Skip to main content
Log in

Retention of Somatic Memory Associated with Cell Identity, Age and Metabolism in Induced Pluripotent Stem (iPS) Cells Reprogramming

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The discovery of induced pluripotent stem (iPS) cells in 2006 marked a major breakthrough in regenerative medicine, enabling reversal of terminally differentiated somatic cells into pluripotent stem cells. The embryonic stem (ES) cells-like pluripotency and unlimited self-renewal capability of iPS cells have granted them enormous potential in many applications, particularly regenerative therapy. Unlike ES cells, however, iPS cells exhibit somatic memories which were carried over from the tissue of origin thus limited its translation in clinical applications. This review provides an updated overview of the retention of various somatic memories associated with the cellular identity, age and metabolism of tissue of origin in iPS cells. The influence of cell types, stage of maturation, age and various other factors on the retention of somatic memory has been discussed. Recent evidence of somatic memory in the form of epigenetic, transcriptomic, metabolic signatures and its functional manifestations in both in vitro and in vivo settings also have been reviewed. The increasing number of studies which had adopted isogenic cell lines for comparisons in recent years had facilitated the identification of genuine somatic memories. These memories functionally affect iPS cells and its derivatives and are potentially tumorigenic thus, raising concerns on their safety in clinical application. Various approaches for memory erasure had since being reported and their efficacies were highlighted in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nashun, B., Hill, P. W., & Hajkova, P. (2015). Reprogramming of cell fate: epigenetic memory and the erasure of memories past. The EMBO Journal, 34(10), 1296–1308. https://doi.org/10.15252/embj.201490649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872. https://doi.org/10.1016/j.cell.2007.11.019.

    Article  CAS  PubMed  Google Scholar 

  3. Marei, H. E., Althani, A., Lashen, S., Cenciarelli, C., & Hasan, A. (2017). Genetically unmatched human iPSC and ESC exhibit equivalent gene expression and neuronal differentiation potential. Scientific Reports, 7(1), 17504. https://doi.org/10.1038/s41598-017-17882-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kim, K., Doi, A., Wen, B., Ng, K., Zhao, R., Cahan, P., Kim, J., Aryee, M. J., Ji, H., Ehrlich, L. I., Yabuuchi, A., Takeuchi, A., Cunniff, K. C., Hongguang, H., McKinney-Freeman, S., Naveiras, O., Yoon, T. J., Irizarry, R. A., Jung, N., Seita, J., Hanna, J., Murakami, P., Jaenisch, R., Weissleder, R., Orkin, S. H., Weissman, I. L., Feinberg, A. P., & Daley, G. Q. (2010). Epigenetic memory in induced pluripotent stem cells. Nature, 467(7313), 285–290. https://doi.org/10.1038/nature09342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hu, Q., Friedrich, A. M., Johnson, L. V., & Clegg, D. O. (2010). Memory in induced pluripotent stem cells: reprogrammed human retinal-pigmented epithelial cells show tendency for spontaneous redifferentiation. Stem Cells, 28(11), 1981–1991. https://doi.org/10.1002/stem.531.

    Article  CAS  PubMed  Google Scholar 

  6. Bar-Nur, O., Russ, H. A., Efrat, S., & Benvenisty, N. (2011). Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell, 9(1), 17–23. https://doi.org/10.1016/j.stem.2011.06.007.

    Article  CAS  PubMed  Google Scholar 

  7. Quattrocelli, M., Palazzolo, G., Floris, G., Schoffski, P., Anastasia, L., Orlacchio, A., Vandendriessche, T., Chuah, M. K., Cossu, G., Verfaillie, C., & Sampaolesi, M. (2011). Intrinsic cell memory reinforces myogenic commitment of pericyte-derived iPSCs. The Journal of Pathology, 223(5), 593–603. https://doi.org/10.1002/path.2845.

