Skip to main content

Advertisement

Log in

Advancements in Cancer Stem Cell Isolation and Characterization

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Occurrence of stem cells (CSCs) in cancer is well established in last two decades. These rare cells share several properties including presence of common surface markers, stem cell markers, chemo- and radio- resistance and are highly metastatic in nature; thus, considered as valuable prognostic and therapeutic targets in cancer. However, the studies related to CSCs pave number of issues due to rare cell population and difficulties in their isolation ascribed to common stem cell marker. Various techniques including flow cytometry, laser micro-dissection, fluorescent nanodiamonds and microfluidics are used for the isolation of these rare cells. In this review, we have included the advance strategies adopted for the isolation of CSCs using above mentioned techniques. Furthermore, CSCs are primarily found in the core of the solid tumors and their microenvironment plays an important role in maintenance, self-renewal, division and tumor development. Therefore, in vivo tracking and model development become obligatory for functional studies of CSCs. Fluorescence and bioluminescence tagging has been widely used for transplantation assay and lineage tracking experiments to improve our understanding towards CSCs behaviour in their niche. Techniques such as Magnetic resonance imaging (MRI) and Positron emission tomography (PET) have proved useful for tracking of endogenous CSCs which could be helpful in their identification in clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144, 646–674.

    CAS  PubMed  Google Scholar 

  2. Dalerba, P., Cho, R. W., & Clarke, M. F. (2007). Cancer stem cells: models and concepts. Annual Review of Medicine, 58, 267–284.

    CAS  PubMed  Google Scholar 

  3. Kreso, A., & Dick, J. E. (2014). Evolution of the cancer stem cell model. Cell Stem Cell, 14, 275–291.

    CAS  PubMed  Google Scholar 

  4. Peitzsch C, Tyutyunnykova A, Pantel K, Dubrovska A. Cancer stem cells: the root of tumor recurrence and metastases. Seminars in Cancer Biology 2017: Elsevier. p. 10-24.

  5. Keysar, S. B., & Jimeno, A. (2010). More than markers: biological significance of cancer stem cell-defining molecules. Molecular Cancer Therapeutics, 9, 2450–2457.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Nagare, P. R., Sneha, S., Krishna Priya, S., & Ganesan, S. T. (2017). Cancer stem cells–are surface markers alone sufficient? Current Stem Cell Research & Therapy, 12, 37–44.

    CAS  Google Scholar 

  7. Yan, Y., Li, Z., Jia, Z., et al. (2016). KLF4-mediated suppression of CD44 signaling negatively impacts pancreatic cancer stemness and metastasis. Cancer Research, 76, 2419–2431.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Yan, Y., Zuo, X., & Wei, D. (2015). Concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem Cells Translational Medicine, 4, 1033–1043.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Pattabiraman, D. R., & Weinberg, R. A. (2014). Tackling the cancer stem cells—what challenges do they pose? Nature Reviews. Drug Discovery, 13, 497.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ricardo, S., Vieira, A. F., Gerhard, R., et al. (2011). Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. Journal of Clinical Pathology, 64, 937–946.

    PubMed  Google Scholar 

  11. Yilmazer, A. (2018). Cancer cell lines involving cancer stem cell populations respond to oxidative stress. Biotechnology Reports (Amsterdam, Netherlands), 17, 24–30.

    Google Scholar 

  12. Horst, D., Kriegl, L., Engel, J., Kirchner, T., & Jung, A. (2009). Prognostic significance of the cancer stem cell markers CD133, CD44, and CD166 in colorectal cancer. Cancer Investigation, 27, 844–850.

    PubMed  Google Scholar 

  13. Patriarca, C., Macchi, R. M., Marschner, A. K., & Mellstedt, H. (2012). Epithelial cell adhesion molecule expression (CD326) in cancer: a short review. Cancer Treatment Reviews, 38, 68–75.

    CAS  PubMed  Google Scholar 

  14. Amini, S., Fathi, F., Mobalegi, J., Sofimajidpour, H., & Ghadimi, T. (2014). The expressions of stem cell markers: Oct4, Nanog, Sox2, nucleostemin, Bmi, Zfx, Tcl1, Tbx3, Dppa4, and Esrrb in bladder, colon, and prostate cancer, and certain cancer cell lines. Anatomy & cell biology, 47, 1–11.

    Google Scholar 

  15. Dalerba, P., Dylla, S. J., Park, I.-K., et al. (2007). Phenotypic characterization of human colorectal cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104, 10158–10163.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu, X.-S., Xi, H.-Q., & Chen, L. (2012). Lgr5 is a potential marker of colorectal carcinoma stem cells that correlates with patient survival. World Journal of Surgical Oncology, 10, 244.

    PubMed  PubMed Central  Google Scholar 

  17. Pang, R., Law, W. L., Chu, A. C., et al. (2010). A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell, 6, 603–615.

    CAS  PubMed  Google Scholar 

  18. Katoh, S., Goi, T., Naruse, T., et al. (2015). Cancer stem cell marker in circulating tumor cells: expression of CD44 variant exon 9 is strongly correlated to treatment refractoriness, recurrence and prognosis of human colorectal cancer. Anticancer Research, 35, 239–244.

    CAS  PubMed  Google Scholar 

  19. Michl, M., Heinemann, V., Jung, A., Engel, J., Kirchner, T., & Neumann, J. (2015). Expression of cancer stem cell markers in metastatic colorectal cancer correlates with liver metastasis, but not with metastasis to the central nervous system. Pathology, Research and Practice, 211, 601–609.

    CAS  PubMed  Google Scholar 

  20. Holah, N. S., Aiad, H. A.-E.-S., Asaad, N. Y., Elkhouly, E. A., & Lasheen, A. G. (2017). Evaluation of the Role of ALDH1 as Cancer Stem Cell Marker in Colorectal Carcinoma: An Immunohistochemical Study. Journal of Clinical and Diagnostic Research, 11, EC17.

    PubMed  PubMed Central  Google Scholar 

  21. Chen, J., Zhou, J., Lu, J., Xiong, H., Shi, X., & Gong, L. (2014). Significance of CD44 expression in head and neck cancer: a systemic review and meta-analysis. BMC Cancer, 14, 15.

    PubMed  PubMed Central  Google Scholar 

  22. Faber, A., Barth, C., Hörmann, K., et al. (2011). CD44 as a stem cell marker in head and neck squamous cell carcinoma. Oncology Reports, 26, 321–326.

