Skip to main content
Log in

Granulocytes Negatively Regulate Secretion of Transforming Growth Factor β1 by Bone Marrow Mononuclear Cells via Secretion of Erythropoietin Receptors in the Milieu

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

In my previous study, I demonstrated that bone marrow-derived mononuclear cells (BM MNCs) secrete copious amounts of Transforming Growth Factor β1 (TGFβ1) in response to erythropoietin (EPO). In this study, I investigated the principal cell type involved in the process. I found that a large percentage of various marrow cells, but not their mature counterparts present in the peripheral blood, express EPO-receptors (EPO-R). Cell depletion experiments showed that depletion of Glycophorin positive erythroblasts and CD41+ megakaryocytes – the prime suspects – did not affect the EPO-mediated TGFβ1 secretion by the BM MNCs. However, individual depletion of CD2+ T lymphocytes, CD14+ monocyte/macrophages, and CD19+ B cells affected the TGFβ1 secretion by EPO-primed MNCs: depletion of CD2+ cells had the most striking effect. Unexpectedly, and most interestingly, depletion of CD15+ granulocytes led to a significant increase in the TGFβ1 secretion by both naïve and EPO-primed BM MNCs, suggesting that these cells negatively regulate the process. Mechanistically, I show that the CD15+ cells exert this regulatory effect via secretion of both full-length and soluble EPO-R in the milieu. Overall my results, for the first time, unravel an in-built regulatory mechanism prevailing in the BM microenvironment that regulates the secretion of TGFβ1 by controlling EPO-EPO-R interaction.

My data could be relevant in understanding the pathophysiology of several conditions associated with deregulated production of TGFβ1 in the marrow compartment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The article and its supplementary information files contain all data generated or analyzed during this study.

Abbreviations

BM:

Bone marrow

PBL:

Peripheral blood-derived leukocytes

EPO:

Erythropoietin

EPO-R:

Erythropoietin Receptor

IMDM:

Iscove's Modified Dulbecco's Medium

FBS:

Fetal Bovine Serum

MNC:

Mononuclear Cells

TGFβ1:

Transforming Growth Factor beta 1

2-ME:

2-Mercaptoethanol

EMST:

EPO-mediated secretion of TGFβ1

References

  1. Kale, V. P. (2004). Differential activation of MAPK signaling pathways by TGF-beta1 forms the molecular mechanism behind its dose-dependent bidirectional effects on hematopoiesis. Stem cells and development, 13(1), 27–38. https://doi.org/10.1089/154732804773099236

    Article  CAS  PubMed  Google Scholar 

  2. Kale, V. P., & Vaidya, A. A. (2004). Molecular mechanisms behind the dose-dependent differential activation of MAPK pathways induced by transforming growth factor-beta1 in hematopoietic cells. Stem cells and development, 13(5), 536–547. https://doi.org/10.1089/scd.2004.13.536

    Article  CAS  PubMed  Google Scholar 

  3. Blank, U., & Karlsson, S. (2015). TGF-β signaling in the control of hematopoietic stem cells. Blood, 125(23), 3542–3550. https://doi.org/10.1182/blood-2014-12-618090

    Article  CAS  PubMed  Google Scholar 

  4. Kale, V. P. (2020). Transforming growth factor-β boosts the functionality of human bone marrow-derived mesenchymal stromal cells. Cell biology international, 44(11), 2293–2306. https://doi.org/10.1002/cbin.11437

    Article  CAS  PubMed  Google Scholar 

  5. Wang, X., Dong, F., Zhang, S., Yang, W., Yu, W., Wang, Z., Zhang, S., Wang, J., Ma, S., Wu, P., Gao, Y., Dong, J., Tang, F., Cheng, T., & Ema, H. (2018). TGF-β1 Negatively Regulates the Number and Function of Hematopoietic Stem Cells. Stem cell reports, 11(1), 274–287. https://doi.org/10.1016/j.stemcr.2018.05.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Naka, K., & Hirao, A. (2017). Regulation of Hematopoiesis and Hematological Disease by TGF-β Family Signaling Molecules. Cold Spring Harbor perspectives in biology, 9(9), a027987. https://doi.org/10.1101/cshperspect.a027987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kuhikar, R., Khan, N., Philip, J., Melinkeri, S., Kale, V., & Limaye, L. (2020). Transforming growth factor β1 accelerates and enhances in vitro red blood cell formation from hematopoietic stem cells by stimulating mitophagy. Stem cell research & therapy, 11(1), 71. https://doi.org/10.1186/s13287-020-01603-z

    Article  CAS  Google Scholar 

  8. Rameshwar, P., Chang, V. T., Thacker, U. F., & Gascón, P. (1998). Systemic transforming growth factor-beta in patients with bone marrow fibrosis--pathophysiological implications. American journal of hematology, 59(2), 133–142. https://doi.org/10.1002/(sici)1096-8652(199810)59:2<133::aid-ajh6>3.0.co;2-z

