Skip to main content

Advertisement

Log in

Toward in Vitro Production of Platelet from Induced Pluripotent Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Platelets (PLTs) are small anucleate blood cells that release from polyploidy megakaryocytes(MKs). PLT transfusion is standard therapy to prevent hemorrhage. PLT transfusion is donor‐dependent way which have limitations including the inadequate donor blood supply, poor quality, and issues related to infection and immunity. Overcoming these obstacles is possible with in vitro production of human PLTs. Currently several cells have been considered as source to in vitro production of PLTs such as hematopoietic stem cells (HSCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). However, HSCs are a limited source for PLT production and large-scale expansion of HSC-derived PLT remains difficult. Alternative sources can be ESCs which have unlimited expansion capacity. But ESCs have ethical issues related to destroying human embryos. iPSCs are considered as an ideal unlimited source for PLT production. They are able to differentiate into any cells and have the capacity of self-renewal. Moreover, iPSCs can be acquired from any donor and easily manipulated. Due to new advances in development of MK cell lines, bioreactors, feeder cell-free production and the ability of large scale generation, iPSC-based PLTs are moving toward clinical applicability and considering the minimal risk of alloimmunization and tumorigenesis of these products, there is great hopefulness they will become the standard source for blood transfusions in the future. This review will focus on how to progress of in vitro generation of PLT from stem cell especially iPSCs and some of the successful strategies that can be easily used in clinic will be described.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

Abbreviations

iPSCs:

Induced Pluripotent Stem Cells

hiPSC:

Human Induced Pluripotent Stem Cells

PLTs:

Platelets

MKs:

Megakaryocytes

PRP:

Platelet-Rich Plasma

BM:

Bone marrow

PB:

Peripheral Blood

HLA:

Human Leukocyte Antigen

HPA:

Human Platelet Antigen

hPSCs:

Human pluripotent stem cells

PTR:

Platelets Transfusion Refractoriness

TRALI:

Transfusion-Related Acute Lung Injury

UCB:

Umbilical Cord Blood

HSCs:

Hematopoietic stem cells

TPO:

Thrombopoietin

SCF:

Stem Cell Factor

ESCs:

Embryonic Stem Cells

hESCs:

Human Embryonic Stem Cells

VEGF:

Vascular Endothelial Growth Factor

ES-sacs:

Embryonic Stem Cell–Derived Sacs

HPCs:

Hematopoietic Progenitor Cells

TF:

Transcription Factors

YFs:

Yamanaka factors

EB:

Embryoid Body

MEF:

Murine Embryonic Fibroblast

HDF:

Human Dermal Fibroblasts

ciPSCs:

Canine Induced Pluripotent Stem Cells

imMKCLs:

Immortalize MK Progenitor Cell Line

MK-FOP:

MK Forward Programming

MMPs:

Matrix Metalloproteinase

vWF:

Von Willebrand Factor

GPIbα:

Platelet Glycoprotein Ibα

GVHD:

Graft-versus-host disease

B2M:

β2-Microglobulin

KO:

Knockout

CDC:

Cellular-dependent Cytotoxicity

ADCC:

Antibody-dependent Cell-mediated Cytotoxicity

FNAIT:

Fetal/neonatal Alloimmune Thrombocytopenia

PTP:

Post-Transfusion Purpura

References

  1. van der Meijden, P. E. J., & Heemskerk, J. W. M. (2019). Platelet biology and functions: New concepts and clinical perspectives. Nature Reviews. Cardiology, 16(3), 166–179.

    Article  PubMed  CAS  Google Scholar 

  2. Stanworth, S. J., et al. (2015). Platelet refractoriness–practical approaches and ongoing dilemmas in patient management. British Journal of Haematology, 171(3), 297–305.

    Article  PubMed  Google Scholar 

  3. Semple, J. W., Italiano, J. E., & Freedman, J. (2011). Platelets and the immune continuum. Nature Reviews Immunology, 11(4), 264–274.

    Article  CAS  PubMed  Google Scholar 

  4. Karagiannis, P., Sugimoto, N., & Eto, K. (2019). 66 - Stem Cell-Derived Platelets, in Platelets (Fourth Edition), A.D. Michelson, Editor. Academic Press. 1173–1189.

  5. Dillard, G. H. L., Brecher, G., & Cronkite, E. P. (1951). Separation, Concentration, and Transfusion of Platelets. Proceedings of the Society for Experimental Biology and Medicine, 78(3), 796–799.