    Article  CAS  PubMed  Google Scholar 

  8. Tian, C., Wang, Y., Sun, L., Ma, K., & Zheng, J. C. (2011). Reprogrammed mouse astrocytes retain a “memory” of tissue origin and possess more tendencies for neuronal differentiation than reprogrammed mouse embryonic fibroblasts. Protein & Cell, 2(2), 128–140. https://doi.org/10.1007/s13238-011-1012-7.

    Article  CAS  Google Scholar 

  9. Lee, S. B., Seo, D., Choi, D., Park, K. Y., Holczbauer, A., Marquardt, J. U., Conner, E. A., Factor, V. M., & Thorgeirsson, S. S. (2012). Contribution of hepatic lineage stage-specific donor memory to the differential potential of induced mouse pluripotent stem cells. Stem Cells, 30(5), 997–1007. https://doi.org/10.1002/stem.1074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guzzo, R. M., Scanlon, V., Sanjay, A., Xu, R. H., & Drissi, H. (2014). Establishment of human cell type-specific iPS cells with enhanced chondrogenic potential. Stem Cell Reviews, 10(6), 820–829. https://doi.org/10.1007/s12015-014-9538-8.

    Article  Google Scholar 

  11. Hu, S., Zhao, M. T., Jahanbani, F., Shao, N. Y., Lee, W. H., Chen, H., Snyder, M. P., & Wu, J. C. (2016). Effects of cellular origin on differentiation of human induced pluripotent stem cell-derived endothelial cells. JCI Insight, 1(8). https://doi.org/10.1172/jci.insight.85558.

  12. Shutova, M. V., Surdina, A. V., Ischenko, D. S., Naumov, V. A., Bogomazova, A. N., Vassina, E. M., Alekseev, D. G., Lagarkova, M. A., & Kiselev, S. L. (2016). An integrative analysis of reprogramming in human isogenic system identified a clone selection criterion. Cell Cycle, 15(7), 986–997. https://doi.org/10.1080/15384101.2016.1152425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pfaff, N., Lachmann, N., Kohlscheen, S., Sgodda, M., Arauzo-Bravo, M. J., Greber, B., Kues, W., Glage, S., Baum, C., Niemann, H., Schambach, A., Cantz, T., & Moritz, T. (2012). Efficient hematopoietic redifferentiation of induced pluripotent stem cells derived from primitive murine bone marrow cells. Stem Cells and Development, 21(5), 689–701. https://doi.org/10.1089/scd.2011.0010.

    Article  CAS  PubMed  Google Scholar 

  14. Hargus, G., Ehrlich, M., Arauzo-Bravo, M. J., Hemmer, K., Hallmann, A. L., Reinhardt, P., Kim, K. P., Adachi, K., Santourlidis, S., Ghanjati, F., Fauser, M., Ossig, C., Storch, A., Kim, J. B., Schwamborn, J. C., Sterneckert, J., Scholer, H. R., Kuhlmann, T., & Zaehres, H. (2014). Origin-dependent neural cell identities in differentiated human iPSCs in vitro and after transplantation into the mouse brain. Cell Reports, 8(6), 1697–1703. https://doi.org/10.1016/j.celrep.2014.08.014.

