Skip to main content

Advertisement

Log in

CD34+ Hematopoietic Stem Cell Count Is Predictive of Vascular Event Occurrence in Children with Sickle Cell Disease

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Background/Objectives

Sickle cell disease (SCD) complications mostly result from vascular dysfunction, concerning systemic microvasculature and cerebral large vessels. The aim of this cohort study was to identify potential circulating biomarkers predictive for further vascular event occurrence in pediatric SCD.

Methods

We consecutively enrolled 108 children with SCD at steady state, aged 3–18 years old (median 9.8 years). Hematology, coagulation, hemolysis, endothelial, platelet and vascular activation parameters were recorded at inclusion. Neurovascular and systemic vascular events were prospectively recorded during a mean follow-up period of 27 months.

Results

Patients at steady state displayed significantly higher hemolysis and platelet activation markers, higher leukocyte, CD34+ hematopoietic stem cell and microvesicle counts, and a pro-coagulant profile compared to controls matched for age and ethnicity. Circulating endothelial cell or nucleosome level did not differ. During the follow-up period, 36 patients had at least one neurovascular (n = 12) or systemic vascular event (n = 25). In a multivariate model, high CD34+ cell count was the best predictor for the occurrence of a vascular event (OR 1.2 for 1000 cell/mL increase, 95% CI [1.049–1.4], p = 0.013, sensitivity 53%, specificity 84% for a threshold of 8675 cells/mL).

Conclusion

CD34+ cell count at steady state is a promising biomarker of further vascular event in children with SCD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adams, R., McKie, V., Nichols, F., Carl, E., Zhang, D. L., McKie, K., Figueroa, R., Litaker, M., Thompson, W., & Hess, D. (1992). The use of transcranial ultrasonography to predict stroke in sickle cell disease. The New England Journal of Medicine, 326(9), 605–610.

    Article  PubMed  CAS  Google Scholar 

  2. Wang, W. C., Gallagher, D. M., Pegelow, C. H., Wright, E. C., Vichinsky, E. P., Abboud, M. R., Moser, F. G., & Adams, R. J. (2000). Multicenter comparison of magnetic resonance imaging and transcranial Doppler ultrasonography in the evaluation of the central nervous system in children with sickle cell disease. Journal of Pediatric Hematology/Oncology, 22(4), 335–339.

    Article  PubMed  Google Scholar 

  3. Miller, S. T., Sleeper, L. A., Pegelow, C. H., Enos, L. E., Wang, W. C., Weiner, S. J., Wethers, D. L., Smith, J., & Kinney, T. R. (2000). Prediction of adverse outcomes in children with sickle cell disease. The New England Journal of Medicine, 342(2), 83–89.

    Article  PubMed  CAS  Google Scholar 

  4. Stevens, M. C., Hayes, R. J., Vaidya, S., & Serjeant, G. R. (1981). Fetal hemoglobin and clinical severity of homozygous sickle cell disease in early childhood. The Journal of Pediatrics, 98(1), 37–41.

    Article  PubMed  CAS  Google Scholar 

  5. Lebensburger, J., Johnson, S. M., Askenazi, D. J., Rozario, N. L., Howard, T. H., & Hilliard, L. M. (2011). Protective role of hemoglobin and fetal hemoglobin in early kidney disease for children with sickle cell anemia. American Journal of Hematology, 86(5), 430–432.

    Article  PubMed  CAS  Google Scholar 

  6. Silva, C. M., Giovani, P., & Viana, M. B. (2011). High reticulocyte count is an independent risk factor for cerebrovascular disease in children with sickle cell anemia. Pediatric Blood & Cancer, 56(1), 116–121.

    Article  Google Scholar 

  7. Meier, E. R., Wright, E. C., & Miller, J. L. (2014). Reticulocytosis and anemia are associated with an increased risk of death and stroke in the newborn cohort of the cooperative study of sickle cell disease. American Journal of Hematology, 89(9), 904–906.