    Article  CAS  PubMed  Google Scholar 

  6. Szczepiorkowski, Z. M., & Dunbar, N. M. (2013). Transfusion guidelines: When to transfuse. Hematology. American Society of Hematology. Education Program, 2013, 638–644.

    Article  PubMed  Google Scholar 

  7. Etulain, J. (2018). Platelets in wound healing and regenerative medicine. Platelets, 29(6), 556–568.

    Article  CAS  PubMed  Google Scholar 

  8. Garbin, L. C., & Olver, C. S. (2020). Platelet-Rich Products and Their Application to Osteoarthritis. Journal of Equine Veterinary Science, 86:102820.

  9. Rumjantseva, V., & Hoffmeister, K. M. (2010). Novel and unexpected clearance mechanisms for cold platelets. Transfusion and Apheresis Science, 42(1), 63–70.

    Article  PubMed  Google Scholar 

  10. Jenkins, C., et al. (2011). Bacterial contamination in platelets: Incremental improvements drive down but do not eliminate risk. Transfusion, 51(12), 2555–2565.

    Article  PubMed  Google Scholar 

  11. Brown, C. J., & Navarrete, C. V. (2011). Clinical relevance of the HLA system in blood transfusion. Vox Sanguinis, 101(2), 93–105.

    Article  CAS  PubMed  Google Scholar 

  12. Sugimoto, N., & Eto, K. (2017). Platelet production from induced pluripotent stem cells. Journal of Thrombosis and Haemostasis, 15(9), 1717–1727.

    Article  CAS  PubMed  Google Scholar 

  13. Avanzi, M. P., & Mitchell, W. B. (2014). Ex Vivo production of platelets from stem cells. British Journal of Haematology, 165(2), 237–247.

    Article  CAS  PubMed  Google Scholar 

  14. Karagiannis, P., Endo, H., & Eto, K. (2016). Generating Blood from iPS Cells. In H. Schulze & J. Italiano (Eds.), Molecular and Cellular Biology of Platelet Formation: Implications in Health and Disease (pp. 399–420). Springer International Publishing.

    Chapter  Google Scholar 

  15. Mazur, E., et al. (1990). Isolation of large numbers of enriched human megakaryocytes from liquid cultures of normal peripheral blood progenitor cells. Blood, 76, 1771–1782.

    Article  CAS  PubMed  Google Scholar 

  16. Pineault, N., & Boisjoli, G. J. (2015). Megakaryopoiesis and ex vivo differentiation of stem cells into megakaryocytes and platelets. ISBT Science Series, 10(S1), 154–162.

    Article  CAS  Google Scholar 

  17. Guerriero, R., et al. (2001). Stromal cell–derived factor 1α increases polyploidization of megakaryocytes generated by human hematopoietic progenitor cells. Blood, 97(9), 2587–2595.

    Article  CAS  PubMed  Google Scholar 

  18. De Bruyn, C., et al. (2005). Ex vivo expansion of megakaryocyte progenitor cells: Cord blood versus mobilized peripheral blood. Stem Cells Development, 14(4), 415–424.

    Article  PubMed  Google Scholar 

  19. Kawano, Y., et al. (2003). Ex vivo expansion of human umbilical cord hematopoietic progenitor cells using a coculture system with human telomerase catalytic subunit (hTERT)–transfected human stromal cells. Blood, 101(2), 532–540.

    Article  CAS  PubMed  Google Scholar 

  20. Matsunaga, T., et al. (2006). Ex Vivo Large-Scale Generation of Human Platelets from Cord Blood CD34+ Cells. Stem Cells, 24(12), 2877–2887.

    Article  CAS  PubMed  Google Scholar 

  21. Mostafa, S. S., Miller, W. M., & Papoutsakis, E. T. (2000). Oxygen tension influences the differentiation, maturation and apoptosis of human megakaryocytes. British Journal of Haematology, 111(3), 879–889.

    CAS  PubMed  Google Scholar 

  22. Yang, H., Miller, W. M., & Papoutsakis, E. T. (2002). Higher pH promotes megakaryocytic maturation and apoptosis. Stem Cells, 20(4), 320–328.