    PubMed  Google Scholar 

  23. Koukourakis, M., Giatromanolaki, A., Tsakmaki, V., Danielidis, V., & Sivridis, E. (2012). Cancer stem cell phenotype relates to radio-chemotherapy outcome in locally advanced squamous cell head–neck cancer. British Journal of Cancer, 106, 846–853.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Schröck, A., Bode, M., Göke, F. J. M., et al. (2014). Expression and role of the embryonic protein SOX2 in head and neck squamous cell carcinoma. Carcinogenesis, 35, 1636–1642.

    PubMed  Google Scholar 

  25. Mannelli, G., Magnelli, L., Deganello, A., et al. (2015). Detection of putative stem cell markers, CD44/CD133, in primary and lymph node metastases in head and neck squamous cell carcinomas. A preliminary immunohistochemical and in vitro study. Clin. Otolaryngol., 40, 312–320.

    CAS  Google Scholar 

  26. Murillo-Sauca, O., Chung, M. K., Shin, J. H., et al. (2014). CD271 is a functional and targetable marker of tumor-initiating cells in head and neck squamous cell carcinoma. Oncotarget, 5, 6854.

    PubMed  PubMed Central  Google Scholar 

  27. Qian, X., Wagner, S., Ma, C., et al. (2014). Prognostic significance of ALDH1A1-positive cancer stem cells in patients with locally advanced, metastasized head and neck squamous cell carcinoma. Journal of Cancer Research and Clinical Oncology, 140, 1151–1158.

    CAS  PubMed  Google Scholar 

  28. Koo, B., Lee, S., Kim, J., et al. (2015). Oct4 is a critical regulator of stemness in head and neck squamous carcinoma cells. Oncogene, 34, 2317–2324.

    CAS  PubMed  Google Scholar 

  29. Leinung, M., Ernst, B., Döring, C., et al. (2015). Expression of ALDH1A1 and CD44 in primary head and neck squamous cell carcinoma and their value for carcinogenesis, tumor progression and cancer stem cell identification. Oncology Letters, 10, 2289–2294.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yanamoto, S., Yamada, S.-I., Takahashi, H., et al. (2014). Expression of the cancer stem cell markers CD44v6 and ABCG2 in tongue cancer: effect of neoadjuvant chemotherapy on local recurrence. International Journal of Oncology, 44, 1153–1162.

    CAS  PubMed  Google Scholar 

  31. Liu, W., Wu, L., Shen, X. M., et al. (2013). Expression patterns of cancer stem cell markers ALDH1 and CD133 correlate with a high risk of malignant transformation of oral leukoplakia. International Journal of Cancer, 132, 868–874.

    CAS  PubMed  Google Scholar 

  32. de Moraes, F. P. P., Lourenço, S. V., Ianez, R. C. F., et al. (2017). Expression of stem cell markers in oral cavity and oropharynx squamous cell carcinoma. Oral Surgery, Oral Medicine, and Oral Pathology, 123, 113–122.

    Google Scholar 

  33. Salnikov, A. V., Gladkich, J., Moldenhauer, G., Volm, M., Mattern, J., & Herr, I. (2010). CD133 is indicative for a resistance phenotype but does not represent a prognostic marker for survival of non-small cell lung cancer patients. International Journal of Cancer, 126, 950–958.

    CAS  PubMed  Google Scholar 

  34. Li, F., Zeng, H., & Ying, K. (2011). The combination of stem cell markers CD133 and ABCG2 predicts relapse in stage I non-small cell lung carcinomas. Medical Oncology, 28, 1458–1462.

    CAS  PubMed  Google Scholar 

  35. Woo, T., Okudela, K., Mitsui, H., & Yazawa, T. (2011). Prognostic value of CD133 expression in stage I lung adenocarcinomas. International Journal of Clinical and Experimental Pathology, 4, 32.

    Google Scholar 

  36. Li, X., Wan, L., Geng, J., Wu, C.-L., & Bai, X. (2012). Aldehyde dehydrogenase 1A1 possesses stem-like properties and predicts lung cancer patient outcome. Journal of Thoracic Oncology, 7, 1235–1245.

    PubMed  Google Scholar 

  37. Pirozzi, G., Tirino, V., Camerlingo, R., et al. (2013). Prognostic value of cancer stem cells, epithelial-mesenchymal transition and circulating tumor cells in lung cancer. Oncology Reports, 29, 1763–1768.

    CAS  PubMed  Google Scholar 

  38. Herpel, E., Jensen, K., Muley, T., et al. (2011). The cancer stem cell antigens CD133, BCRP1/ABCG2 and CD117/c-KIT are not associated with prognosis in resected early-stage non-small cell lung cancer. Anticancer Research, 31, 4491–4500.

    PubMed  Google Scholar 

  39. Shien, K., Toyooka, S., Ichimura, K., et al. (2012). Prognostic impact of cancer stem cell-related markers in non-small cell lung cancer patients treated with induction chemoradiotherapy. Lung Cancer, 77, 162–167.

    PubMed  Google Scholar 

  40. Roudi, R., Korourian, A., Shariftabrizi, A., & Madjd, Z. (2015). Differential expression of cancer stem cell markers ALDH1 and CD133 in various lung cancer subtypes. Cancer Investigation, 33, 294–302.

    PubMed  Google Scholar 

  41. Zhou, L., Yu, L., Zhu, B., et al. (2016). Metastasis-associated in colon cancer-1 and aldehyde dehydrogenase 1 are metastatic and prognostic biomarker for non-small cell lung cancer. BMC Cancer, 16, 876.

    PubMed  PubMed Central  Google Scholar 

  42. Pore, M., Meijer, C., de Bock, G. H., et al. (2016). Cancer stem cells, epithelial to mesenchymal markers, and circulating tumor cells in small cell lung cancer. Clinical Lung Cancer, 17, 535–542.

    PubMed  Google Scholar 

  43. Li, T., Su, Y., Mei, Y., et al. (2010). ALDH1A1 is a marker for malignant prostate stem cells and predictor of prostate cancer patients’ outcome. Laboratory Investigation, 90, 234–244.

    CAS  PubMed  Google Scholar 

  44. Matsika, A., Srinivasan, B., Day, C., et al. (2015). Cancer stem cell markers in prostate cancer: an immunohistochemical study of ALDH1, SOX2 and EZH2. Pathology, 47, 622–628.

    CAS  PubMed  Google Scholar 

  45. Kalantari, E., Asgari, M., Nikpanah, S., Salarieh, N., Lari, M. H. A., & Madjd, Z. (2017). Co-Expression of Putative Cancer Stem Cell Markers CD44 and CD133 in Prostate Carcinomas. Pathology Oncology Research, 1–10.