    Article  CAS  PubMed  Google Scholar 

  15. Ma, H., Morey, R., O'Neil, R. C., He, Y., Daughtry, B., Schultz, M. D., Hariharan, M., Nery, J. R., Castanon, R., Sabatini, K., Thiagarajan, R. D., Tachibana, M., Kang, E., Tippner-Hedges, R., Ahmed, R., Gutierrez, N. M., Van Dyken, C., Polat, A., Sugawara, A., Sparman, M., Gokhale, S., Amato, P., Wolf, D. P., Ecker, J. R., Laurent, L. C., & Mitalipov, S. (2014). Abnormalities in human pluripotent cells due to reprogramming mechanisms. Nature, 511(7508), 177–183. https://doi.org/10.1038/nature13551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wolfrum, K., Wang, Y., Prigione, A., Sperling, K., Lehrach, H., & Adjaye, J. (2010). The LARGE principle of cellular reprogramming: lost, acquired and retained gene expression in foreskin and amniotic fluid-derived human iPS cells. PLoS One, 5(10), e13703. https://doi.org/10.1371/journal.pone.0013703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ohi, Y., Qin, H., Hong, C., Blouin, L., Polo, J. M., Guo, T., Qi, Z., Downey, S. L., Manos, P. D., Rossi, D. J., Yu, J., Hebrok, M., Hochedlinger, K., Costello, J. F., Song, J. S., & Ramalho-Santos, M. (2011). Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nature Cell Biology, 13(5), 541–549. https://doi.org/10.1038/ncb2239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim, K., Zhao, R., Doi, A., Ng, K., Unternaehrer, J., Cahan, P., Huo, H. G., Loh, Y. H., Aryee, M. J., Lensch, M. W., Li, H., Collins, J. J., Feinberg, A. P., & Daley, G. Q. (2011). Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nature Biotechnology, 29(12), 1117–1119. https://doi.org/10.1038/nbt.2052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shao, K., Koch, C., Gupta, M. K., Lin, Q., Lenz, M., Laufs, S., Denecke, B., Schmidt, M., Linke, M., Hennies, H. C., Hescheler, J., Zenke, M., Zechner, U., Saric, T., & Wagner, W. (2013). Induced pluripotent mesenchymal stromal cell clones retain donor-derived differences in DNA methylation profiles. Molecular Therapy, 21(1), 240–250. https://doi.org/10.1038/mt.2012.207.

    Article  CAS  PubMed  Google Scholar 

  20. DeBoever, C., Li, H., Jakubosky, D., Benaglio, P., Reyna, J., Olson, K. M., Huang, H., Biggs, W., Sandoval, E., D'Antonio, M., Jepsen, K., Matsui, H., Arias, A., Ren, B., Nariai, N., Smith, E. N., D'Antonio-Chronowska, A., Farley, E. K., & Frazer, K. A. (2017). Large-scale profiling reveals the influence of genetic variation on gene expression in human induced pluripotent stem cells. Cell Stem Cell, 20(4), 533–546 e537. https://doi.org/10.1016/j.stem.2017.03.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kilpinen, H., Goncalves, A., Leha, A., Afzal, V., Alasoo, K., Ashford, S., Bala, S., Bensaddek, D., Casale, F. P., Culley, O. J., Danecek, P., Faulconbridge, A., Harrison, P. W., Kathuria, A., McCarthy, D., McCarthy, S. A., Meleckyte, R., Memari, Y., Moens, N., Soares, F., Mann, A., Streeter, I., Agu, C. A., Alderton, A., Nelson, R., Harper, S., Patel, M., White, A., Patel, S. R., Clarke, L., Halai, R., Kirton, C. M., Kolb-Kokocinski, A., Beales, P., Birney, E., Danovi, D., Lamond, A. I., Ouwehand, W. H., Vallier, L., Watt, F. M., Durbin, R., Stegle, O., & Gaffney, D. J. (2017). Common genetic variation drives molecular heterogeneity in human iPSCs. Nature, 546(7658), 370–375. https://doi.org/10.1038/nature22403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chin, M. H., Mason, M. J., Xie, W., Volinia, S., Singer, M., Peterson, C., Ambartsumyan, G., Aimiuwu, O., Richter, L., Zhang, J., Khvorostov, I., Ott, V., Grunstein, M., Lavon, N., Benvenisty, N., Croce, C. M., Clark, A. T., Baxter, T., Pyle, A. D., Teitell, M. A., Pelegrini, M., Plath, K., & Lowry, W. E. (2009). Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell, 5(1), 111–123. https://doi.org/10.1016/j.stem.2009.06.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. de Boni, L., Gasparoni, G., Haubenreich, C., Tierling, S., Schmitt, I., Peitz, M., Koch, P., Walter, J., Wullner, U., & Brustle, O. (2018). DNA methylation alterations in iPSC- and hESC-derived neurons: potential implications for neurological disease modeling. Clinical Epigenetics, 10, 13. https://doi.org/10.1186/s13148-018-0440-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Roost, M. S., Slieker, R. C., Bialecka, M., van Iperen, L., Gomes Fernandes, M. M., He, N., Suchiman, H. E. D., Szuhai, K., Carlotti, F., de Koning, E. J. P., Mummery, C. L., Heijmans, B. T., & Chuva de Sousa Lopes, S. M. (2017). DNA methylation and transcriptional trajectories during human development and reprogramming of isogenic pluripotent stem cells. Nature Communications, 8(1), 908. https://doi.org/10.1038/s41467-017-01077-3.

