced Functional Materials, 30(44), 1908996.

    Article  CAS  Google Scholar 

  101. Mikhailova, A., Ilmarinen, T., Ratnayake, A., Petrovski, G., Uusitalo, H., Skottman, H., & Rafat, M. (2016). Human pluripotent stem cell-derived limbal epithelial stem cells on bioengineered matrices for corneal reconstruction. Experimental Eye Research, 146, 26–34.

    Article  CAS  PubMed  Google Scholar 

  102. Chakrabarty, K., Shetty, R., & Ghosh, A. (2018). Corneal cell therapy: With iPSCs, it is no more a far-sight. Stem Cell Research & Therapy, 9(1), 1–15.

    Article  Google Scholar 

  103. Choi, H. W., Kim, J. S., Choi, S., Hong, Y. J., Kim, M. J., Seo, H. G., & Do, J. T. (2014). Neural stem cells differentiated from iPS cells spontaneously regain pluripotency. Stem Cells, 32(10), 2596–2604.

    Article  CAS  PubMed  Google Scholar 

  104. Lu, X., & Zhao, T. (2013). Clinical therapy using iPSCs: Hopes and challenges. Genomics, proteomics & bioinformatics, 11(5), 294–298.

    Article  CAS  Google Scholar 

  105. Malik, N., & Rao, M. S. (2013). A review of the methods for human iPSC derivation. Pluripotent Stem Cells, 23–33. https://doi.org/10.1007/978-1-62703-348-0_3

  106. Ji, P., Manupipatpong, S., Xie, N., & Li, Y. (2016). Induced pluripotent stem cells: generation strategy and epigenetic mystery behind reprogramming. Stem Cells International, 2016https://doi.org/10.1155/2016/8415010

  107. González, F., Boué, S., & Belmonte, J. C. I. (2011). Methods for making induced pluripotent stem cells: Reprogramming a la carte. Nature Reviews Genetics, 12(4), 231–242.

    Article  PubMed  Google Scholar 

  108. Mora, C., Serzanti, M., Consiglio, A., Memo, M., & Dell’Era, P. (2017). Clinical potentials of human pluripotent stem cells. Cell Biology and Toxicology, 33(4), 351–360.

    Article  CAS  PubMed  Google Scholar 

  109. Kim, K., Wen, B., Ng, K., Zhao, R., Cahan, P., Kim, J., et al. (2010). Epigenetic memory in induced pluripotent stem cells. Nature, 467(7313), 285–290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Nishizawa, M., Chonabayashi, K., Nomura, M., Tanaka, A., Nakamura, M., Inagaki, A., et al. (2016). Epigenetic variation between human induced pluripotent stem cell lines is an indicator of differentiation capacity. Cell Stem Cell, 19(3), 341–354.

    Article  CAS  PubMed  Google Scholar 

  111. Vitale, A. M., Matigian, N. A., Ravishankar, S., Bellette, B., Wood, S. A., Wolvetang, E. J., & Mackay-Sim, A. (2012). Variability in the generation of induced pluripotent stem cells: Importance for disease modeling. Stem Cells Translational Medicine, 1(9), 641–650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Grobarczyk, B., Franco, B., Hanon, K., & Malgrange, B. (2015). Generation of isogenic human iPS cell line precisely corrected by genome editing using the CRISPR/Cas9 system. Stem Cell Reviews and Reports, 11(5), 774–787.

    Article  CAS  PubMed  Google Scholar 

  113. Zhang, G., Shang, B., Yang, P., Cao, Z., Pan, Y., & Zhou, Q. (2012). Induced pluripotent stem cell consensus genes: Implication for the risk of tumorigenesis and cancers in induced pluripotent stem cell therapy. Stem Cells and Development, 21(6), 955–964.

    Article  CAS  PubMed  Google Scholar 

  114. Gutierrez-Aranda, I., Ramos-Mejia, V., Bueno, C., Munoz-Lopez, M., Real, P. J., Mácia, A., et al. (2010). Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells, 28(9), 1568–1570.