    Article  PubMed  PubMed Central  Google Scholar 

  8. DeBaun, M. R., Sarnaik, S. A., Rodeghier, M. J., Minniti, C. P., Howard, T. H., Iyer, R. V., Inusa, B., Telfer, P. T., Kirby-Allen, M., Quinn, C. T., Bernaudin, F., Airewele, G., Woods, G. M., Panepinto, J. A., Fuh, B., Kwiatkowski, J. K., King, A. A., Rhodes, M. M., Thompson, A. A., Heiny, M. E., Redding-Lallinger, R. C., Kirkham, F. J., Sabio, H., Gonzalez, C. E., Saccente, S. L., Kalinyak, K. A., Strouse, J. J., Fixler, J. M., Gordon, M. O., Miller, J. P., Noetzel, M. J., Ichord, R. N., & Casella, J. F. (2012). Associated risk factors for silent cerebral infarcts in sickle cell anemia: Low baseline hemoglobin, sex, and relative high systolic blood pressure. Blood, 119(16), 3684–3690.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Switzer, J. A., Hess, D. C., Nichols, F. T., & Adams, R. J. (2006). Pathophysiology and treatment of stroke in sickle-cell disease: Present and future. The Lancet. Neurology, 5(6), 501–512.

    Article  PubMed  Google Scholar 

  10. Platt, O. S. (2005). Preventing stroke in sickle cell anemia. The New England Journal of Medicine, 353(26), 2743–2745.

    Article  PubMed  CAS  Google Scholar 

  11. de Montalembert, M., Aggoun, Y., Niakate, A., Szezepanski, I., & Bonnet, D. (2007). Endothelial-dependent vasodilation is impaired in children with sickle cell disease. Haematologica, 92(12), 1709–1710.

    Article  PubMed  Google Scholar 

  12. Ataga, K. I., Moore, C. G., Jones, S., Olajide, O., Strayhorn, D., Hinderliter, A., & Orringer, E. P. (2006). Pulmonary hypertension in patients with sickle cell disease: A longitudinal study. British Journal of Haematology, 134(1), 109–115.

    Article  PubMed  Google Scholar 

  13. National Institutes of Health. (2002). The Management of Sickle Cell Disease. http://www.nhlbi.nih.gov/files/docs/guidelines/sc_mngt.pdf

  14. NHS. (2010). Sickle cell disease in childhood, standards and guidelines for clinical care. http://sct.screening.nhs.uk/getdata.php?id=11164

  15. Tounian, P., Aggoun, Y., Dubern, B., Varille, V., Guy-Grand, B., Sidi, D., Girardet, J. P., & Bonnet, D. (2001). Presence of increased stiffness of the common carotid artery and endothelial dysfunction in severely obese children: A prospective study. Lancet, 358(9291), 1400–1404.

    Article  PubMed  CAS  Google Scholar 

  16. Woywodt, A., Kirsch, T., & Haubitz, M. (2006). Immunomagnetic isolation and FACS--competing techniques for the enumeration of circulating endothelial cells. Thrombosis and Haemostasis, 96, 1), 1–1), 2.

    PubMed  Google Scholar 

  17. Smadja, D. M., Gaussem, P., Mauge, L., Israël-Biet, D., Dignat-George, F., Peyrard, S., et al. (2009). Circulating endothelial cells: A new candidate biomarker of irreversible pulmonary hypertension secondary to congenital heart disease. Circulation, 119(3), 374–381.

    Article  PubMed  Google Scholar 

  18. Sutherland, D. R., Anderson, L., Keeney, M., Nayar, R., & Chin-Yee, I. (1996). The ISHAGE guidelines for CD34+ cell determination by flow cytometry. International Society of Hematotherapy and Graft Engineering. Journal of Hematotherapy, 5(3), 213–226.

    Article  PubMed  CAS  Google Scholar 

  19. Mauge, L., Sabatier, F., Boutouyrie, P., D’Audigier, C., Peyrard, S., Bozec, E., et al. (2014). Forearm ischemia decreases endothelial colony-forming cell angiogenic potential. Cytotherapy, 16(2), 213–224.