  25. Zhang, S., Moy, W., Zhang, H., Leites, C., McGowan, H., Shi, J., Sanders, A. R., Pang, Z. P., Gejman, P. V., & Duan, J. (2018). Open chromatin dynamics reveals stage-specific transcriptional networks in hiPSC-based neurodevelopmental model. Stem Cell Research, 29, 88–98. https://doi.org/10.1016/j.scr.2018.03.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Knaupp, A. S., Buckberry, S., Pflueger, J., Lim, S. M., Ford, E., Larcombe, M. R., Rossello, F. J., de Mendoza, A., Alaei, S., Firas, J., Holmes, M. L., Nair, S. S., Clark, S. J., Nefzger, C. M., Lister, R., & Polo, J. M. (2017). Transient and permanent reconfiguration of chromatin and transcription factor occupancy drive reprogramming. Cell Stem Cell, 21(6), 834–845 e836. https://doi.org/10.1016/j.stem.2017.11.007.

    Article  CAS  PubMed  Google Scholar 

  27. Thurner, M., Shenhav, L., Wesolowska-Andersen, A., Bennett, A. J., Barrett, A., Gloyn, A. L., McCarthy, M. I., Beer, N. L., & Efrat, S. (2017). Genes associated with pancreas development and function maintain open chromatin in iPSCs generated from human pancreatic Beta cells. Stem Cell Reports, 9(5), 1395–1405. https://doi.org/10.1016/j.stemcr.2017.09.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, H., Kim, Y., Sharkis, S., Marchionni, L., & Jang, Y. Y. (2011). In vivo liver regeneration potential of human induced pluripotent stem cells from diverse origins. Science Translational Medicine, 3(82), 82ra39. https://doi.org/10.1126/scitranslmed.3002376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Roessler, R., Smallwood, S. A., Veenvliet, J. V., Pechlivanoglou, P., Peng, S. P., Chakrabarty, K., Groot-Koerkamp, M. J., Pasterkamp, R. J., Wesseling, E., Kelsey, G., Boddeke, E., Smidt, M. P., & Copray, S. (2014). Detailed analysis of the genetic and epigenetic signatures of iPSC-derived mesodiencephalic dopaminergic neurons. Stem Cell Reports, 2(4), 520–533. https://doi.org/10.1016/j.stemcr.2014.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, D., Liu, J., Yang, X., Zhou, C., Guo, J., Wu, C., Qin, Y., Guo, L., He, J., Yu, S., Liu, H., Wang, X., Wu, F., Kuang, J., Hutchins, A. P., Chen, J., & Pei, D. (2017). Chromatin accessibility dynamics during iPSC reprogramming. Cell Stem Cell, 21(6), 819–833 e816. https://doi.org/10.1016/j.stem.2017.10.012.

    Article  CAS  PubMed  Google Scholar 

  31. Polo, J. M., Liu, S., Figueroa, M. E., Kulalert, W., Eminli, S., Tan, K. Y., Apostolou, E., Stadtfeld, M., Li, Y., Shioda, T., Natesan, S., Wagers, A. J., Melnick, A., Evans, T., & Hochedlinger, K. (2010). Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nature Biotechnology, 28(8), 848–855. https://doi.org/10.1038/nbt.1667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, W., Wei, W., Zhu, S., Zhu, J., Shi, Y., Lin, T., Hao, E., Hayek, A., Deng, H., & Ding, S. (2009). Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell, 4(1), 16–19. https://doi.org/10.1016/j.stem.2008.11.014.