  9. Chagraoui, H., Komura, E., Tulliez, M., Giraudier, S., Vainchenker, W., & Wendling, F. (2002). Prominent role of TGF-beta 1 in thrombopoietin-induced myelofibrosis in mice. Blood, 100(10), 3495–3503. https://doi.org/10.1182/blood-2002-04-1133

    Article  CAS  PubMed  Google Scholar 

  10. Agarwal, A., Morrone, K., Bartenstein, M., Zhao, Z. J., Verma, A., & Goel, S. (2016). Bone marrow fibrosis in primary myelofibrosis: pathogenic mechanisms and the role of TGF-β. Stem cell investigation, 3, 5. https://doi.org/10.3978/j.issn.2306-9759.2016.02.03

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lisowska, K. A., Debska-Slizień, A., Bryl, E., Rutkowski, B., & Witkowski, J. M. (2010). Erythropoietin receptor is expressed on human peripheral blood T and B lymphocytes and monocytes and is modulated by recombinant human erythropoietin treatment. Artificial organs, 34(8), 654–662. https://doi.org/10.1111/j.1525-1594.2009.00948.x

    Article  CAS  PubMed  Google Scholar 

  12. Lisowska, K. A., Bryl, E., & Witkowski, J. M. (2011). Erythropoietin receptor is detectable on peripheral blood lymphocytes and its expression increases in activated T lymphocytes. Haematologica, 96(3), e12–e14. https://doi.org/10.3324/haematol.2010.038414

    Article  PubMed  PubMed Central  Google Scholar 

  13. Deshet-Unger, N., Kolomansky, A., Ben-Califa, N., Hiram-Bab, S., Gilboa, D., Liron, T., Ibrahim, M., Awida, Z., Gorodov, A., Oster, H. S., Mittelman, M., Rauner, M., Wielockx, B., Gabet, Y., & Neumann, D. (2020). Erythropoietin receptor in B cells plays a role in bone remodeling in mice. Theranostics, 10(19), 8744–8756. https://doi.org/10.7150/thno.45845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rocchetta, F., Solini, S., Mister, M., Mele, C., Cassis, P., Noris, M., Remuzzi, G., & Aiello, S. (2011). Erythropoietin enhances immunostimulatory properties of immature dendritic cells. Clinical and experimental immunology, 165(2), 202–210. https://doi.org/10.1111/j.1365-2249.2011.04417.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, W., Wang, Y., Zhao, H., Zhang, H., Xu, Y., Wang, S., Guo, X., Huang, Y., Zhang, S., Han, Y., Wu, X., Rice, C. M., Huang, G., Gallagher, P. G., Mendelson, A., Yazdanbakhsh, K., Liu, J., Chen, L., & An, X. (2019). Identification and transcriptome analysis of erythroblastic island macrophages. Blood, 134(5), 480–491. https://doi.org/10.1182/blood.2019000430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lappin, K. M., Mills, K. I., & Lappin, T. R. (2021). Erythropoietin in bone homeostasis-Implications for efficacious anemia therapy. Stem cells translational medicine, 10(6), 836–843. https://doi.org/10.1002/sctm.20-0387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McGee, S. J., Havens, A. M., Shiozawa, Y., Jung, Y., & Taichman, R. S. (2012). Effects of erythropoietin on the bone microenvironment. Growth factors (Chur, Switzerland), 30(1), 22–28. https://doi.org/10.3109/08977194.2011.637034

    Article  CAS  Google Scholar 

  18. Arcasoy, M. O. (2008). The non-haematopoietic biological effects of erythropoietin. British journal of haematology, 141(1), 14–31. https://doi.org/10.1111/j.1365-2141.2008.07014.x

    Article  CAS  PubMed  Google Scholar 

  19. Gong, Y., Zhao, M., Yang, W., Gao, A., Yin, X., Hu, L., Wang, X., Xu, J., Hao, S., Cheng, T., & Cheng, H. (2018). Megakaryocyte-derived excessive transforming growth factor β1 inhibits proliferation of normal hematopoietic stem cells in acute myeloid leukemia. Experimental hematology, 60, 40–46.e2. https://doi.org/10.1016/j.exphem.2017.12.01

    Article  CAS  PubMed  Google Scholar 

  20. Arcasoy, M. O. (2010). Non-erythroid effects of erythropoietin. Haematologica, 95(11), 1803–1805. https://doi.org/10.3324/haematol.2010.030213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Elliott, S., Busse, L., Swift, S., McCaffery, I., Rossi, J., Kassner, P., & Begley, C. G. (2012). Lack of expression and function of erythropoietin receptors in the kidney. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association, 27(7), 2733–2745. https://doi.org/10.1093/ndt/gfr698

    Article  CAS  Google Scholar 

  22. Elliott, S., & Sinclair, A. M. (2012). The effect of erythropoietin on normal and neoplastic cells. Biologics : targets & therapy, 6, 163–189. https://doi.org/10.2147/BTT.S32281