    Article  PubMed  CAS  Google Scholar 

  20. Le Manach, Y., Kahn, D., Bachelot-Loza, C., Le Sache, F., Smadja, D. M., Remones, V., et al. (2014). Impact of aspirin and clopidogrel interruption on platelet function in patients undergoing major vascular surgery. PLoS One, 9(8), e104491.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Robert, S., Lacroix, R., Poncelet, P., Harhouri, K., Bouriche, T., Judicone, C., Wischhusen, J., Arnaud, L., & Dignat-George, F. (2012). High-sensitivity flow cytometry provides access to standardized measurement of small-size microparticles--brief report. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(4), 1054–1058.

    Article  PubMed  CAS  Google Scholar 

  22. Fuchs, T. A., Kremer Hovinga, J. A., Schatzberg, D., Wagner, D. D., & Lämmle, B. (2012). Circulating DNA and myeloperoxidase indicate disease activity in patients with thrombotic microangiopathies. Blood, 120(6), 1157–1164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Torsten Hothorn, Hornik, K., Van de Wiel, M. A., & Zeileis, A. (2008). Implementation of a class of permutation tests: the coin package., 28(8), 1–23.

  24. Ofori-Acquah, S. F., Buchanan, I. D., Osunkwo, I., Manlove-Simmons, J., Lawal, F., Quarshie, A., et al. (2012). Elevated circulating angiogenic progenitors and white blood cells are associated with hypoxia-inducible angiogenic growth factors in children with sickle cell disease. Anemia, 2012, 156598.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Patel, S. D., Humphries, J., Mattock, K., Wadoodi, A., Modarai, B., Ahmad, A., Burnand, K. G., Waltham, M., & Smith, A. (2012). Hematopoietic progenitor cells and restenosis after carotid endarterectomy. Stroke; a Journal of Cerebral Circulation, 43(6), 1663–1665.

    Article  Google Scholar 

  26. Wierenga, A. T. J., Vellenga, E., & Schuringa, J. J. (2014). Convergence of hypoxia and TGFβ pathways on cell cycle regulation in human hematopoietic stem/progenitor cells. PLoS One, 9(3), e93494.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Lee, P. S. S., & Poh, K. K. (2014). Endothelial progenitor cells in cardiovascular diseases. World Journal of Stem Cells, 6(3), 355–366.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ratajczak, M. Z., Ratajczak, J., Suszynska, M., Miller, D. M., Kucia, M., & Shin, D.-M. (2017). A novel view of the adult stem cell compartment from the perspective of a quiescent population of very small embryonic-like stem cells. Circulation Research, 120(1), 166–178.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Smadja, D. M. (2017). Bone marrow very small embryonic-like stem cells: New generation of autologous cell therapy soon ready for prime time? Stem Cell Reviews, 13(2), 198–201.

    Article  PubMed  Google Scholar 

  30. Guerin, C. L., Loyer, X., Vilar, J., Cras, A., Mirault, T., Gaussem, P., Silvestre, J. S., & Smadja, D. M. (2015). Bone-marrow-derived very small embryonic-like stem cells in patients with critical leg ischaemia: Evidence of vasculogenic potential. Thrombosis and Haemostasis, 113(5), 1084–1094.

    Article  PubMed  Google Scholar 

  31. Guerin, C. L., Rossi, E., Saubamea, B., Cras, A., Mignon, V., Silvestre, J.-S., & Smadja, D. M. (2017). Human very small embryonic-like cells support vascular maturation and therapeutic revascularization induced by endothelial progenitor cells. Stem Cell Reviews, 13(4), 552–560.

    Article  PubMed  CAS  Google Scholar 

  32. Zhang, S., Zhao, L., Wang, J., Chen, N., Yan, J., & Pan, X. (2017). HIF-2α and Oct4 have synergistic effects on survival and myocardial repair of very small embryonic-like mesenchymal stem cells in infarcted hearts. Cell Death & Disease, 8(1), e2548.

    Article  CAS  Google Scholar 

  33. Croizat, H., Ponchio, L., Nicolini, F. E., Nagel, R. L., & Eaves, C. J. (2000). Primitive haematopoietic progenitors in the blood of patients with sickle cell disease appear to be endogenously mobilized. British Journal of Haematology, 111(2), 491–497.