    Article  CAS  PubMed  Google Scholar 

  33. Hanna, J., Cheng, A. W., Saha, K., Kim, J., Lengner, C. J., Soldner, F., Cassady, J. P., Muffat, J., Carey, B. W., & Jaenisch, R. (2010). Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proceedings of the National Academy of Sciences of the United States of America, 107(20), 9222–9227. https://doi.org/10.1073/pnas.1004584107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee, J. H., Lee, J. B., Shapovalova, Z., Fiebig-Comyn, A., Mitchell, R. R., Laronde, S., Szabo, E., Benoit, Y. D., & Bhatia, M. (2014). Somatic transcriptome priming gates lineage-specific differentiation potential of human-induced pluripotent stem cell states. Nature Communications, 5, 5605. https://doi.org/10.1038/ncomms6605.

    Article  CAS  PubMed  Google Scholar 

  35. Komashko, V. M., & Farnham, P. J. (2010). 5-azacytidine treatment reorganizes genomic histone modification patterns. Epigenetics, 5(3), 229–240. https://doi.org/10.4161/epi.5.3.11409.

    Article  CAS  PubMed  Google Scholar 

  36. Varum, S., Rodrigues, A. S., Moura, M. B., Momcilovic, O., Easley, C. A. T., Ramalho-Santos, J., Van Houten, B., & Schatten, G. (2011). Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS One, 6(6), e20914. https://doi.org/10.1371/journal.pone.0020914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Panopoulos, A. D., Yanes, O., Ruiz, S., Kida, Y. S., Diep, D., Tautenhahn, R., Herrerias, A., Batchelder, E. M., Plongthongkum, N., Lutz, M., Berggren, W. T., Zhang, K., Evans, R. M., Siuzdak, G., & Izpisua Belmonte, J. C. (2012). The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Research, 22(1), 168–177. https://doi.org/10.1038/cr.2011.177.

    Article  CAS  PubMed  Google Scholar 

  38. Folmes, C. D., Nelson, T. J., Martinez-Fernandez, A., Arrell, D. K., Lindor, J. Z., Dzeja, P. P., Ikeda, Y., Perez-Terzic, C., & Terzic, A. (2011). Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metabolism, 14(2), 264–271. https://doi.org/10.1016/j.cmet.2011.06.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cacchiarelli, D., Trapnell, C., Ziller, M. J., Soumillon, M., Cesana, M., Karnik, R., Donaghey, J., Smith, Z. D., Ratanasirintrawoot, S., Zhang, X., Ho Sui, S. J., Wu, Z., Akopian, V., Gifford, C. A., Doench, J., Rinn, J. L., Daley, G. Q., Meissner, A., Lander, E. S., & Mikkelsen, T. S. (2015). Integrative analyses of human reprogramming reveal dynamic nature of induced pluripotency. Cell, 162(2), 412–424. https://doi.org/10.1016/j.cell.2015.06.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, C., Skamagki, M., Liu, Z., Ananthanarayanan, A., Zhao, R., Li, H., & Kim, K. (2017). Biological significance of the suppression of oxidative phosphorylation in induced pluripotent stem cells. Cell Reports, 21(8), 2058–2065. https://doi.org/10.1016/j.celrep.2017.10.098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Harvey, A. J., O'Brien, C., Lambshead, J., Sheedy, J. R., Rathjen, J., Laslett, A. L., & Gardner, D. K. (2018). Physiological oxygen culture reveals retention of metabolic memory in human induced pluripotent stem cells. PLoS One, 13(3), e0193949. https://doi.org/10.1371/journal.pone.0193949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lees, J. G., Cliff, T. S., Gammilonghi, A., Ryall, J. G., Dalton, S., Gardner, D. K., & Harvey, A. J. (2019). Oxygen regulates human pluripotent stem cell metabolic flux. Stem Cells International, 2019, 1–17. https://doi.org/10.1155/2019/8195614.

