Skip to main content

Advertisement

Log in

Sca1+ Progenitor Cells (Ex vivo) Exhibits Differential Proteomic Signatures From the Culture Adapted Sca1+ Cells (In vitro), Both Isolated From Murine Skeletal Muscle Tissue

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Stem cell antigen-1 (Sca-1) is a glycosyl-phosphatidylinositol-anchored membrane protein that is expressed in a sub-population of muscle stem and progenitor cell types. Reportedly, Sca-1 regulates the myogenic property of myoblasts and Sca-1−/− mice exhibited defective muscle regeneration. Although the role of Sca-1 in muscle development and maintenance is well-acknowledged, molecular composition of muscle derived Sca-1+ cells is not characterized. Here, we applied a high-resolution mass spectrometry-based workflow to characterize the proteomic landscape of mouse hindlimb skeletal muscle derived Sca-1+ cells. Furthermore, we characterized the impact of the cellular microenvironments on the proteomes of Sca-1+ cells. The proteome component of freshly isolated Sca-1+ cells (ex vivo) was compared with that of Sca-1+ cells expanded in cell culture (in vitro). The analysis revealed significant differences in the protein abundances in the two conditions reflective of their functional variations. The identified proteins were enriched in various biological pathways. Notably, we identified proteins related to myotube differentiation, myotube cell development and myoblast fusion. We also identified a panel of cell surface marker proteins that can be leveraged in future to enrich Sca-1+ cells using combinatorial strategies. Comparative analysis implicated the activation of various pathways leading to increased protein synthesis under in vitro condition. We report here the most comprehensive proteome map of Sca-1+ cells that provides insights into the molecular networks operative in Sca-1+ cells. Importantly, through our work we generated the proteomic blueprint of protein abundances significantly altered in Sca-1+ cells under ex vivo and in vitro conditions. The curated data can also be visualized at https://yenepoya.res.in/database/Sca-1-Proteomics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The MS raw files (.raw) and Proteome Discoverer search files(.msf) are available at http://www.ebi.ac.uk/pride/archive/ with the PRIDE dataset identifier PXD022247. The curated data can also be visualized at https://yenepoya.res.in/database/Sca-1-Proteomics.

Code Availability

Not applicable.

References

  1. Epting, C. L., King, F. W., Pedersen, A., et al. (2008). Stem cell antigen-1 localizes to lipid microdomains and associates with insulin degrading enzyme in skeletal myoblasts. Journal of Cellular Physiology, 217, 250–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Spangrude, G. J., Heimfeld, S., & Weissman, I. L. (1988). Purification and characterization of mouse hematopoietic stem cells. Science, 241, 58–62.

    Article  CAS  PubMed  Google Scholar 

  3. Holmes, C., & Stanford, W. L. (2007). Concise review: stem cell antigen-1: expression, function, and enigma. Stem Cells, 25, 1339–1347.

    Article  CAS  PubMed  Google Scholar 

  4. Lee, J. Y., Qu-Petersen, Z., Cao, B., et al. (2000). Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing. The Journal of Cell Biology, 150, 1085–1100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shen, X., Collier, J. M., Hlaing, M., et al. (2003). Genome-wide examination of myoblast cell cycle withdrawal during differentiation. Developmental Dynamics, 226, 128–138.

    Article  CAS  PubMed  Google Scholar 

  6. Zammit, P., & Beauchamp, J. (2001). The skeletal muscle satellite cell: stem cell or son of stem cell? Differentiation, 68, 193–204.

    Article  CAS  PubMed  Google Scholar 

  7. Judson, R. N., Low, M., Eisner, C., & Rossi, F. M. (2017). Isolation, culture, and differentiation of Fibro/Adipogenic Progenitors (FAPs) from skeletal muscle. Methods in Molecular Biology, 1668, 93–103.

    Article  CAS  PubMed  Google Scholar 

  8. Mitchell, P. O., Mills, T., O’Connor, R. S., et al. (2005). Sca-1 negatively regulates proliferation and differentiation of muscle cells. Developmental Biology, 283, 240–252.

