Skip to main content

Advertisement

Log in

FGF21 Inhibits Hypoxia/Reoxygenation-induced Renal Tubular Epithelial Cell Injury by Regulating the PPARγ/NF-κB Signaling Pathway

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

As a predominant trigger of acute kidney injury, renal ischemia-reperfusion injury can cause permanent renal impairment, and the effective therapies are lacking. Fibroblast growth factor 21 (FGF21) plays a critical regulatory role in a variety of biological activities. This study was conducted to explore the functional of FGF21 in renal ischemia-reperfusion injury and to discuss the hidden reaction mechanism. To simulate renal ischemia-reperfusion injury in vitro, HK2 cells were induced by hypoxia/reoxygenation (H/R). The effects of FGF21 on H/R-induced HK2 cell viability were evaluated utilizing cell counting kit-8 (CCK-8). The levels of lactate dehydrogenase (LDH) and inflammatory cytokines in H/R-induced HK2 cells were assessed by means of LDH assay and enzyme-linked immunosorbent assay (ELISA). The levels of oxidative stress markers were appraised with corresponding assay kits and western blot was applied to estimate the expressions of oxidative stress-related proteins. The apoptosis of H/R-induced HK2 cells was assessed by virtue of flow cytometry. The expressions of apoptosis- and PPARγ/NF-κB signaling pathway-related proteins were evaluated with western blot. To discuss the reaction mechanism of PPARγ/NF-κB pathway in H/R-induced HK2 cells, PPARγ inhibitor GW9662 was employed to treat cells and the above experiments were then conducted again. This study found that FGF21 treatment inhibited the inflammatory response, oxidative stress and apoptosis in H/R-induced HK2 cells. Moreover, FGF21 regulated PPARγ/NF-κB signaling pathway and GW9662 partially reversed the impacts of FGF21 on the inflammatory response, oxidative stress and apoptosis in H/R-exposed HK2 cells. Collectively, FGF21 protected against H/R-induced renal tubular epithelial cell injury by regulating the PPARγ/NF-κB signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The analyzed data sets generated during the present study are available from the corresponding author on reasonable request.

References

  1. Karimi, Z., et al. (2021). Nanomicellar curcuminoids attenuates renal ischemia/reperfusion injury in rat through prevention of apoptosis and downregulation of MAPKs pathways. Molecular Biology Reports, 48(2), 1735–1743.

    Article  CAS  PubMed  Google Scholar 

  2. Kim, Y. H., et al. (2023). Risperidone Administration Attenuates Renal Ischemia and Reperfusion Injury following Cardiac Arrest by Antiinflammatory Effects in Rats. Veterinary Sciences, 10(3), 184.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen, Y., et al. (2024). Mitochondrial metabolism and targeted treatment strategies in ischemic-induced acute kidney injury. Cell Death Discovery, 10(1), 69.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Huang, D., et al. (2023). GATA2 promotes oxidative stress to aggravate renal ischemia-reperfusion injury by up-regulating Redd1. Molecular Immunology, 153, 75–84.

    Article  CAS  PubMed  Google Scholar 

  5. Livingston, M. J., et al. (2019). Clearance of damaged mitochondria via mitophagy is important to the protective effect of ischemic preconditioning in kidneys. Autophagy, 15(12), 2142–2162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen, L., et al. (2023). Trans-cinnamaldehyde attenuates renal ischemia/reperfusion injury through suppressing inflammation via JNK/p38 MAPK signaling pathway. International Immunopharmacology, 118, 110088.

    Article  CAS  PubMed  Google Scholar 

  7. Shen, B., et al. (2019). Necrostatin-1 Attenuates Renal Ischemia and Reperfusion Injury via Meditation of HIF-1alpha/mir-26a/TRPC6/PARP1 Signaling. Molecular Therapy Nucleic Acids, 17, 701–713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Szczepańska, E., & Gietka-Czernel, M. (2022). FGF21: A Novel Regulator of Glucose and Lipid Metabolism and Whole-Body Energy Balance. Hormone and Metabolic Research, 54(4), 203–211.

    Article  PubMed  Google Scholar 

  9. Zhang, Y., et al. (2021). The role of FGF21 in the pathogenesis of cardiovascular disease. Chinese Medical Journal, 134(24), 2931–2943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Markan, K. R., et al. (2014). Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes, 63(12), 4057–4063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lin, S., et al. (2020). Fibroblast Growth Factor 21 Attenuates Diabetes-Induced Renal Fibrosis by Negatively Regulating TGF-β-p53-Smad2/3-Mediated Epithelial-to-Mesenchymal Transition via Activation of AKT. Diabetes and Metabolism Journal, 44(1), 158–172.