  46. Kalantari, E., Saadi, F. H., Asgari, M., Shariftabrizi, A., Roudi, R., & Madjd, Z. (2017). Increased expression of ALDH1A1 in prostate cancer is correlated with tumor aggressiveness: a tissue microarray study of Iranian patients. Applied Immunohistochemistry & Molecular Morphology, 25, 592–598.

    CAS  Google Scholar 

  47. Wang, Y., Zhe, H., Ding, Z., Gao, P., Zhang, N., & Li, G. (2012). Cancer stem cell marker Bmi-1 expression is associated with basal-like phenotype and poor survival in breast cancer. World Journal of Surgery, 36, 1189–1194.

    PubMed  Google Scholar 

  48. Leis, O., Eguiara, A., Lopez-Arribillaga, E., et al. (2012). Sox2 expression in breast tumours and activation in breast cancer stem cells. Oncogene, 31, 1354–1365.

    CAS  PubMed  Google Scholar 

  49. Liu, T., Sun, B., Zhao, X., et al. (2013). CD133+ cells with cancer stem cell characteristics associates with vasculogenic mimicry in triple-negative breast cancer. Oncogene, 32, 544–553.

    CAS  PubMed  Google Scholar 

  50. Kang, E., Jung, H., Woo, O., et al. (2014). Association of aldehyde dehydrogenase 1 expression and biologically aggressive features in breast cancer. Neoplasma, 61, 352–362.

    CAS  PubMed  Google Scholar 

  51. Wang, D., Lu, P., Zhang, H., et al. (2014). Oct-4 and Nanog promote the epithelial-mesenchymal transition of breast cancer stem cells and are associated with poor prognosis in breast cancer patients. Oncotarget, 5, 10803.

    PubMed  PubMed Central  Google Scholar 

  52. Handa, T., Katayama, A., Yokobori, T., et al. (2017). Caspase14 expression is associated with triple negative phenotypes and cancer stem cell marker expression in breast cancer patients. Journal of Surgical Oncology, 116, 706–715.

    CAS  PubMed  Google Scholar 

  53. Ji, J., Wei, X., & Wang, Y. (2014). Embryonic stem cell markers Sox-2 and OCT4 expression and their correlation with WNT signal pathway in cervical squamous cell carcinoma. International Journal of Clinical and Experimental Pathology, 7, 2470.

    PubMed  PubMed Central  Google Scholar 

  54. Yao, T., Chen, Q., Zhang, B., Zhou, H., & Lin, Z. (2011). The expression of ALDH1 in cervical carcinoma. Medical Science Monitor, 17, HY21.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hou, T., Zhang, W., Tong, C., et al. (2015). Putative stem cell markers in cervical squamous cell carcinoma are correlated with poor clinical outcome. BMC Cancer, 15, 785.

    PubMed  PubMed Central  Google Scholar 

  56. Shen, L., Huang, X., Xie, X., Su, J., Yuan, J., & Chen, X. (2014). High expression of SOX2 and OCT4 indicates radiation resistance and an independent negative prognosis in cervical squamous cell carcinoma. The Journal of Histochemistry and Cytochemistry, 62, 499–509.

    PubMed  PubMed Central  Google Scholar 

  57. Yang, Z., Pan, X., Gao, A., & Zhu, W. (2014). Expression of Sox2 in cervical squamous cell carcinoma. Journal of BUON, 19, 203–206.

    PubMed  Google Scholar 

  58. Gu, T.-T., Liu, S.-Y., & Zheng, P.-S. (2012). Cytoplasmic NANOG-positive stromal cells promote human cervical cancer progression. The American Journal of Pathology, 181, 652–661.

    CAS  PubMed  Google Scholar 

  59. Jan, M., Chao, M. P., Cha, A. C., et al. (2011). Prospective separation of normal and leukemic stem cells based on differential expression of TIM3, a human acute myeloid leukemia stem cell marker. Proceedings of the National Academy of Sciences of the United States of America, 108, 5009–5014.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Williams, S. C. (2013). Circulating tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 110, 4861.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Theodoropoulou, S., Copland, D. A., Liu, J., et al. (2017). Interleukin-33 regulates tissue remodelling and inhibits angiogenesis in the eye. The Journal of Pathology, 241, 45–56.

    CAS  PubMed  Google Scholar 

  62. Gazzaniga, P., Gradilone, A., Petracca, A., et al. (2010). Molecular markers in circulating tumour cells from metastatic colorectal cancer patients. Journal of Cellular and Molecular Medicine, 14, 2073–2077.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Gradilone, A., Naso, G., Raimondi, C., et al. (2010). Circulating tumor cells (CTCs) in metastatic breast cancer (MBC): prognosis, drug resistance and phenotypic characterization. Annals of Oncology, 22, 86–92.

    PubMed  Google Scholar 

  64. Armstrong, A. J., Marengo, M. S., Oltean, S., et al. (2011). Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Molecular Cancer Research, 9, 997–1007.

    CAS  PubMed  Google Scholar 

  65. Toloudi, M., Apostolou, P., Chatziioannou, M., & Papasotiriou, I. (2011). Correlation between cancer stem cells and circulating tumor cells and their value. Case Rep Oncol, 4, 44–54.

    PubMed  PubMed Central  Google Scholar 

  66. Fusi, A., Reichelt, U., Busse, A., et al. (2011). Expression of the stem cell markers nestin and CD133 on circulating melanoma cells. The Journal of Investigative Dermatology, 131, 487–494.

    CAS  PubMed  Google Scholar 

  67. Kasimir-Bauer, S., Hoffmann, O., Wallwiener, D., Kimmig, R., & Fehm, T. (2012). Expression of stem cell and epithelial-mesenchymal transition markers in primary breast cancer patients with circulating tumor cells. Breast Cancer Research, 14, R15.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Giordano, A., Gao, H., Anfossi, S., et al. (2012). Epithelial–mesenchymal transition and stem cell markers in patients with HER2-positive metastatic breast cancer. Molecular Cancer Therapeutics, 11, 2526–2534.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Barrière, G., Riouallon, A., Renaudie, J., Tartary, M., & Rigaud, M. (2012). Mesenchymal and stemness circulating tumor cells in early breast cancer diagnosis. BMC Cancer, 12, 114.

    PubMed  PubMed Central  Google Scholar 

  70. Nadal, R., Ortega, F. G., Salido, M., et al. (2013). CD133 expression in circulating tumor cells from breast cancer patients: potential role in resistance to chemotherapy. International Journal of Cancer, 133, 2398–2407.