    Article  CAS  PubMed  Google Scholar 

  9. Torrente, Y., Tremblay, J. P., Pisati, F., et al. (2001). Intraarterial injection of muscle-derived CD34(+)Sca-1(+) stem cells restores dystrophin in mdx mice. The Journal of Cell Biology, 152, 335–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Oh, H., Bradfute, S. B., Gallardo, T. D., et al. (2003). Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proceedings of the National Academy of Sciences of the United States of America, 100, 12313–12318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bonyadi, M., Waldman, S. D., Liu, D., et al. (2003). Mesenchymal progenitor self-renewal deficiency leads to age-dependent osteoporosis in Sca-1/Ly-6A null mice. Proceedings of the National Academy of Sciences of the United States of America, 100, 5840–5845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kafadar, K. A., Yi, L., Ahmad, Y., et al. (2009). Sca-1 expression is required for efficient remodeling of the extracellular matrix during skeletal muscle regeneration. Developmental Biology, 326, 47–59.

    Article  CAS  PubMed  Google Scholar 

  13. Epting, C. L., Lopez, J. E., Shen, X., et al. (2004). Stem cell antigen-1 is necessary for cell-cycle withdrawal and myoblast differentiation in C2C12 cells. Journal of Cell Science, 117, 6185–6195.

    Article  CAS  PubMed  Google Scholar 

  14. Swietlik, J. J., Sinha, A., & Meissner, F. (2020). Dissecting intercellular signaling with mass spectrometry-based proteomics. Current Opinion in Cell Biology, 63, 20–30.

    Article  CAS  PubMed  Google Scholar 

  15. Gstaiger, M., & Aebersold, R. (2009). Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nature Reviews. Genetics, 10, 617–627.

    Article  CAS  PubMed  Google Scholar 

  16. Amon, S., Meier-Abt, F., Gillet, L. C., et al. (2019). Sensitive quantitative proteomics of human hematopoietic stem and progenitor cells by data-independent acquisition mass spectrometry. Molecular & Cellular Proteomics, 18, 1454–1467.

    Article  CAS  Google Scholar 

  17. Ohlendieck, K. (2011). Skeletal muscle proteomics: current approaches, technical challenges and emerging techniques. Skeletal Muscle, 1, 6.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Deshmukh, A. S., Murgia, M., Nagaraj, N., et al. (2015). Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways, and transcription factors. Molecular & Cellular Proteomics, 14, 841–853.

    Article  CAS  Google Scholar 

  19. Kleinert, M., Parker, B. L., Jensen, T. E., et al. (2018). Quantitative proteomic characterization of cellular pathways associated with altered insulin sensitivity in skeletal muscle following high-fat diet feeding and exercise training. Science Reports, 8, 10723.

    Article  CAS  Google Scholar 

  20. Ubaida-Mohien, C., Gonzalez-Freire, M., Lyashkov, A., et al. (2019). Physical activity associated proteomics of skeletal muscle: being physically active in daily life may protect skeletal muscle from aging. Frontiers in Physiology, 10, 312.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yin, X., Mayr, M., Xiao, Q., et al. (2005). Proteomic dataset of Sca-1 + progenitor cells. Proteomics, 5, 4533–4545.

    Article  CAS  PubMed  Google Scholar 

  22. Sudheer Shenoy, P., & Bose, B. (2017). Identification, isolation, quantification and systems approach towards CD34, a biomarker present in the progenitor/stem cells from diverse lineages. Methods, 131, 147–156.

    Article  CAS  PubMed  Google Scholar 

  23. Kulak, N. A., Pichler, G., Paron, I., Nagaraj, N., & Mann, M. (2014). Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nature Methods, 11, 319–324.

    Article  CAS  PubMed  Google Scholar 

  24. Walter, W., Sanchez-Cabo, F., & Ricote, M. (2015). GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics, 31, 2912–2914.

    Article  CAS  PubMed  Google Scholar 

  25. Tapscott, S. J. (2005). The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription. Development, 132, 2685–2695.

    Article  CAS  PubMed  Google Scholar 

  26. Molkentin, J. D., & Olson, E. N. (1996). Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 93, 9366–9373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sartorelli, V., & Caretti, G. (2005). Mechanisms underlying the transcriptional regulation of skeletal myogenesis. Current Opinion in Genetics & Development, 15, 528–535.

    Article  CAS  Google Scholar 

  28. Rotwein, P., & Wilson, E. M. (2009). Distinct actions of Akt1 and Akt2 in skeletal muscle differentiation. Journal of Cellular Physiology, 219, 503–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Forrest, A. R., Ravasi, T., Taylor, D., et al. (2003). Phosphoregulators: protein kinases and protein phosphatases of mouse. Genome Research, 13, 1443–1454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shiraishi, S., Zhou, C., Aoki, T., et al. (2007). TBP-interacting protein 120B (TIP120B)/cullin-associated and neddylation-dissociated 2 (CAND2) inhibits SCF-dependent ubiquitination of myogenin and accelerates myogenic differentiation. The Journal of Biological Chemistry, 282, 9017–9028.