    Article  CAS  PubMed  Google Scholar 

  23. Panuganti, S., et al. (2013). Three-stage ex vivo expansion of high-ploidy megakaryocytic cells: Toward large-scale platelet production. Tissue engineering. Part A, 19(7–8), 998–1014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang, Y., et al. (2016). Integrated Biophysical and Biochemical Signals Augment Megakaryopoiesis and Thrombopoiesis in a Three-Dimensional Rotary Culture System. Stem Cells Translational Medicine, 5(2), 175–185.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, Y., et al. (2012). Small molecules, big roles – the chemical manipulation of stem cell fate and somatic cell reprogramming. Journal of Cell Science, 125(Pt 23), 5609–5620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, W., et al. (2013). Chemical approaches to studying stem cell biology. Cell Research, 23(1), 81–91.

    Article  PubMed  CAS  Google Scholar 

  27. Yu, C., et al. (2014). Chemical approaches to cell reprogramming. Current Opinion in Genetics & Development, 28, 50–56.

    Article  CAS  Google Scholar 

  28. Huang, N., et al. (2016). Identification of a potent small molecule capable of regulating polyploidization, megakaryocyte maturation, and platelet production. Journal of hematology & oncology, 9(1), 136–136.

    Article  CAS  Google Scholar 

  29. Bhatlekar, S., et al. (2019). Anti-apoptotic BCL2L2 increases megakaryocyte proplatelet formation in cultures of human cord blood. Haematologica, 104(10), 2075–2083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nurhayati, R. W., Ojima, Y., & Taya, M. (2016). Recent developments in ex vivo platelet production. Cytotechnology, 68(6), 2211–2221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Keller, G. M. (1995). In vitro differentiation of embryonic stem cells. Current Opinion in Cell Biology, 7(6), 862–869.

    Article  CAS  PubMed  Google Scholar 

  32. Gaur, M., et al. (2006). Megakaryocytes derived from human embryonic stem cells: A genetically tractable system to study megakaryocytopoiesis and integrin function. Journal of Thrombosis and Haemostasis, 4(2), 436–442.

    Article  CAS  PubMed  Google Scholar 

  33. Takayama, N., et al. (2008). Generation of functional platelets from human embryonic stem cells in vitro via ES-sacs, VEGF-promoted structures that concentrate hematopoietic progenitors. Blood, 111(11), 5298–5306.

    Article  CAS  PubMed  Google Scholar 

  34. Lu, S. J., et al. (2011). Platelets generated from human embryonic stem cells are functional in vitro and in the microcirculation of living mice. Cell Research, 21(3), 530–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Storm, M. P., et al. (2010). Three-dimensional culture systems for the expansion of pluripotent embryonic stem cells. Biotechnology and Bioengineering, 107(4), 683–695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lei, Y., & Schaffer, D. V. (2013). A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. Proc Natl Acad Sci U S A, 110(52), E5039–E5048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, B., et al. (2021). Large-scale generation of megakaryocytes from human embryonic stem cells using transgene-free and stepwise defined suspension culture conditions. Cell Prolife, 54(4):e13002.

  38. Takahashi, K., & Yamanaka, S. (2006). Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell, 126(4), 663–676.

    Article  CAS  PubMed  Google Scholar 

  39. Takahashi, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.

    Article  CAS  PubMed  Google Scholar 

  40. Shi, Y., et al. (2017). Induced pluripotent stem cell technology: A decade of progress. Nature reviews Drug discovery, 16(2), 115–130.

    Article  CAS  PubMed  Google Scholar 

  41. Moradi, S., et al. (2019). Research and therapy with induced pluripotent stem cells (iPSCs): Social, legal, and ethical considerations. Stem Cell Research & Therapy, 10(1), 341.

    Article  Google Scholar 

  42. Li, F., Hu, J., & He, T. C. (2017). iPSC-based treatment of age-related macular degeneration (AMD): The path to success requires more than blind faith. Genes Dis, 4(2), 41–42.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Takahashi, J. (2020). iPS cell-based therapy for Parkinson’s disease: A Kyoto trial. Regen Ther, 13, 18–22.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Turner, D., et al. (2020). Clinical-based Cell Therapies for Heart Disease-Current and Future State. Rambam Maimonides Medical Journal, 11(2):e0015.

  45. Yamanaka, S. (2012). Induced Pluripotent Stem Cells: Past, Present, and Future. Cell Stem Cell, 10(6), 678–684.

    Article  CAS  PubMed  Google Scholar 

  46. Yu, J., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.

    Article  CAS  PubMed  Google Scholar 

  47. Montserrat, N., et al. (2013). Reprogramming of Human Fibroblasts to Pluripotency with Lineage Specifiers. Cell Stem Cell, 13(3), 341–350.