    CAS  PubMed  Google Scholar 

  71. Papadaki, M. A., Kallergi, G., Zafeiriou, Z., et al. (2014). Co-expression of putative stemness and epithelial-to-mesenchymal transition markers on single circulating tumour cells from patients with early and metastatic breast cancer. BMC Cancer, 14, 651.

    PubMed  PubMed Central  Google Scholar 

  72. Alonso-Alconada, L., Muinelo-Romay, L., Madissoo, K., et al. (2014). Molecular profiling of circulating tumor cells links plasticity to the metastatic process in endometrial cancer. Molecular Cancer, 13, 223.

    PubMed  PubMed Central  Google Scholar 

  73. Pal, S. K., He, M., Wilson, T., et al. (2015). Detection and phenotyping of circulating tumor cells in high-risk localized prostate cancer. Clinical Genitourinary Cancer, 13, 130–136.

    CAS  PubMed  Google Scholar 

  74. Tseng, J.-Y., Yang, C.-Y., Yang, S.-H., Lin, J.-K., Lin, C.-H., & Jiang, J.-K. (2015). Circulating CD133+/ESA+ cells in colorectal cancer patients. The Journal of Surgical Research, 199, 362–370.

    PubMed  Google Scholar 

  75. Gazzaniga, P., Raimondi, C., Nicolazzo, C., Gradilone, A., & Cortesi, E. (2015). 2194 Isolation of circulating tumor cells with stem-like features in metastatic colorectal cancer. European Journal of Cancer, 51, S398.

    Google Scholar 

  76. Patel, S., Shah, K., Mirza, S., Shah, K., & Rawal, R. (2016). Circulating tumor stem like cells in oral squamous cell carcinoma: An unresolved paradox. Oral Oncology, 62, 139–146.

    CAS  PubMed  Google Scholar 

  77. Blassl, C., Kuhlmann, J. D., Webers, A., Wimberger, P., Fehm, T., & Neubauer, H. (2016). Gene expression profiling of single circulating tumor cells in ovarian cancer–Establishment of a multi-marker gene panel. Molecular Oncology, 10, 1030–1042.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Watanabe, T., Okumura, T., Hirano, K., et al. (2017). Circulating tumor cells expressing cancer stem cell marker CD44 as a diagnostic biomarker in patients with gastric cancer. Oncology Letters, 13, 281–288.

    CAS  PubMed  Google Scholar 

  79. Apostolou, P., Papadimitriou, M., & Papasotiriou, I. (2017). Stemness Gene Profiles of Circulating Tumor Cells. Journal of Cancer Therapy, 8, 155–167.

    CAS  Google Scholar 

  80. Krawczyk, N., Meier-Stiegen, F., Banys, M., Neubauer, H., Ruckhaeberle, E., & Fehm, T. (2014). Expression of stem cell and epithelial-mesenchymal transition markers in circulating tumor cells of breast cancer patients. BioMed Research International, 2014.

  81. Ming, Y., Li, Y., Xing, H., et al. (2017). Circulating tumor cells: from theory to nanotechnology-based detection. Frontiers in Pharmacology, 8, 35.

    PubMed  PubMed Central  Google Scholar 

  82. Gorges, T. M., Tinhofer, I., Drosch, M., et al. (2012). Circulating tumour cells escape from EpCAM-based detection due to epithelial-to-mesenchymal transition. BMC Cancer, 12, 178.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Hyun, K.-A., Koo, G.-B., Han, H., et al. (2016). Epithelial-to-mesenchymal transition leads to loss of EpCAM and different physical properties in circulating tumor cells from metastatic breast cancer. Oncotarget, 7, 24677.

    PubMed  PubMed Central  Google Scholar 

  84. Soysal, S. D., Muenst, S., Barbie, T., et al. (2013). EpCAM expression varies significantly and is differentially associated with prognosis in the luminal B HER2+, basal-like, and HER2 intrinsic subtypes of breast cancer. British Journal of Cancer, 108, 1480.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ogle, L. F., Orr, J. G., Willoughby, C. E., et al. (2016). Imagestream detection and characterisation of circulating tumour cells–A liquid biopsy for hepatocellular carcinoma? Journal of Hepatology, 65, 305–313.

    CAS  PubMed  Google Scholar 

  86. Bhagwat, N., Dulmage, K., Pletcher, C. H., et al. (2018). An integrated flow cytometry-based platform for isolation and molecular characterization of circulating tumor single cells and clusters. Scientific Reports, 8, 5035.

    PubMed  PubMed Central  Google Scholar 

  87. Vishnoi, M., Peddibhotla, S., Yin, W., et al. (2015). The isolation and characterization of CTC subsets related to breast cancer dormancy. Scientific Reports, 5, 17533.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Greve, B., Kelsch, R., Spaniol, K., Eich, H. T., & Götte, M. (2012). Flow cytometry in cancer stem cell analysis and separation. Cytometry Part A, 81, 284–293.

    Google Scholar 

  89. Charafe-Jauffret, E., Ginestier, C., & Birnbaum, D. (2009). Breast cancer stem cells: tools and models to rely on. BMC Cancer, 9, 202.

    PubMed  PubMed Central  Google Scholar 

  90. Almanaa, T. N., Geusz, M. E., & Jamasbi, R. J. (2013). A new method for identifying stem-like cells in esophageal cancer cell lines. Journal of Cancer, 4, 536.

    PubMed  PubMed Central  Google Scholar 

  91. Nakamura, N., Ruebel, K., Jin, L., Qian, X., Zhang, H., & Lloyd, R. V. (2007). Laser capture microdissection for analysis of single cells. Single Cell Diagnostics: Methods and Protocols, 11–18.

  92. Wilson, G. D., Thibodeau, B. J., Fortier, L. E., et al. (2016). Cancer stem cell signaling during repopulation in head and neck cancer. Stem Cells International, 2016.

  93. Lin, H. H., Lee, H. W., Lin, R. J., et al. (2015). Tracking and Finding Slow-Proliferating/Quiescent Cancer Stem Cells with Fluorescent Nanodiamonds. Small, 11, 4394–4402.

    CAS  PubMed  Google Scholar 

  94. Wu, T.-J., Tzeng, Y.-K., Chang, W.-W., et al. (2013). Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds. Nature Nanotechnology, 8, 682.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Xing, Y., Xiong, W., Zhu, L., Osawa, E., Hussin, S., & Dai, L. (2011). DNA damage in embryonic stem cells caused by nanodiamonds. ACS Nano, 5, 2376–2384.