    Article  PubMed  Google Scholar 

  12. Weng, H. C., et al. (2021). Fibroblast growth factor 21 attenuates salt-sensitive hypertension-induced nephropathy through anti-inflammation and anti-oxidation mechanism. Molecular Medicine, 27(1), 147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li, B., & Liu, L. (2022). Fibroblast growth factor 21, a stress regulator, inhibits Drp1 activation to alleviate skeletal muscle ischemia/reperfusion injury. Laboratory Investigation, 102(9), 979–988.

    Article  CAS  PubMed  Google Scholar 

  14. Lee, D., et al. (2022). Retinal degeneration induced in a mouse model of ischemia-reperfusion injury and its management by pemafibrate treatment. The FASEB Journal, 36(9), e22497.

    Article  CAS  PubMed  Google Scholar 

  15. Pflug, K. M., & Sitcheran, R. (2020). Targeting NF-κB-Inducing Kinase (NIK) in Immunity, Inflammation, and Cancer. International Journal of Molecular Sciences, 21(22), 8470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, Y., et al. (2014). Roles of PPARgamma/NF-kappaB signaling pathway in the pathogenesis of intrahepatic cholestasis of pregnancy. PLoS One, 9(1), e87343.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  17. Lin, F., et al. (2020). beta-Sitosterol Protects against Myocardial Ischemia/Reperfusion Injury via Targeting PPARgamma/NF-kappaB Signalling. Evidence-Based Complementary and Alternative Medicine, 2020, 2679409.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yao, H., Zhao, J., & Song, X. (2022). Protective effects of fraxin on cerebral ischemia-reperfusion injury by mediating neuroinflammation and oxidative stress through PPAR-gamma/NF-kappaB pathway. Brain Research Bulletin, 187, 49–62.

    Article  CAS  PubMed  Google Scholar 

  19. Tang, T. T., et al. (2018). Hydroxychloroquine attenuates renal ischemia/reperfusion injury by inhibiting cathepsin mediated NLRP3 inflammasome activation. Cell Death and Disease, 9(3), 351.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ren, Z., et al. (2019). Fibroblast growth factor-21 alleviates hypoxia/reoxygenation injury in H9c2 cardiomyocytes by promoting autophagic flux. International Journal of Molecular Medicine, 43(3), 1321–1330.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mao, H., et al. (2021). FABP4 knockdown suppresses inflammation, apoptosis and extracellular matrix degradation in IL-1beta-induced chondrocytes by activating PPARgamma to regulate the NF-kappaB signaling pathway. Molecular Medicine Reports, 24(6), 855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lv, S., Liu, H., & Wang, H. (2021). The Interplay between Autophagy and NLRP3 Inflammasome in Ischemia/Reperfusion Injury. International Journal of Molecular Sciences, 22(16), 8773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Van Avondt, K., Nur, E., & Zeerleder, S. (2019). Mechanisms of haemolysis-induced kidney injury. Nature Reviews Nephrology, 15(11), 671–692.

    Article  PubMed  Google Scholar 

  24. Du, S., et al. (2019). Dioscin Alleviates Crystalline Silica-Induced Pulmonary Inflammation and Fibrosis through Promoting Alveolar Macrophage Autophagy. Theranostics, 9(7), 1878–1892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fisher, F. M., & Maratos-Flier, E. (2016). Understanding the Physiology of FGF21. Annual Review of Physiology, 78, 223–241.

    Article  CAS  PubMed  Google Scholar 

  26. Feng, R., et al. (2022). Lysine-specific demethylase 1 aggravated oxidative stress and ferroptosis induced by renal ischemia and reperfusion injury through activation of TLR4/NOX4 pathway in mice. Journal of Cellular and Molecular Medicine, 26(15), 4254–4267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qian, Y., et al. (2018). Klotho Reduces Necroptosis by Targeting Oxidative Stress Involved in Renal Ischemic-Reperfusion Injury. Cellular Physiology and Biochemistry, 45(6), 2268–2282.

    Article  CAS  PubMed  Google Scholar 

  28. Zhu, Y. L., et al. (2022). Senkyunolide I alleviates renal Ischemia-Reperfusion injury by inhibiting oxidative stress, endoplasmic reticulum stress and apoptosis. International Immunopharmacology, 102, 108393.

    Article  CAS  PubMed  Google Scholar 

  29. Zhao, T., & Zhang-Akiyama, Q. M. (2020). Deficiency of Grx1 leads to high sensitivity of HeLaS3 cells to oxidative stress via excessive accumulation of intracellular oxidants including ROS. Free Radical Research, 54(8-9), 585–605.

    Article  CAS  PubMed  Google Scholar 

  30. Jiang, F., et al. (2020). Monotropein alleviates H2O2‑induced inflammation, oxidative stress and apoptosis via NF‑kappaB/AP‑1 signaling. Molecular Medicine Reports, 22(6), 4828–4836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen, X., et al. (2022). KLF4 downregulates FGF21 to activate inflammatory injury and oxidative stress of LPS‑induced ATDC5 cells via SIRT1/NF‑κB/p53 signaling. Molecular Medicine Reports, 25(5), 164.