    Article  CAS  PubMed  Google Scholar 

  31. Doherty, K. R., Demonbreun, A. R., Wallace, G. Q., et al. (2008). The endocytic recycling protein EHD2 interacts with myoferlin to regulate myoblast fusion. The Journal of Biological Chemistry, 283, 20252–20260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chlystun, M., Campanella, M., Law, A. L., et al. (2013). Regulation of mitochondrial morphogenesis by annexin A6. PLoS One, 8, e53774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Croissant, C., Gounou, C., Bouvet, F., Tan, S., & Bouter, A. (2020). Annexin-A6 in membrane repair of human skeletal muscle cell: a role in the cap subdomain. Cells, 9(7), 1742. https://doi.org/10.3390/cells9071742.

    Article  CAS  PubMed Central  Google Scholar 

  34. Ramirez-Martinez, A., Cenik, B. K., Bezprozvannaya, S., Chen, B., Bassel-Duby, R., Liu, N., & Olson, E. N. (2017). KLHL41 stabilizes skeletal muscle sarcomeres by nonproteolytic ubiquitination. eLife, 6, e26439. https://doi.org/10.7554/eLife.26439.

  35. Jin, L., Chang, C., Pawlik, K. M., et al. (2018). Serine threonine kinase receptor-associated protein deficiency impairs mouse embryonic stem cells lineage commitment through CYP26A1-mediated retinoic acid homeostasis. Stem Cells, 36, 1368–1379.

    Article  CAS  PubMed  Google Scholar 

  36. Bausch-Fluck, D., Hofmann, A., Bock, T., et al. (2015). A mass spectrometric-derived cell surface protein atlas. PLoS One, 10, e0121314.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Mylona, E., Jones, K. A., Mills, S. T., & Pavlath, G. K. (2006). CD44 regulates myoblast migration and differentiation. Journal of Cellular Physiology, 209, 314–321.

    Article  CAS  PubMed  Google Scholar 

  38. Sidney, L. E., Branch, M. J., Dunphy, S. E., Dua, H. S., & Hopkinson, A. (2014). Concise review: evidence for CD34 as a common marker for diverse progenitors. Stem Cells, 32, 1380–1389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mann, C. J., Perdiguero, E., Kharraz, Y., et al. (2011). Aberrant repair and fibrosis development in skeletal muscle. Skeletal Muscle, 1, 21.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bernstein, H. S., Samad, T., Cholsiripunlert, S., Khalifian, S., Gong, W., Ritner, C., Aurigui, J., Ling, V., Wilschut, K. J., Bennett, S., Hoffman, J., & Oishi, P. (2013). Stem cell antigen-1 in skeletal muscle function. PLoS currents, 5, ecurrents.md.411a8332d61e22725e6937b97e6d0ef8. https://doi.org/10.1371/currents.md.411a8332d61e22725e6937b97e6d0ef8.

  41. Kim, T., Echeagaray, O. H., Wang, B. J., et al. (2018). In situ transcriptome characteristics are lost following culture adaptation of adult cardiac stem cells. Scientific Reports, 8, 12060.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Wang, Y. X., Dumont, N. A., & Rudnicki, M. A. (2014). Muscle stem cells at a glance. Journal of Cell Science, 127, 4543–4548.

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Liu, L., Hansen, C. G., Honeyman, B. J., Nichols, B. J., & Pilch, P. F. (2014). Cavin-3 knockout mice show that cavin-3 is not essential for caveolae formation, for maintenance of body composition, or for glucose tolerance. PLoS One, 9, e102935.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Liu, L., Brown, D., McKee, M., et al. (2008). Deletion of Cavin/PTRF causes global loss of caveolae, dyslipidemia, and glucose intolerance. Cell Metabolism, 8, 310–317.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Saito, T. (2012). NEPRO: a novel Notch effector for maintenance of neural progenitor cells in the neocortex. Advances in Experimental Medicine and Biology, 727, 61–70.

    Article  CAS  PubMed  Google Scholar 

  46. Moore, J. M., Oliver, P. L., Finelli, M. J., et al. (2014). Laf4/Aff3, a gene involved in intellectual disability, is required for cellular migration in the mouse cerebral cortex. PLoS One, 9, e105933.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Bardot, P., Vincent, S. D., Fournier, M., et al. (2017). The TAF10-containing TFIID and SAGA transcriptional complexes are dispensable for early somitogenesis in the mouse embryo. Development, 144, 3808–3818.