    CAS  PubMed  Google Scholar 

  96. Richichi C, Brescia P, Alberizzi V, Fornasari L, Pelicci G. Marker-independent method for isolating slow-dividing cancer stem cells in human glioblastoma. Neoplasia 2013;15:840IN36-7IN39.

  97. Lassailly F, Griessinger E, Bonnet D. "Microenvironmental contaminations" induced by fluorescent lipophilic dyes used for non-invasive in vitro and in vivo cell tracking. Blood 2010:blood-2009-05-224030.

  98. Azari, H., Deleyrolle, L. P., & Reynolds, B. A. (2018). Using Carboxy Fluorescein Succinimidyl Ester (CFSE) to Identify Quiescent Glioblastoma Stem-Like Cells (pp. 59–67). Cellular Quiescence: Springer.

    Google Scholar 

  99. Parish, C. R. (1999). Fluorescent dyes for lymphocyte migration and proliferation studies. Immunology and Cell Biology, 77, 499–508.

    CAS  PubMed  Google Scholar 

  100. Kemsheadl, J., & Ugelstad, J. (1985). Magnetic separation techniques: their application to medicine. Molecular and Cellular Biochemistry, 67, 11–18.

    Google Scholar 

  101. Leong, S. S., Yeap, S. P., & Lim, J. (2016). Working principle and application of magnetic separation for biomedical diagnostic at high-and low-field gradients. Interface Focus, 6, 20160048.

    PubMed  PubMed Central  Google Scholar 

  102. Plouffe, B. D., Murthy, S. K., & Lewis, L. H. (2014). Fundamentals and application of magnetic particles in cell isolation and enrichment: a review. Reports on Progress in Physics, 78, 016601.

    PubMed  Google Scholar 

  103. Huang, L. R., Cox, E. C., Austin, R. H., & Sturm, J. C. (2004). Continuous particle separation through deterministic lateral displacement. Science, 304, 987–990.

    CAS  PubMed  Google Scholar 

  104. Hou, H. W., Warkiani, M. E., Khoo, B. L., et al. (2013). Isolation and retrieval of circulating tumor cells using centrifugal forces. Scientific Reports, 3.

  105. Iglesias, J. M., Leis, O., Pérez Ruiz, E., et al. (2014). The activation of the Sox2 RR2 pluripotency transcriptional reporter in human breast cancer cell lines is dynamic and labels cells with higher tumorigenic potential. Frontiers in Oncology, 4, 308.

    PubMed  PubMed Central  Google Scholar 

  106. Ling, G.-Q., Chen, D.-B., Wang, B.-Q., & Zhang, L.-S. (2012). Expression of the pluripotency markers Oct3/4, Nanog and Sox2 in human breast cancer cell lines. Oncology Letters, 4, 1264–1268.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Giesen, C., Wang, H. A., Schapiro, D., et al. (2014). Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nature Methods, 11, 417.

    CAS  PubMed  Google Scholar 

  108. Doan, M., Vorobjev, I., Rees, P., et al. (2018). Diagnostic Potential of Imaging Flow Cytometry. Trends in Biotechnology, 36, 649–652.

    CAS  PubMed  Google Scholar 

  109. Hilton, J. (1984). Role of aldehyde dehydrogenase in cyclophosphamide-resistant L1210 leukemia. Cancer Research, 44, 5156–5160.

    CAS  PubMed  Google Scholar 

  110. Christ, O., Lucke, K., Imren, S., et al. (2007). Improved purification of hematopoietic stem cells based on their elevated aldehyde dehydrogenase activity. Haematologica, 92, 1165–1172.

    CAS  PubMed  Google Scholar 

  111. Yu, C., Yao, Z., Dai, J., et al. (2011). ALDH activity indicates increased tumorigenic cells, but not cancer stem cells, in prostate cancer cell lines. In Vivo, 25, 69–76.

    PubMed  Google Scholar 

  112. Colacino, J. A., Azizi, E., Brooks, M. D., et al. (2018). Heterogeneity of Human Breast Stem and Progenitor Cells as Revealed by Transcriptional Profiling. Stem Cell Reports, 10, 1596–1609.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Kryczek, I., Liu, S., Roh, M., et al. (2012). Expression of aldehyde dehydrogenase and CD133 defines ovarian cancer stem cells. International Journal of Cancer, 130, 29–39.

    CAS  PubMed  Google Scholar 

  114. Moore, N., & Lyle, S. (2011). Quiescent, slow-cycling stem cell populations in cancer: a review of the evidence and discussion of significance. Journal of Oncology, 2011.

  115. Salic, A., & Mitchison, T. J. (2008). A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proceedings of the National Academy of Sciences of the United States of America, 105, 2415–2420.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. De Clercq, E., DESCAMPS, J., G-F, H. U. A. N. G., & TORRENCE, P. F. (1978). 5-Nitro-2'-deoxyuridine and 5-nitro-2'-deoxyuridine 5'-monophosphate: antiviral activity and inhibition of thymidylate synthetase in vivo. Molecular Pharmacology, 14, 422–430.

    PubMed  Google Scholar 

  117. Ligasová, A., Strunin, D., Friedecký, D., Adam, T., & Koberna, K. (2015). A fatal combination: a thymidylate synthase inhibitor with DNA damaging activity. PLoS One, 10, e0117459.

    PubMed  PubMed Central  Google Scholar 

  118. Lyons, A. B. (2000). Analysing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. Journal of Immunological Methods, 243, 147–154.

    CAS  PubMed  Google Scholar 

  119. Aharoni A. Introduction to the Theory of Ferromagnetism: Clarendon Press; 2000.

  120. Schmitz, B., Radbruch, A., Kümmel, T., et al. (1994). Magnetic activated cell sorting (MACS)—a new immunomagnetic method for megakaryocytic cell isolation: comparison of different separation techniques. European Journal of Haematology, 52, 267–275.

    CAS  PubMed  Google Scholar 

  121. Sharifi, S., Behzadi, S., Laurent, S., Forrest, M. L., Stroeve, P., & Mahmoudi, M. (2012). Toxicity of nanomaterials. Chemical Society Reviews, 41, 2323–2343.

    CAS  PubMed  Google Scholar 

  122. Paul, F., Roath, S., Melville, D., Warhurst, D., & Osisanya, J. (1981). Separation of malaria-infected erythrocytes from whole blood: use of a selective high-gradient magnetic separation technique. Lancet, 2, 70–71.

    CAS  PubMed  Google Scholar 

  123. Budd, G. T., Cristofanilli, M., Ellis, M. J., et al. (2006). Circulating tumor cells versus imaging—predicting overall survival in metastatic breast cancer. Clinical Cancer Research, 12, 6403–6409.