  32. Chen, M., et al. (2021). Fibroblast Growth Factor 21 Protects Against Atrial Remodeling via Reducing Oxidative Stress. Frontiers in Cardiovascular Medicine, 8, 720581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Munoz, M., et al. (2020). Differential contribution of Nox1, Nox2 and Nox4 to kidney vascular oxidative stress and endothelial dysfunction in obesity. Redox Biology, 28, 101330.

    Article  CAS  PubMed  Google Scholar 

  34. Zou, G., et al. (2021). Pioglitazone Ameliorates Renal Ischemia-Reperfusion Injury via Inhibition of NF-kappaB Activation and Inflammation in Rats. Frontiers in Physiology, 12, 707344.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Andrade-Oliveira, V., et al. (2019). Inflammation in Renal Diseases: New and Old Players. Frontiers in Pharmacology, 10, 1192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sato, Y., Takahashi, M., & Yanagita, M. (2020). Pathophysiology of AKI to CKD progression. Seminars in Nephrology, 40(2), 206–215.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, N., et al. (2022). Calycosin attenuates renal ischemia/reperfusion injury by suppressing NF-kappaB mediated inflammation via PPARgamma/EGR1 pathway. Frontiers in Pharmacology, 13, 970616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, J., et al. (2020). Bone marrow mesenchymal stem cell-derived exosomes prevent osteoarthritis by regulating synovial macrophage polarization. Aging (Albany NY), 12(24), 25138–25152.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  39. Li, J., et al. (2021). Fibroblast growth factor 21 inhibited inflammation and fibrosis after myocardial infarction via EGR1. European Journal of Pharmacology, 910, 174470.

    Article  CAS  PubMed  Google Scholar 

  40. Ye, J., et al. (2020) Fucoidan Isolated from Saccharina japonica Inhibits LPS-Induced Inflammation in Macrophages via Blocking NF-κB, MAPK and JAK-STAT Pathways. Marine Drugs, 18(6), 328.

  41. Chen, W., et al. (2019). MicroRNA-205 inhibits the apoptosis of renal tubular epithelial cells via the PTEN/Akt pathway in renal ischemia-reperfusion injury. American Journal of Translational Research, 11(12), 7364–7375.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lu, H., et al. (2021). Fibroblast growth factor 21 (FGF21) alleviates senescence, apoptosis, and extracellular matrix degradation in osteoarthritis via the SIRT1-mTOR signaling pathway. Cell Death and Disease, 12(10), 865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Qiang, W., et al. (2021). Fibroblast Growth Factor 21 Augments Autophagy and Reduces Apoptosis in Damaged Liver to Improve Tissue Regeneration in Zebrafish. Frontiers in Cell and Developmental Biology, 9, 756743.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhong, W., et al. (2024). Fibroblast growth factor 21 alleviates unilateral ureteral obstruction-induced renal fibrosis by inhibiting Wnt/β-catenin signaling pathway. Biochimica et Biophysica Acta - Molecular Cell Research, 1871(2), 119620.

    Article  CAS  PubMed  Google Scholar 

  45. Liu, Z., et al. (2021). Propofol ameliorates renal ischemia/reperfusion injury by enhancing macrophage M2 polarization through PPARgamma/STAT3 signaling. Aging (Albany NY), 13(11), 15511–15522.

    Article  CAS  PubMed  Google Scholar 

  46. Yao, D., et al. (2021). FGF21 attenuates hypoxia‑induced dysfunction and inflammation in HPAECs via the microRNA‑27b‑mediated PPARgamma pathway. International Journal of Molecular Medicine, 47(6), 116.

  47. Jiang, X., et al. (2022). Fibroblast growth factor 21 attenuates the progression of hyperuricemic nephropathy through inhibiting inflammation, fibrosis and oxidative stress. Basic and Clinical Pharmacology and Toxicology, 131(6), 474–486.

    Article  CAS  PubMed  Google Scholar 

Download references

Author Contributions

Ruixue Li conceived and designed the study. Ruixue Li and Xi Liu performed the experiments. Ruixue Li and Xi Liu were major contributors to write the manuscript. Both authors have read and approved the final manuscript. Ruixue Li confirmed the authenticity of the raw data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruixue Li.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Liu, X. FGF21 Inhibits Hypoxia/Reoxygenation-induced Renal Tubular Epithelial Cell Injury by Regulating the PPARγ/NF-κB Signaling Pathway. Cell Biochem Biophys (2024). https://doi.org/10.1007/s12013-024-01242-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12013-024-01242-8

Keywords

Navigation