    CAS  PubMed  Google Scholar 

  48. Xie, W. B., Li, Z., Shi, N., et al. (2013). Smad2 and myocardin-related transcription factor B cooperatively regulate vascular smooth muscle differentiation from neural crest cells. Circulation Research, 113, e76–e86.

    Article  CAS  PubMed  Google Scholar 

  49. Schiaffino, S., Rossi, A. C., Smerdu, V., Leinwand, L. A., & Reggiani, C. (2015). Developmental myosins: expression patterns and functional significance. Skeletal Muscle, 5, 22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Malecova, B., Dall’Agnese, A., Madaro, L., Gatto, S., Coutinho Toto, P., Albini, S., Ryan, T., Tora, L., & Puri, P. L. (2016). TBP/TFIID-dependent activation of MyoD target genes in skeletal muscle cells. eLife, 5, e12534. https://doi.org/10.7554/eLife.12534.

  51. Epting, C. L., Lopez, J. E., Pedersen, A., et al. (2008). Stem cell antigen-1 regulates the tempo of muscle repair through effects on proliferation of alpha7 integrin-expressing myoblasts. Experimental Cell Research, 314, 1125–1135.

    Article  CAS  PubMed  Google Scholar 

  52. Beauchamp, J. R., Heslop, L., Yu, D. S., et al. (2000). Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. The Journal of Cell Biology, 151, 1221–1234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rion, N., Castets, P., Lin, S., Enderle, L., Reinhard, J. R., Eickhorst, C., & Rüegg, M. A. (2019). mTOR controls embryonic and adult myogenesis via mTORC1. Development, 146(7), dev172460. https://doi.org/10.1242/dev.172460.

  54. Ikemoto-Uezumi, M., Uezumi, A., Tsuchida, K., et al. (2015). Pro-insulin-like growth factor-ii ameliorates age-related inefficient regenerative response by orchestrating self-reinforcement mechanism of muscle regeneration. Stem Cells, 33, 2456–2468.

    Article  CAS  PubMed  Google Scholar 

  55. Zhou, J., Freeman, T. A., Ahmad, F., et al. (2013). GSK-3alpha is a central regulator of age-related pathologies in mice. The Journal of Clinical Investigation, 123, 1821–1832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liang, W. C., Mitsuhashi, H., Keduka, E., et al. (2011). TMEM43 mutations in Emery-Dreifuss muscular dystrophy-related myopathy. Annals of Neurology, 69, 1005–1013.

    Article  CAS  PubMed  Google Scholar 

  57. Padron-Barthe, L., Villalba-Orero, M., Gomez-Salinero, J. M., et al. (2019). Severe cardiac dysfunction and death caused by arrhythmogenic right ventricular cardiomyopathy type 5 are improved by inhibition of glycogen synthase kinase-3beta. Circulation, 140, 1188–1204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kinoshita, Y., Hunter, R. G., Gray, J. D., et al. (2014). Role for NUP62 depletion and PYK2 redistribution in dendritic retraction resulting from chronic stress. Proceedings of the National Academy of Sciences of the United States of America, 111, 16130–16135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sakuma, S., & D’Angelo, M. A. (2017). The roles of the nuclear pore complex in cellular dysfunction, aging and disease. Seminars in Cell & Developmental Biology, 68, 72–84.

    Article  CAS  Google Scholar 

  60. Bode, D., Yu, L., Tate, P., Pardo, M., & Choudhary, J. (2016). Characterization of two distinct Nucleosome Remodeling and Deacetylase (NuRD) complex assemblies in embryonic stem cells. Molecular & Cellular Proteomics, 15, 878–891.

    Article  CAS  Google Scholar 

  61. Shieh, C., Jones, N., Vanle, B., et al. (2020). GATAD2B-associated neurodevelopmental disorder (GAND): clinical and molecular insights into a NuRD-related disorder. Genetics in Medicine, 22, 878–888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Peeters, K., Chamova, T., Tournev, I., & Jordanova, A. (2017). Axonal neuropathy with neuromyotonia: there is a HINT. Brain, 140, 868–877.

    PubMed  Google Scholar 

  63. Aishwarya, R., Abdullah, C. S., Alam, S., et al. (2020). The physiological function of sigmar1 in the skeletal muscle in mice. Faseb Journal, 34, 1–1.