    CAS  PubMed  Google Scholar 

  124. Cohen, S. J., Punt, C., Iannotti, N., et al. (2008). Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. Clinical Oncology, 26, 3213–3221.

    Google Scholar 

  125. Schumm, M., Lang, P., Taylor, G., et al. (1999). Isolation of highly purified autologous and allogeneic peripheral CD34+ cells using the CliniMACS device. Journal of Hematotherapy, 8, 209–218.

    CAS  PubMed  Google Scholar 

  126. Zhang, M., & Rosen, J. M. (2015). Developmental Insights into Breast Cancer Intratumoral Heterogeneity. Trends Cancer, 1, 242–251.

    PubMed  PubMed Central  Google Scholar 

  127. Zborowski, M., & Chalmers, J. J. (2011). Rare cell separation and analysis by magnetic sorting. ACS Publications, 83, 8050–8056.

    CAS  Google Scholar 

  128. Chen, Y., Li, P., Huang, P.-H., et al. (2014). Rare cell isolation and analysis in microfluidics. Lab on a Chip, 14, 626–645.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Tu, J., Qiao, Y., Xu, M., et al. (2016). A cell sorting and trapping microfluidic device with an interdigital channel. AIP Advances, 6, 125042.

    Google Scholar 

  130. Sarioglu, A. F., Aceto, N., Kojic, N., et al. (2015). A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nature Methods, 12, 685.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Loutherback, K., D'Silva, J., Liu, L., Wu, A., Austin, R. H., & Sturm, J. C. (2012). Deterministic separation of cancer cells from blood at 10 mL/min. AIP Advances, 2, 042107.

    PubMed Central  Google Scholar 

  132. Di Carlo, D. (2009). Inertial microfluidics. Lab on a Chip, 9, 3038–3046.

    PubMed  Google Scholar 

  133. Tan, S. J., Yobas, L., Lee, G. Y. H., Ong, C. N., & Lim, C. T. (2009). Microdevice for the isolation and enumeration of cancer cells from blood. Biomedical Microdevices, 11, 883–892.

    PubMed  Google Scholar 

  134. Gascoyne, P. R., & Shim, S. (2014). Isolation of circulating tumor cells by dielectrophoresis. Cancers (Basel), 6, 545–579.

    Google Scholar 

  135. Davis, D., Gupta, V., Garza, M., et al. (2011). Abstract B20: EpCAM-independent ApoStream™ technology isolates circulating tumor cells from blood of patients with various types of cancer. AACR. https://doi.org/10.1158/1535-7163.TARG-11-B20.

  136. Varadhachary, G., Abbruzzese, J., Shroff, R., et al. (2013). ApoStream, a new dielectrophoretic device for antibody-independent isolation and recovery of circulating tumor cells from blood of patients with metastatic pancreatic adenocarcinoma. Cancer Research, 73, 1449.

    Google Scholar 

  137. Tran HT, Melnikova VO, Tsao AS, et al. Characterization and identification of specific EGFR mutations in circulating tumor cells (CTCs) isolated from non-small cell lung cancer patients using antibody independent method, ApoStream. Journal of Clinical Oncology 2013; 31: Abstract No. 11044.

  138. Geng, C., Li, C., Li, W., et al. (2018). A simple fabricated microfluidic chip for urine sample-based bladder cancer detection. Journal of Micromechanics and Microengineering, 28, 115011.

    Google Scholar 

  139. Liao, C.-J., Hsieh, C.-H., Chiu, T.-K., et al. (2018). An Optically Induced Dielectrophoresis (ODEP)-Based Microfluidic System for the Isolation of High-Purity CD45neg/EpCAMneg Cells from the Blood Samples of Cancer Patients—Demonstration and Initial Exploration of the Clinical Significance of These Cells. Micromachines (Basel), 9, 563.

    Google Scholar 

  140. Lin, E., Rivera-Báez, L., Fouladdel, S., et al. (2017). High-throughput microfluidic Labyrinth for the label-free isolation of circulating tumor cells. Cell Systems, 5, 295–304.

    CAS  PubMed  Google Scholar 

  141. Varillas, J. I., Zhang, J., Chen, K., et al. (2019). Microfluidic isolation of circulating tumor cells and cancer stem-like cells from patients with pancreatic ductal adenocarcinoma. Theranostics, 9, 1417.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Zhang, Z., Chen, Y.-C., Cheng, Y.-H., Luan, Y., & Yoon, E. (2016). Microfluidics 3D gel-island chip for single cell isolation and lineage-dependent drug responses study. Lab on a Chip, 16, 2504–2512.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Hung, L.-Y., Wang, C.-H., Che, Y.-J., et al. (2015). Screening of aptamers specific to colorectal cancer cells and stemcells by utilizing On-chip Cell-SELEX. Scientific Reports, 5, 10326.

    PubMed  PubMed Central  Google Scholar 

  144. Caen, O., Lu, H., Nizard, P., & Taly, V. (2017). Microfluidics as a strategic player to decipher single-cell omics? Trends in Biotechnology, 35, 713–727.

    CAS  PubMed  Google Scholar 

  145. Cho, H., Kim, J., Song, H., Sohn, K. Y., Jeon, M., & Han, K.-H. (2018). Microfluidic technologies for circulating tumor cell isolation. Analyst, 143, 2936–2937.

    CAS  PubMed  Google Scholar 

  146. Chung, S. H., & Shen, W. (2015). Laser capture microdissection: from its principle to applications in research on neurodegeneration. Neural Regeneration Research, 10, 897.

    PubMed  PubMed Central  Google Scholar 

  147. Bertos, N. R., & Park, M. (2016). Laser capture microdissection as a tool to study tumor stroma (pp. 13–25). The Tumor Microenvironment: Springer.

    Google Scholar 

  148. Yang, R., Liu, X., Thakolwiboon, S., et al. (2016). Protein markers associated with an ALDH sub-population in colorectal cancer. Journal Proteomics Bioinform, 9, 238.

    CAS  Google Scholar 

  149. Podgorny, O. V. (2013). Live cell isolation by laser microdissection with gravity transfer. Journal of Biomedical Optics, 18, 055002.

    Google Scholar 

  150. Nguyen, P. K., Riegler, J., & Wu, J. C. (2014). Stem cell imaging: from bench to bedside. Cell Stem Cell, 14, 431–444.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Nguyen, L. T. T., Song, Y. W., Tran, T. A., Kim, K.-S., & Cho, S. K. (2014). Induction of apoptosis in anoikis-resistant breast cancer stem cells by supercritical CO2 extracts from Citrus hassaku Hort ex Tanaka. Journal of Korean Society for Applied Biological Chemistry, 57, 469–472.