    Article  CAS  PubMed  Google Scholar 

  48. Stadtfeld, M., et al. (2008). Induced pluripotent stem cells generated without viral integration. Science, 322(5903), 945–949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fusaki, N., et al. (2009). Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proceedings of the Japan Academy, Series B, 85(8), 348–362.

    Article  CAS  Google Scholar 

  50. Woltjen, K., et al. (2009). piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 458(7239), 766–770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Worringer, Kathleen A., et al. (2014). The let-7/LIN-41 Pathway Regulates Reprogramming to Human Induced Pluripotent Stem Cells by Controlling Expression of Prodifferentiation Genes. Cell Stem Cell, 14(1):40–52.

  52. Esteban, M. A., et al. (2010). Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell, 6(1), 71–79.

    Article  CAS  PubMed  Google Scholar 

  53. Hou, P., et al. (2013). Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 341(6146), 651–654.

    Article  CAS  PubMed  Google Scholar 

  54. Warren, L., et al. (2010). Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 7(5), 618–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim, D., et al. (2009). Generation of Human Induced Pluripotent Stem Cells by Direct Delivery of Reprogramming Proteins. Cell Stem Cell, 4(6), 472–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Musunuru, K., et al. (2018). Induced Pluripotent Stem Cells for Cardiovascular Disease Modeling and Precision Medicine: A Scientific Statement From the American Heart Association. Circulation Genomic and Precison Medicine, 11(1):e000043.

  57. Liu, Y., et al. (2012). The gene expression profiles of induced pluripotent stem cells (iPSCs) generated by a non-integrating method are more similar to embryonic stem cells than those of iPSCs generated by an integrating method. Genetics and molecular biology, 35(3), 693–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mandai, M., et al. (2017). Autologous Induced Stem-Cell–Derived Retinal Cells for Macular Degeneration. New England Journal of Medicine, 376(11), 1038–1046.

    Article  CAS  PubMed  Google Scholar 

  59. Gekas, C., & Graf, T. (2010). Induced pluripotent stem cell-derived human platelets: One step closer to the clinic. The Journal of experimental medicine, 207(13), 2781–2784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Takayama, N., et al. (2010). Transient activation of c-MYC expression is critical for efficient platelet generation from human induced pluripotent stem cells. The Journal of experimental medicine, 207(13), 2817–2830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nishimura, T., et al. (2013). Generation of functional platelets from canine induced pluripotent stem cells. Stem Cells Dev, 22(14), 2026–2035.

    Article  CAS  PubMed  Google Scholar 

  62. Feng, Q., et al. (2014). Scalable Generation of Universal Platelets from Human Induced Pluripotent Stem Cells. Stem Cell Reports, 3(5), 817–831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu, Y., et al. (2015). Efficient generation of megakaryocytes from human induced pluripotent stem cells using food and drug administration-approved pharmacological reagents. Stem cells translational medicine, 4(4), 309–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rodin, S., et al. (2010). Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nature Biotechnology, 28(6), 611–615.

    Article  CAS  PubMed  Google Scholar 

  65. Mei, Y., et al. (2010). Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nature Materials, 9(9), 768–778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee, H., et al. (2016). Establishment of feeder-free culture system for human induced pluripotent stem cell onDAS nanocrystalline graphene. Scientific Reports, 6(1), 20708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nakamura, S., et al. (2014). Expandable megakaryocyte cell lines enable clinically applicable generation of platelets from human induced pluripotent stem cells. Cell Stem Cell, 14(4), 535–548.

    Article  CAS  PubMed  Google Scholar 

  68. Moreau, T., et al. (2016). Large-scale production of megakaryocytes from human pluripotent stem cells by chemically defined forward programming. Nature Communications, 7, 11208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ingavle, G., et al. (2019). Mimicking megakaryopoiesis in vitro using biomaterials: Recent advances and future opportunities. Acta Biomaterialia, 96, 99–110.

    Article  CAS  PubMed  Google Scholar 

  70. Thon, J. N., et al. (2014). Platelet bioreactor-on-a-chip. Blood, 124(12), 1857–1867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Blin, A., et al. (2016). Microfluidic model of the platelet-generating organ: Beyond bone marrow biomimetics. Scientific Reports, 6(1), 21700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ito, Y., et al. (2018). Turbulence Activates Platelet Biogenesis to Enable Clinical Scale Ex Vivo Production. Cell, 174(3), 636-648.e18.