    Article  PubMed  Google Scholar 

  115. Ghosh, Z., Huang, M., Hu, S., Wilson, K. D., Dey, D., & Wu, J. C. (2011). Dissecting the oncogenic and tumorigenic potential of differentiated human induced pluripotent stem cells and human embryonic stem cells. Cancer Research, 71(14), 5030–5039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mitsui, K., Ide, K., Takahashi, T., & Kosai, K. I. (2017). Viral vector-based innovative approaches to directly abolishing tumorigenic pluripotent stem cells for safer regenerative medicine. Molecular Therapy-Methods & Clinical Development, 5, 51–58.

    Article  CAS  Google Scholar 

  117. Ben-David, U., Nudel, N., & Benvenisty, N. (2013). Immunologic and chemical targeting of the tight-junction protein Claudin-6 eliminates tumorigenic human pluripotent stem cells. Nature Communications, 4(1), 1–8.

    Article  Google Scholar 

  118. Neofytou, E., O’Brien, C. G., Couture, L. A., & Wu, J. C. (2015). Hurdles to clinical translation of human induced pluripotent stem cells. The Journal of Cinical Investigation, 125(7), 2551–2557.

    Article  Google Scholar 

  119. Bravery, C. A. (2015). Do human leukocyte antigen-typed cellular therapeutics based on induced pluripotent stem cells make commercial sense? Stem Cells and Development, 24(1), 1–10.

    Article  PubMed  Google Scholar 

  120. Devito, L., Petrova, A., Miere, C., Codognotto, S., Blakely, N., Lovatt, A., et al. (2014). Cost-effective master cell bank validation of multiple clinical-grade human pluripotent stem cell lines from a single donor. Stem Cells Translational Medicine, 3(10), 1116–1124.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Koga, K., Wang, B., & Kaneko, S. (2020). Current status and future perspectives of HLA-edited induced pluripotent stem cells. Inflammation and Regeneration, 40(1), 1–6.

    Article  Google Scholar 

  122. Nakatsuji, N., Nakajima, F., & Tokunaga, K. (2008). HLA-haplotype banking and iPS cells. Nature Biotechnology, 26(7), 739–740.

    Article  CAS  PubMed  Google Scholar 

  123. Taylor, C. J., Peacock, S., Chaudhry, A. N., Bradley, J. A., & Bolton, E. M. (2012). Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell, 11(2), 147–152.

    Article  CAS  PubMed  Google Scholar 

  124. Volpato, V., & Webber, C. (2020). Addressing variability in iPSC-derived models of human disease: Guidelines to promote reproducibility. Disease Models & Mechanisms, 13(1), dmm042317.

  125. Thompson, S. D. (2014). Scientific innovation’s two valleys of death: How blood and tissue banks can help to bridge the gap. Stem Cells and Development, 23(S1), 68–72.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Butler, D. (2008). Translational research: Crossing the valley of death. Nature, 453, 840–842.

    Article  CAS  PubMed  Google Scholar 

  127. Pashuck, E. T., & Stevens, M. M. (2012). Designing regenerative biomaterial therapies for the clinic. Science Translational Medicine, 4(160sr4).

  128. Trounson, A., Baum, E., Gibbons, D., & Tekamp-Olson, P. (2010). Developing a case study model for successful translation of stem cell therapies. Cell Stem Cell, 6(6), 513–516.

    Article  CAS  PubMed  Google Scholar 

  129. Trounson, A., DeWitt, N. D., & Feigal, E. G. (2012). The Alpha Stem Cell Clinic: A model for evaluating and delivering stem cell-based therapies. Stem Cells Translational Medicine, 1(1), 9–14.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Wilson College of Textiles (JMG), the Department of Textile Engineering, Chemistry and Science (JMG), North Carolina Textile Foundation-Wilson College Fellowship (NM), NCSU Provost’s Fellowship (TCS). Graphics were created with BioRender.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica M. Gluck.

Ethics declarations

Conflicts of Interest

The authors have no commercial associations or conflicts of interest to disclose.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmood, N., Suh, T.C., Ali, K.M. et al. Induced Pluripotent Stem Cell-Derived Corneal Cells: Current Status and Application. Stem Cell Rev and Rep 18, 2817–2832 (2022). https://doi.org/10.1007/s12015-022-10435-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-022-10435-8

Keywords

Navigation