    CAS  Google Scholar 

  152. Liu, H., Patel, M. R., Prescher, J. A., et al. (2010). Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proceedings of the National Academy of Sciences of the United States of America, 107, 18115–18120.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Akbari-Birgani, S., Paranjothy, T., Zuse, A., et al. (2016). Cancer stem cells, cancer-initiating cells and methods for their detection. Drug Discovery Today, 21, 836–842.

    CAS  PubMed  Google Scholar 

  154. Heryanto, Y. D., Achmad, A., Taketomi-Takahashi, A., & Tsushima, Y. (2015). In vivo molecular imaging of cancer stem cells. American Journal of Nuclear Medicine and Molecular Imaging, 5, 14.

    CAS  PubMed  Google Scholar 

  155. Han, H.-S., Niemeyer, E., Huang, Y., et al. (2015). Quantum dot/antibody conjugates for in vivo cytometric imaging in mice. Proceedings of the National Academy of Sciences of the United States of America, 112, 1350–1355.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Yukawa, H., & Baba, Y. (2017). In vivo fluorescence imaging and the diagnosis of stem cells using quantum dots for regenerative medicine. Analytical Chemistry, 89, 2671–2681.

    CAS  PubMed  Google Scholar 

  157. Pericleous, P., Gazouli, M., Lyberopoulou, A., Rizos, S., Nikiteas, N., & Efstathopoulos, E. P. (2012). Quantum dots hold promise for early cancer imaging and detection. International Journal of Cancer, 131, 519–528.

    CAS  PubMed  Google Scholar 

  158. Guo, R., Zhou, S., Li, Y., Li, X., Fan, L., & Voelcker, N. H. (2015). Rhodamine-functionalized graphene quantum dots for detection of Fe3+ in cancer stem cells. ACS Applied Materials & Interfaces, 7, 23958–23966.

    CAS  Google Scholar 

  159. Kebschull, J. M., & Zador, A. M. (2018). Cellular barcoding: lineage tracing, screening and beyond. Nature Methods, 15, 871–879.

    CAS  PubMed  Google Scholar 

  160. Lan, X., Jörg, D. J., Cavalli, F. M., et al. (2017). Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy. Nature, 549, 227.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Morton, C. L., & Houghton, P. J. (2007). Establishment of human tumor xenografts in immunodeficient mice. Nature Protocols, 2, 247.

    CAS  PubMed  Google Scholar 

  162. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 3983–3988.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Eramo, A., Lotti, F., Sette, G., et al. (2008). Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death and Differentiation, 15, 504.

    CAS  PubMed  Google Scholar 

  164. Hermann, P. C., Huber, S. L., Herrler, T., et al. (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 1, 313–323.

    CAS  PubMed  Google Scholar 

  165. Li, C., Heidt, D. G., Dalerba, P., et al. (2007). Identification of pancreatic cancer stem cells. Cancer Research, 67, 1030–1037.

    CAS  PubMed  Google Scholar 

  166. Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445, 111.

    CAS  PubMed  Google Scholar 

  167. Singh, S. K., Hawkins, C., Clarke, I. D., et al. (2004). Identification of human brain tumour initiating cells. Nature, 432, 396.

    CAS  PubMed  Google Scholar 

  168. Wakimoto, H., Kesari, S., Farrell, C. J., et al. (2009). Human glioblastoma–derived cancer stem cells: establishment of invasive glioma models and treatment with oncolytic herpes simplex virus vectors. Cancer Research, 69, 3472–3481.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Chen, L., Groenewoud, A., Tulotta, C., et al. (2017). A zebrafish xenograft model for studying human cancer stem cells in distant metastasis and therapy response (pp. 471–496). Methods Cell Biol: Elsevier.

    Google Scholar 

  170. Di Fiore, R., Guercio, A., Puleio, R., et al. (2012). Modeling human osteosarcoma in mice through 3AB-OS cancer stem cell xenografts. Journal of Cellular Biochemistry, 113, 3380–3392.

    PubMed  Google Scholar 

  171. Richmond, A., & Su, Y. (2008). Mouse xenograft models vs GEM models for human cancer therapeutics. The Company of Biologists Ltd, 78–82.

  172. Chen, J., Li, Y., Yu, T.-S., et al. (2012). A restricted cell population propagates glioblastoma growth after chemotherapy. Nature, 488, 522–526.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Driessens, G., Beck, B., Caauwe, A., Simons, B. D., & Blanpain, C. (2012). Defining the mode of tumour growth by clonal analysis. Nature, 488, 527–530.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Schepers, A. G., Snippert, H. J., Stange, D. E., et al. (2012). Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science, 337, 730–735.

    CAS  PubMed  Google Scholar 

  175. Zomer, A., Ellenbroek, S. I. J., Ritsma, L., Beerling, E., Vrisekoop, N., & Van Rheenen, J. (2013). Brief report: intravital imaging of cancer stem cell plasticity in mammary tumors. Stem Cells, 31, 602–606.

    CAS  PubMed  Google Scholar 

  176. Cortina, C., Turon, G., Stork, D., et al. (2017). A genome editing approach to study cancer stem cells in humantumors. EMBO Molecular Medicine, e201707550.

  177. Shimokawa, M., Ohta, Y., Nishikori, S., et al. (2017). Visualization and targeting of LGR5+ human colon cancer stem cells. Nature, 545, 187–192.

    CAS  PubMed  Google Scholar 

  178. Rios, A. C., Fu, N. Y., Cursons, J., Lindeman, G. J., & Visvader, J. E. (2016). The complexities and caveats of lineage tracing in the mammary gland. Breast Cancer Research, 18, 116.

    PubMed  PubMed Central  Google Scholar 

  179. Cowan, C. A., Klimanskaya, I., McMahon, J., et al. (2004). Derivation of embryonic stem-cell lines from human blastocysts. The New England Journal of Medicine, 350, 1353–1356.

    CAS  PubMed  Google Scholar 

  180. Crook, J. M., Peura, T. T., Kravets, L., et al. (2007). The generation of six clinical-grade human embryonic stem cell lines. Cell Stem Cell, 1, 490–494.

    CAS  PubMed  Google Scholar 

  181. Hwang, W. S., Ryu, Y. J., Park, J. H., et al. (2004). Evidence of a pluripotent human embryonic stem cell line derived from a cloned blastocyst. Science, 303, 1669–1674.