    Article  CAS  Google Scholar 

  43. Spyrou, J., Gardner, D. K., & Harvey, A. J. (2019). Metabolomic and transcriptional analyses reveal atmospheric oxygen during human induced pluripotent stem cell generation impairs metabolic reprogramming. Stem Cells, 37(8), 1042–1056. https://doi.org/10.1002/stem.3029.

    Article  CAS  PubMed  Google Scholar 

  44. Gardner, D. K., Lane, M., Stevens, J., & Schoolcraft, W. B. (2001). Noninvasive assessment of human embryo nutrient consumption as a measure of developmental potential. Fertility and Sterility, 76(6), 1175–1180. https://doi.org/10.1016/s0015-0282(01)02888-6.

    Article  CAS  PubMed  Google Scholar 

  45. Lees, J. G., Gardner, D. K., & Harvey, A. J. (2018). Mitochondrial and glycolytic remodeling during nascent neural differentiation of human pluripotent stem cells. Development, 145(20). https://doi.org/10.1242/dev.168997.

  46. Gu, W., Gaeta, X., Sahakyan, A., Chan, A. B., Hong, C. S., Kim, R., Braas, D., Plath, K., Lowry, W. E., & Christofk, H. R. (2016). Glycolytic metabolism plays a functional role in regulating human pluripotent stem cell state. Cell Stem Cell, 19(4), 476–490. https://doi.org/10.1016/j.stem.2016.08.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim, H., Jang, H., Kim, T. W., Kang, B. H., Lee, S. E., Jeon, Y. K., Chung, D. H., Choi, J., Shin, J., Cho, E. J., & Youn, H. D. (2015). Core pluripotency factors directly regulate metabolism in embryonic stem cell to maintain Pluripotency. Stem Cells, 33(9), 2699–2711. https://doi.org/10.1002/stem.2073.

    Article  CAS  PubMed  Google Scholar 

  48. Park, S. J., Lee, S. A., Prasain, N., Bae, D., Kang, H., Ha, T., Kim, J. S., Hong, K. S., Mantel, C., Moon, S. H., Broxmeyer, H. E., & Lee, M. R. (2017). Metabolome profiling of partial and fully reprogrammed induced pluripotent stem cells. Stem Cells and Development, 26(10), 734–742. https://doi.org/10.1089/scd.2016.0320.

    Article  CAS  PubMed  Google Scholar 

  49. Lutz, W., Sanderson, W., & Scherbov, S. (2008). The coming acceleration of global population ageing. Nature, 451(7179), 716–719. https://doi.org/10.1038/nature06516.

    Article  CAS  PubMed  Google Scholar 

  50. Banito, A., Rashid, S. T., Acosta, J. C., Li, S., Pereira, C. F., Geti, I., Pinho, S., Silva, J. C., Azuara, V., Walsh, M., Vallier, L., & Gil, J. (2009). Senescence impairs successful reprogramming to pluripotent stem cells. Genes & Development, 23(18), 2134–2139. https://doi.org/10.1101/gad.1811609.

    Article  CAS  Google Scholar 

  51. Lapasset, L., Milhavet, O., Prieur, A., Besnard, E., Babled, A., Ait-Hamou, N., Leschik, J., Pellestor, F., Ramirez, J. M., De Vos, J., Lehmann, S., & Lemaitre, J. M. (2011). Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes & Development, 25(21), 2248–2253. https://doi.org/10.1101/gad.173922.111.