    Article  PubMed  CAS  Google Scholar 

  34. Chang, K. H., Nayak, R. C., Roy, S., Perumbeti, A., Wellendorf, A. M., Bezold, K. Y., Pirman M., Hill S. E., Starnes J., Loberg A., Zhou X., Inagami T., Zheng Y., Malik P., Cancelas J. A. (2015). Vasculopathy-associated hyperangiotensinemia mobilizes haematopoietic stem cells/progenitors through endothelial AT2R and cytoskeletal dysregulation. Nature Communications, 6, 5914.

  35. Adams, R. J., Brambilla, D. J., Granger, S., Gallagher, D., Vichinsky, E., Abboud, M. R., Pegelow C.H., Woods G., Rohde E.M., Nichols F.T., Jones A., Luden J.P., Bowman L., Hagner S., Morales K.H., Roach E.S., STOP Study. (2004). Stroke and conversion to high risk in children screened with transcranial Doppler ultrasound during the STOP study. Blood, 103(10), 3689–3694.

  36. Solovey, A., Lin, Y., Browne, P., Choong, S., Wayner, E., & Hebbel, R. P. (1997). Circulating activated endothelial cells in sickle cell anemia. The New England Journal of Medicine, 337(22), 1584–1590.

    Article  PubMed  CAS  Google Scholar 

  37. Smadja, D. M., Mauge, L., Sanchez, O., Silvestre, J.-S., Guerin, C., Godier, A., Henno, P., Gaussem, P., & Israel-Biet, D. (2010). Distinct patterns of circulating endothelial cells in pulmonary hypertension. The European Respiratory Journal, 36(6), 1284–1293.

    Article  PubMed  CAS  Google Scholar 

  38. Levy, M., Bonnet, D., Mauge, L., Celermajer, D. S., Gaussem, P., & Smadja, D. M. (2013). Circulating endothelial cells in refractory pulmonary hypertension in children: Markers of treatment efficacy and clinical worsening. PLoS One, 8(6), e65114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Manzoni, M., Comolli, G., Torchio, M., Mazzini, G., & Danova, M. (2015). Circulating endothelial cells and their subpopulations: Role as predictive biomarkers in antiangiogenic therapy for colorectal cancer. Clinical Colorectal Cancer, 14(1), 11–17.

    Article  PubMed  Google Scholar 

  40. Liu, Y., Yuan, D., Ye, W., Lv, T., & Song, Y. (2015). Prognostic value of circulating endothelial cells in non-small cell lung cancer patients: A systematic review and meta-analysis. Translational Lung Cancer Research, 4(5), 610–618.

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Zhou, F., Zhou, Y., Dong, J., & Tan, W. (2017). Circulating endothelial cells and their subsets: Novel biomarkers for cancer. Biomarkers in Medicine.

    Google Scholar 

  42. Noubouossie, D. C. F., Lê, P. Q., Rozen, L., Ziereisen, F., Willems, D., Demulder, A., & Ferster, A. (2013). Thrombin generation in children with sickle cell disease: Relationship with age, hemolysis, transcranial Doppler velocity, and hydroxyurea treatment. European Journal of Haematology, 91(1), 46–54.

    Article  PubMed  CAS  Google Scholar 

  43. Bartolucci, P., & Galactéros, F. (2012). Clinical management of adult sickle-cell disease. Current Opinion in Hematology, 19(3), 149–155.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Florence Desvard, Yann Brunel, Laurent Garcia, Aurélie Dumont, and Peggy Tournoux for their excellent technical assistance. The French Institute for Medical Research INSERM funded Dr. M. Kossorotoff for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoelle Kossorotoff.

Ethics declarations

Conflict of Interest Statement

The authors disclose any conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 95 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kossorotoff, M., De Montalembert, M., Brousse, V. et al. CD34+ Hematopoietic Stem Cell Count Is Predictive of Vascular Event Occurrence in Children with Sickle Cell Disease. Stem Cell Rev and Rep 14, 694–701 (2018). https://doi.org/10.1007/s12015-018-9835-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-018-9835-8

Keywords

Navigation