    Article  Google Scholar 

  64. Fukada, S. I., Akimoto, T., & Sotiropoulos, A. (2020). Role of damage and management in muscle hypertrophy: Different behaviors of muscle stem cells in regeneration and hypertrophy. Biochimica et Biophysica Acta, Molecular Cell Research, 1867, 118742.

    Article  CAS  PubMed  Google Scholar 

  65. Steyn, P. J., Dzobo, K., Smith, R. I., & Myburgh, K. H. (2019). Interleukin-6 Induces Myogenic Differentiation via JAK2-STAT3 Signaling in MouseC2C12 Myoblast Cell Line and Primary Human Myoblasts. International Journal of Molecular Sciences, 20(21), 5273. https://doi.org/10.3390/ijms20215273.

    Article  CAS  PubMed Central  Google Scholar 

  66. Wu, S., Huang, J., Dong, J., & Pan, D. (2003). hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell, 114, 445–456.

    Article  CAS  PubMed  Google Scholar 

  67. Qin, F., Tian, J., Zhou, D., & Chen, L. (2013). Mst1 and Mst2 kinases: regulations and diseases. Cell & Bioscience, 3, 31.

    Article  CAS  Google Scholar 

  68. Oh, S., Lee, D., Kim, T., et al. (2009). Crucial role for Mst1 and Mst2 kinases in early embryonic development of the mouse. Molecular and Cellular Biology, 29, 6309–6320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Guo, C. S., Degnin, C., Fiddler, T. A., Stauffer, D., & Thayer, M. J. (2003). Regulation of MyoD activity and muscle cell differentiation by MDM2, pRb, and Sp1. The Journal of Biological Chemistry, 278, 22615–22622.

    Article  CAS  PubMed  Google Scholar 

  70. Serrano, A. L., Baeza-Raja, B., Perdiguero, E., Jardi, M., & Munoz-Canoves, P. (2008). Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metabolism, 7, 33–44.

    Article  CAS  PubMed  Google Scholar 

  71. Sala, D., & Sacco, A. (2016). Signal transducer and activator of transcription 3 signaling as a potential target to treat muscle wasting diseases. Current Opinion in Clinical Nutrition and Metabolic Care, 19, 171–176.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Tierney, M. T., Aydogdu, T., Sala, D., et al. (2014). STAT3 signaling controls satellite cell expansion and skeletal muscle repair. Nature Medicine, 20, 1182–1186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the MASSFIITB Facility at IIT Bombay supported by the Department of Biotechnology (BT/PR13114/INF/22/206/2015) to carry out all MS-related experiments.

Funding

The authors would like to thank the Stem Cells and Regenerative Medicine Centre of Yenepoya Research Centre, Yenepoya (Deemed to be University) for providing the infrastructure, core facility and funding in the form of Yenepoya University Seed Grant (YU/Seed Grant/2015-042) awarded to the Principal Investigator Dr Bipasha Bose to carry out this study.

Author information

Authors and Affiliations

Authors

Contributions

BB, SK and SS conceived and designed the study. SK and SS performed the animal experiments. SK carried out the MS sample preparation, analysed and performed the data analysis. SK and PS wrote the manuscript. BB and SS edited and approved the manuscript.

Corresponding authors

Correspondence to Sudheer Shenoy P or Bipasha Bose.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Ethics Approval

This study was approved by the Institutional Animal Ethics Committee, Yenepoya (Deemed to be University) bearing number 10/4.8.2015. 

Consent toParticipate

Notapplicable. 

Consent forPublication

Notapplicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Table S1

The entire list of proteins identified in the Sca-1+ex vivo and in vitro conditions (XLSX 424 kb)

Table S2

List of regulatory proteins identified in this study. (XLSX 20 kb)

Table S3

List of proteins which are differentially expressed between Sca-1+ex vivo and in vitro condition (XLSX 377 kb)

Fig. S1

Morphology of Sca-1+ sorted cells after 72 h of culturing (PNG 1427 kb)

High Resolution Image (TIF 924 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapoor, S., Subba, P., Shenoy P, S. et al. Sca1+ Progenitor Cells (Ex vivo) Exhibits Differential Proteomic Signatures From the Culture Adapted Sca1+ Cells (In vitro), Both Isolated From Murine Skeletal Muscle Tissue. Stem Cell Rev and Rep 17, 1754–1767 (2021). https://doi.org/10.1007/s12015-021-10134-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-021-10134-w

Keywords

Navigation