    Article  CAS  Google Scholar 

  23. Takeshita, A., Shinjo, K., Naito, K., Ohnishi, K., Higuchi, M., & Ohno, R. (2002). Erythropoietin receptor in myelodysplastic syndrome and leukemia. Leukemia & lymphoma, 43(2), 261–264. https://doi.org/10.1080/10428190290006026

    Article  CAS  Google Scholar 

  24. Celebi, H., Akan, H., Akçağlayan, E., Ustün, C., & Arat, M. (2000). Febrile neutropenia in allogeneic and autologous peripheral blood stem cell transplantation and conventional chemotherapy for malignancies. Bone marrow transplantation, 26(2), 211–214. https://doi.org/10.1038/sj.bmt.1702503

    Article  CAS  PubMed  Google Scholar 

  25. Lisowska, K. A., Bryl, E., & Witkowski, J. M. (2011). Erythropoietin receptor is detectable on peripheral blood lymphocytes and its expression increases in activated T lymphocytes. Haematologica, 96(3), e12–e14. https://doi.org/10.3324/haematol.2010.038414

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mausberg, A. K., Meyer Zu Hörste, G., Dehmel, T., Stettner, M., Lehmann, H. C., Sheikh, K. A., & Kieseier, B. C. (2011). Erythropoietin ameliorates rat experimental autoimmune neuritis by inducing transforming growth factor-β in macrophages. PloS one, 6(10), e26280. https://doi.org/10.1371/journal.pone.0026280

  27. Lifshitz, L., Tabak, G., Gassmann, M., Mittelman, M., & Neumann, D. (2010). Macrophages as novel target cells for erythropoietin. Haematologica, 95(11), 1823–1831. https://doi.org/10.3324/haematol.2010.025015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Prutchi-Sagiv, S., Golishevsky, N., Oster, H. S., Katz, O., Cohen, A., Naparstek, E., Neumann, D., & Mittelman, M. (2006). Erythropoietin treatment in advanced multiple myeloma is associated with improved immunological functions: could it be beneficial in early disease? British journal of haematology, 135(5), 660–672. https://doi.org/10.1111/j.1365-2141.2006.06366.x

    Article  CAS  PubMed  Google Scholar 

  29. Binder, C., Cvetkovski, F., Sellberg, F., Berg, S., Paternina Visbal, H., Sachs, D. H., Berglund, E., & Berglund, D. (2020). CD2 Immunobiology. Frontiers in immunology, 11, 1090. https://doi.org/10.3389/fimmu.2020.01090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sanjabi, S., Oh, S. A., & Li, M. O. (2017). Regulation of the Immune Response by TGF-β: From Conception to Autoimmunity and Infection. Cold Spring Harbor perspectives in biology, 9(6), a022236. https://doi.org/10.1101/cshperspect.a022236Peng et al., 2020 Cell Death and Disease.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Peng, B., Kong, G., Yang, C., & Ming, Y. (2020). Erythropoietin and its derivatives: from tissue protection to immune regulation. Cell death & disease, 11(2), 79. https://doi.org/10.1038/s41419-020-2276-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author wishes to thank National Centre for Cell Science (DBT-NCCS), Pune, India, and Symbiosis Centre for Research & Innovation, Symbiosis International (Deemed University), Pune, India, for funding and providing infrastructural support, respectively; Dr. Charudatta Apte, Sahyadri Hospital, Pune, India for providing iliac crest samples; Dr. L.C. Padhy, ex-scientist, TIFR, Mumbai, India, for insightful discussions and generous sharing of reagents; and flow cytometry facility of DBT-NCCS for sample acquisition. The author also wishes to thank the anonymous reviewer for his/her excellent critique.

Funding

This study was funded by an intramural grant by National Centre for Cell Science, (DBT-NCCS), Pune, India.

Author information

Authors and Affiliations

Authors

Contributions

Vaijayanti Kale: Conceptualization, Methodology, Investigation, Validation, Formal Analysis and investigation, Resources, Writing – original draft preparation and Reviewing & Editing, Project Administration, Funding Acquisition.

Corresponding author

Correspondence to Vaijayanti Kale.

Ethics declarations

Conflict of Interest

The author declares no conflict of interest.

The author has no relevant financial or non-financial interests to disclose

Ethics approval

The study was approved by the Institutional Ethics Committee (IEC) and Institutional Committee for Stem Cell Research (IC-SCR) of National Centre for Cell Science (NCCS), Pune and certify that the study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 12 kb)

ESM 2

(DOC 36 kb)

ESM 3

(PNG 1454 kb)

High resolution (TIF 20256 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kale, V. Granulocytes Negatively Regulate Secretion of Transforming Growth Factor β1 by Bone Marrow Mononuclear Cells via Secretion of Erythropoietin Receptors in the Milieu. Stem Cell Rev and Rep 18, 1408–1416 (2022). https://doi.org/10.1007/s12015-021-10292-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-021-10292-x

Keywords

Navigation