    Article  CAS  Google Scholar 

  52. Viswanathan, S. R., Powers, J. T., Einhorn, W., Hoshida, Y., Ng, T. L., Toffanin, S., O'Sullivan, M., Lu, J., Phillips, L. A., Lockhart, V. L., Shah, S. P., Tanwar, P. S., Mermel, C. H., Beroukhim, R., Azam, M., Teixeira, J., Meyerson, M., Hughes, T. P., Llovet, J. M., Radich, J., Mullighan, C. G., Golub, T. R., Sorensen, P. H., & Daley, G. Q. (2009). Lin28 promotes transformation and is associated with advanced human malignancies. Nature Genetics, 41(7), 843–848. https://doi.org/10.1038/ng.392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Park, Y. S., Nemeno, J. G., Choi, N. Y., Lee, J. I., Ko, K., Choi, S. C., Kim, W. S., Han, D. W., Tapia, N., & Ko, K. (2016). Ectopic overexpression of Nanog induces tumorigenesis in non-tumorous fibroblasts. Biological Chemistry, 397(3), 249–255. https://doi.org/10.1515/hsz-2015-0255.

    Article  CAS  PubMed  Google Scholar 

  54. Vosough, M., Ravaioli, F., Zabulica, M., Capri, M., Garagnani, P., Franceschi, C., Piccand, J., Kraus, M. R., Kannisto, K., Gramignoli, R., & Strom, S. C. (2019). Applying hydrodynamic pressure to efficiently generate induced pluripotent stem cells via reprogramming of centenarian skin fibroblasts. PLoS One, 14(4), e0215490. https://doi.org/10.1371/journal.pone.0215490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lo Sardo, V., Ferguson, W., Erikson, G. A., Topol, E. J., Baldwin, K. K., & Torkamani, A. (2017). Influence of donor age on induced pluripotent stem cells. Nature Biotechnology, 35(1), 69–74. https://doi.org/10.1038/nbt.3749.

    Article  CAS  PubMed  Google Scholar 

  56. Spitzhorn, L. S., Megges, M., Wruck, W., Rahman, M. S., Otte, J., Degistirici, O., Meisel, R., Sorg, R. V., Oreffo, R. O. C., & Adjaye, J. (2019). Human iPSC-derived MSCs (iMSCs) from aged individuals acquire a rejuvenation signature. Stem Cell Research & Therapy, 10(1), 100. https://doi.org/10.1186/s13287-019-1209-x.

    Article  CAS  Google Scholar 

  57. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194–1217. https://doi.org/10.1016/j.cell.2013.05.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hernandez-Segura, A., Nehme, J., & Demaria, M. (2018). Hallmarks of cellular senescence. Trends in Cell Biology, 28(6), 436–453. https://doi.org/10.1016/j.tcb.2018.02.001.

    Article  CAS  PubMed  Google Scholar 

  59. Rivera, T., Haggblom, C., Cosconati, S., & Karlseder, J. (2017). A balance between elongation and trimming regulates telomere stability in stem cells. Nature Structural & Molecular Biology, 24(1), 30–39. https://doi.org/10.1038/nsmb.3335.

    Article  CAS  Google Scholar 

  60. Fu, H., Tian, C. L., Ye, X., Sheng, X., Wang, H., Liu, Y., & Liu, L. (2018). Dynamics of telomere rejuvenation during chemical induction to pluripotent stem cells. Stem Cell Reports, 11(1), 70–87. https://doi.org/10.1016/j.stemcr.2018.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang, H., Zhang, K., Liu, Y., Fu, Y., Gao, S., Gong, P., Wang, H., Zhou, Z., Zeng, M., Wu, Z., Sun, Y., Chen, T., Li, S., & Liu, L. (2017). Telomere heterogeneity linked to metabolism and pluripotency state revealed by simultaneous analysis of telomere length and RNA-seq in the same human embryonic stem cell. BMC Biology, 15(1), 114. https://doi.org/10.1186/s12915-017-0453-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Narbonne, P. (2018). The effect of age on stem cell function and utility for therapy. Cell Medicine, 10, 215517901877375. https://doi.org/10.1177/2155179018773756.