    CAS  PubMed  Google Scholar 

  182. Reubinoff, B. E., Pera, M. F., Fong, C.-Y., Trounson, A., & Bongso, A. (2000). Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nature Biotechnology, 18, 399–404.

    CAS  PubMed  Google Scholar 

  183. Pollard, S. M., Yoshikawa, K., Clarke, I. D., et al. (2009). Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell, 4, 568–580.

    CAS  PubMed  Google Scholar 

  184. Scaffidi, P., & Misteli, T. (2011). In vitro generation of human cells with cancer stem cell properties. Nature Cell Biology, 13, 1051.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Giuliano, M., Herrera, S., Christiny, P., et al. (2015). Circulating and disseminated tumor cells from breast cancer patient-derived xenograft-bearing mice as a novel model to study metastasis. Breast Cancer Research, 17, 3.

    PubMed  PubMed Central  Google Scholar 

  186. Heyn, C., Ronald, J. A., Mackenzie, L. T., et al. (2006). In vivo magnetic resonance imaging of single cells in mouse brain with optical validation. Magnetic Resonance in Medicine: Magn Reson Med, 55, 23–29.

    PubMed  Google Scholar 

  187. Choi, Y., Kim, H. S., Cho, K.-W., et al. (2013). Noninvasive identification of viable cell populations in docetaxel-treated breast tumors using ferritin-based magnetic resonance imaging. PLoS One, 8, e52931.

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Carril, M. (2017). Activatable probes for diagnosis and biomarker detection by MRI. Journal of Materials Chemistry B, 5, 4332–47118.

    CAS  PubMed  Google Scholar 

  189. Conti, L., Lanzardo, S., Ruiu, R., et al. (2016). L-Ferritin targets breast cancer stem cells and delivers therapeutic and imaging agents. Oncotarget, 7, 66713.

    PubMed  PubMed Central  Google Scholar 

  190. Tang, J., Zhou, H., Liu, J., et al. (2017). Dual-mode imaging-guided synergistic chemo-and magnetohyperthermia therapy in a versatile nanoplatform to eliminate cancer stem cells. ACS Applied Materials & Interfaces, 9, 23497–23507.

    CAS  Google Scholar 

  191. Al Faraj, A., Shaik, A. S., Al Sayed, B., Halwani, R., & Al, J. I. (2016). Specific targeting and noninvasive imaging of breast cancer stem cells using single-walled carbon nanotubes as novel multimodality nanoprobes. Nanomedicine (London, England), 11, 31–46.

    Google Scholar 

  192. Sun, Y., Kim, H. S., Kang, S., Piao, Y. J., Jon, S., & Moon, W. K. (2018). Magnetic Resonance Imaging-Guided Drug Delivery to Breast Cancer Stem-Like Cells. Advanced Healthcare Materials, 7, 1800266.

    Google Scholar 

  193. Park, J. W., Jung, K.-H., Lee, J. H., et al. (2016). Imaging early fate of cancer stem cells in mouse hindlimbs with sodium iodide symporter gene and I-124 PET. Molecular Imaging and Biology, 18, 748–757.

    CAS  PubMed  Google Scholar 

  194. Kawai, T., Krishna, M. C., Brender, J. R., et al. (2018). Metabolic imaging of glioblastoma using hyperpolarized 13C-MRI: Glycolytic metabolism in cancer stem cell-like cell-derived tumor model. AACR. https://doi.org/10.1158/1538-7445.AM2018-4110.

  195. Weissleder, R., & Pittet, M. J. (2008). Imaging in the era of molecular oncology. Nature, 452, 580.

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Hart, L. S., & El-Deiry, W. S. (2008). Invincible, but not invisible: imaging approaches toward in vivo detection of cancer stem cells. Journal of Clinical Oncology, 26, 2901–2910.

    PubMed  Google Scholar 

  197. Lindholm, H., Brolin, F., Jonsson, C., & Jacobsson, H. (2013). The relation between the blood glucose level and the FDG uptake of tissues at normal PET examinations. EJNMMI Research, 3, 50.

    PubMed  PubMed Central  Google Scholar 

  198. Marcu, L., Reid, P., & Bezak, E. (2018). The Promise of Novel Biomarkers for Head and Neck Cancer from an Imaging Perspective. International Journal of Molecular Sciences, 19, 2511.

    PubMed Central  Google Scholar 

  199. Kawai, T., Yasuchika, K., Seo, S., et al. (2017). Identification of Keratin 19–Positive Cancer Stem Cells Associating Human Hepatocellular Carcinoma Using 18F-Fluorodeoxyglucose Positron Emission Tomography. Clinical Cancer Research, 23, 1450–1460.

    CAS  PubMed  Google Scholar 

  200. Hsieh, Y., Lu, T., Ke, C., et al. (2018). Correlation of 18F-FDG uptake and thyroid cancer stem cells. The Quarterly Journal of Nuclear Medicine and Molecular Imaging.

  201. Sato, M., Kawana, K., Adachi, K., et al. (2017). Low uptake of fluorodeoxyglucose in positron emission tomography/computed tomography in ovarian clear cell carcinoma may reflect glutaminolysis of its cancer stem cell-like properties. Oncology Reports, 37, 1883–1888.

    CAS  PubMed  Google Scholar 

  202. McCracken, M. N. (2018). Thymidine Kinase PET Reporter Gene Imaging of Cancer Cells In Vivo (pp. 137–151). Reporter Gene Imaging: Springer.

    Google Scholar 

  203. Tsurumi, C., Esser, N., Firat, E., et al. (2010). Non-invasive in vivo imaging of tumor-associated CD133/prominin. PLoS One, 5, e15605.

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Gaedicke, S., Braun, F., Prasad, S., et al. (2014). Noninvasive positron emission tomography and fluorescence imaging of CD133+ tumor stem cells. Proceedings of the National Academy of Sciences of the United States of America, 111, E692–E701.

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Chen, H., Wang, Y., Wang, T., et al. (2016). Application prospective of nanoprobes with MRI and FI dual-modality imaging on breast cancer stem cells in tumor. J Nanobiotechnology, 14, 52.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is financially supported by National Institute of Pharmaceutical Education and Research, Ahmedabad, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshay Srivastava.

Ethics declarations

Conflict of Interest

Authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jariyal, H., Gupta, C., Bhat, V.S. et al. Advancements in Cancer Stem Cell Isolation and Characterization. Stem Cell Rev and Rep 15, 755–773 (2019). https://doi.org/10.1007/s12015-019-09912-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-019-09912-4

Keywords

Navigation