    Article  CAS  PubMed  Google Scholar 

  73. Hosseini, E., Mohtashami, M., & Ghasemzadeh, M. (2019). Down-regulation of platelet adhesion receptors is a controlling mechanism of thrombosis, while also affecting post-transfusion efficacy of stored platelets. Thrombosis Journal, 17(1), 20.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hirata, S., et al. (2017). Selective Inhibition of ADAM17 Efficiently Mediates Glycoprotein Ibα Retention During Ex Vivo Generation of Human Induced Pluripotent Stem Cell-Derived Platelets. Stem cells translational medicine, 6(3), 720–730.

    Article  CAS  PubMed  Google Scholar 

  75. Ono, Y., et al. (2012). Induction of functional platelets from mouse and human fibroblasts by p45NF-E2/Maf. Blood, 120(18), 3812–3821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pulecio, J., et al. (2016). Direct Conversion of Fibroblasts to Megakaryocyte Progenitors. Cell Reports, 17(3), 671–683.

    Article  CAS  PubMed  Google Scholar 

  77. Madrid, M., et al. (2021). Autologous Induced Pluripotent Stem Cell–Based Cell Therapies: Promise, Progress, and Challenges. Current Protocols, 1(3):e88.

  78. Basire, A., & Picard, C. (2014). Platelet allo-antibodies identification strategies for preventing and managing platelet refractoriness. Transfusion Clinique et Biologique, 21(4–5), 193–206.

    Article  CAS  PubMed  Google Scholar 

  79. Heal, J. M., et al. (1993). The role of ABO matching in platelet transfusion. European Journal of Haematology, 50(2), 110–117.

    Article  CAS  PubMed  Google Scholar 

  80. Estcourt, L. J., et al. (2017). Guidelines for the use of platelet transfusions. British Journal of Haematology, 176(3), 365–394.

    Article  PubMed  Google Scholar 

  81. Gourraud, P.-A., et al. (2012). The Role of Human Leukocyte Antigen Matching in the Development of Multiethnic “Haplobank” of Induced Pluripotent Stem Cell Lines. STEM CELLS, 30(2), 180–186.

    Article  CAS  PubMed  Google Scholar 

  82. Figueiredo, C., & Blasczyk, R. (2021). Generation of HLA Universal Megakaryocytes and Platelets by Genetic Engineering. Frontiers in Immunology, 12.

  83. Börger, A. K., et al. (2016). Generation of HLA-Universal iPSC-Derived Megakaryocytes and Platelets for Survival Under Refractoriness Conditions. Molecular Medicine, 22, 274–285.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Xu, H., et al. (2019). Targeted Disruption of HLA Genes via CRISPR-Cas9 Generates iPSCs with Enhanced Immune Compatibility. Cell Stem Cell, 24(4), 566-578.e7.

    Article  CAS  PubMed  Google Scholar 

  85. Saito, S., et al. (2002). Platelet transfusion refractoriness caused by a mismatch in HLA-C antigens. Transfusion, 42(3), 302–308.

    Article  CAS  PubMed  Google Scholar 

  86. Suzuki, D., et al. (2019). iPSC-Derived Platelets Depleted of HLA Class I Are Inert to Anti-HLA Class I and Natural Killer Cell Immunity. Stem Cell Reports.

  87. Gopalappa, R., et al. (2018). Paired D10A Cas9 nickases are sometimes more efficient than individual nucleases for gene disruption. Nucleic Acids Research, 46(12), e71–e71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Ran, F. A., et al. (2013). Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity. Cell, 154(6), 1380–1389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Norbnop, P., et al. (2020). Generation and characterization of HLA-universal platelets derived from induced pluripotent stem cells. Scientific reports, 10(1), 8472–8472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang, N., et al. (2016). CRISPR/Cas9-mediated conversion of human platelet alloantigen allotypes. Blood, 127(6), 675–680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the staffs of Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran university of medical sciences, Tehran, Iran.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

EI and ZS were contributed in paper writing and generated figures. AAH were contributed in data discussion and revised the manuscript LPL and AA were contributed in revised the manuscript.

Corresponding author

Correspondence to Zohreh Saltanatpour.

Ethics declarations

Ethics Approval

Not applicable.

Consent for Publication

Not applicable.

Competing Interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izady, E., Saltanatpour, Z., Liu, LP. et al. Toward in Vitro Production of Platelet from Induced Pluripotent Stem Cells. Stem Cell Rev and Rep 18, 2376–2387 (2022). https://doi.org/10.1007/s12015-022-10366-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-022-10366-4

Keywords

Navigation