    Article  Google Scholar 

  63. Feng, Q., Lu, S. J., Klimanskaya, I., Gomes, I., Kim, D., Chung, Y., Honig, G. R., Kim, K. S., & Lanza, R. (2010). Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence. Stem Cells, 28(4), 704–712. https://doi.org/10.1002/stem.321.

    Article  PubMed  Google Scholar 

  64. Gokoh, M., Nishio, M., Nakamura, N., Matsuyama, S., Nakahara, M., Suzuki, S., Mitsumoto, M., Akutsu, H., Umezawa, A., Yasuda, K., Yuo, A., & Saeki, K. (2011). Early senescence is not an inevitable fate of human-induced pluripotent stem-derived cells. Cellular Reprogramming, 13(4), 361–370. https://doi.org/10.1089/cell.2011.0004.

    Article  CAS  PubMed  Google Scholar 

  65. Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome Biology, 14(10), R115. https://doi.org/10.1186/gb-2013-14-10-r115.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Olova, N., Simpson, D. J., Marioni, R. E., & Chandra, T. (2019). Partial reprogramming induces a steady decline in epigenetic age before loss of somatic identity. Aging Cell, 18(1), e12877. https://doi.org/10.1111/acel.12877.

    Article  CAS  PubMed  Google Scholar 

  67. Mandai, M., Watanabe, A., Kurimoto, Y., Hirami, Y., Morinaga, C., Daimon, T., Fujihara, M., Akimaru, H., Sakai, N., Shibata, Y., Terada, M., Nomiya, Y., Tanishima, S., Nakamura, M., Kamao, H., Sugita, S., Onishi, A., Ito, T., Fujita, K., Kawamata, S., Go, M. J., Shinohara, C., Hata, K. I., Sawada, M., Yamamoto, M., Ohta, S., Ohara, Y., Yoshida, K., Kuwahara, J., Kitano, Y., Amano, N., Umekage, M., Kitaoka, F., Tanaka, A., Okada, C., Takasu, N., Ogawa, S., Yamanaka, S., & Takahashi, M. (2017). Autologous induced stem-cell-derived retinal cells for macular degeneration. The New England Journal of Medicine, 376(11), 1038–1046. https://doi.org/10.1056/NEJMoa1608368.

    Article  CAS  PubMed  Google Scholar 

  68. Skamagki, M., Correia, C., Yeung, P., Baslan, T., Beck, S., Zhang, C., Ross, C. A., Dang, L., Liu, Z., Giunta, S., Chang, T. P., Wang, J., Ananthanarayanan, A., Bohndorf, M., Bosbach, B., Adjaye, J., Funabiki, H., Kim, J., Lowe, S., Collins, J. J., Lu, C. W., Li, H., Zhao, R., & Kim, K. (2017). ZSCAN10 expression corrects the genomic instability of iPSCs from aged donors. Nature Cell Biology, 19(9), 1037–1048. https://doi.org/10.1038/ncb3598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Miyagi-Shiohira, C., Nakashima, Y., Kobayashi, N., Saitoh, I., Watanabe, M., Noguchi, Y., Kinjo, T., & Noguchi, H. (2018). The development of cancer through the transient overexpression of reprogramming factors. Cell Medicine, 10, 215517901773317. https://doi.org/10.1177/2155179017733172.

    Article  Google Scholar 

  70. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study is funded by the UKM research university grant (GUP-2017-037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nor Azian Abdul Murad.

Ethics declarations

Conflict of Interest

The authors have no financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoo, T., Jamal, R., Abdul Ghani, N.A. et al. Retention of Somatic Memory Associated with Cell Identity, Age and Metabolism in Induced Pluripotent Stem (iPS) Cells Reprogramming. Stem Cell Rev and Rep 16, 251–261 (2020). https://doi.org/10.1007/s12015-020-09956-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-020-09956-x

Keywords

Navigation