Skip to main content
Log in

Transcriptomic Response of Primary Human Bronchial Cells to Repeated Exposures of Cigarette and ENDS Preparations

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Cigarette smoke deregulates several biological pathways by modulating gene expression in airway epithelial cells and altering the physiology of the airway epithelium. The effects of repeated exposures of electronic cigarette delivery systems (ENDS) on gene expression in airway epithelium are relatively unknown. In order to assess the effect of repeated exposures of ENDS, primary normal human bronchial epithelial (NHBE) cells grown at air-liquid interface (ALI) were exposed to cigarette and ENDS preparations daily for 10 days. Cigarette smoke preparations significantly altered gene expression in a dose-dependent manner compared to vehicle control, including genes linked to oxidative stress, xenobiotic metabolism, cancer pathways, epithelial-mesenchymal transition, fatty acid metabolism, degradation of collagen and extracellular matrix, O-glycosylation, and chemokines/cytokines, which are known pathways found to be altered in smokers. Conversely, ENDS preparations had minimal effect on transcriptional pathways. This study revealed that a sub-chronic exposure of primary NHBE cultures to cigarette and ENDS preparations differentially regulated genes and canonical pathways, with minimal effect observed with ENDS preparations compared to cigarette preparations. This study also demonstrates the versatility of primary NHBE cultures at ALI to evaluate repeat-dose exposures of tobacco products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dransfield, M. T., Wilhelm, A. M., Flanagan, B., Courville, C., Tidwell, S. L., Raju, S. V., Gaggar, A., Steele, C., Tang, L. P., & Lui, B., et al. (2013). Acquired cystic fibrosis transmembrane conductance regulator dysfunction in the lower airways in COPD. Chest, 144(2), 498–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Forey, B. A., Thornton, A. J., & Lee, P. N. (2011). Systematic review with meta-analysis of the epidemiological evidence relating smoking to COPD, chronic bronchitis and emphysema. BMC Pulm Med, 11(1), 36.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Islami, F., Torre, L. A., & Jemal, A. (2015). Global trends of lung cancer mortality and smoking prevalence. Transl Lung Cancer Res, 4(4), 327–338.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Jayes, L., Haslam, P. L., Gratziou, C. G., Powell, P., Britton, J., Vardavas, C., Jimenez-Ruiz, C., & Leonardi-Bee, J. (2016). SmokeHaz: systematic reviews and meta-analysis of the effects of smoking on respiratory health. Chest, 150(1), 164–179.

    Article  PubMed  Google Scholar 

  5. Silvestri, M., Franchi, S., Pistorio, A., Petechia, L., & Rusconi, F. (2015). Smoke exposure, wheezing, and asthma development: A systematic review and meta-analysis in unselected birth cohorts. Ped Pulm, 50(4), 353–362.

    Article  Google Scholar 

  6. Torre, L. A., Siegel, R. L., & Jemal, A. (2016). Lung cancer statistics. Adv Exp Med Biol, 893, 1–19.

    Article  PubMed  Google Scholar 

  7. Rab, A., Rowe, S. M., Raju, S. V., Bebock, Z., Matalon, S., & Collawn, J. F. (2013). Cigarette smoke and CFTR: implications in the pathogenesis of COPD. AJP - Lung Cell Mol Physiol, 305(8), 530–541.

    Article  Google Scholar 

  8. Rowell, T. R., & Tarran, R. (2015). Will chronic e-cigarette use cause lung disease? AJP-Lung Cell Mol Physiol, 309(12), 1398–1409.

    Article  Google Scholar 

  9. Spira, A., Beane, J., Shah, V., Liu, G., Schembri, F., Yang, X., Palma, J., & Brody, J. S. (2004). Effects of cigarette smoke on the human airway epithelial cell transcriptome. PNAS, 101(27), 10143–10148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Antherieu, S., Garat, A., Beauval, N., Soyez, M., Allorge, D., Garcon, G., & Lo-Guidice, J. (2017). Comparison of cellular and transcriptomic effects between electronic cigarette vapor and cigarette smoke in human bronchial epithelial cells. Toxicol In Vitro, 45(3), 417–425.

    Article  CAS  PubMed  Google Scholar 

  11. Pisinger, C., & Dossing, M. (2014). A systematic review of health effects of electronic cigarettes. Preventive Med, 69, 248–260.

    Article  Google Scholar 

  12. Grana, R., Benowitz, N., & Glantz, S. A. (2014). E-cigarettes: a scientific review. Circulation, 129(19), 1972–1986.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Etter, J.-F.(2010). Electronic cigarettes: a survey of users. BMC Public Health, 10(1), 1–7.

    Article  Google Scholar 

  14. Etter, J. F. (2016). Characteristics of users and usage of different types of electronic cigarettes: findings from an online survey. Addiction, 111(4), 724–733.

    Article  PubMed  Google Scholar 

  15. Etter, J. F., & Bullen, C. (2011). Electronic cigarette: users profile, utilization, satisfaction and perceived efficacy. Addiction, 106(11), 2017–2028.

    Article  PubMed  Google Scholar 

  16. Piñeiro, B., Correa, J. B., Simmons, V. N., Harrell, P. T., Menzie, N. S., Unrod, M., Meltzer, L. R., & Brandon, T. H. (2016). Gender differences in use and expectancies of e-cigarettes: online survey results. Addictive Behaviors, 52, 91–97.

    Article  PubMed  Google Scholar 

  17. Rodu, B., & Plurphanswat, N. (2018). E-cigarette use among US adults: Population Assessment of Tobacco and Health (PATH) study. Nicotine and Tobacco Research, 20(8), 940–948.

    Article  PubMed  Google Scholar 

  18. Amos A., Arnott D., Aveyard P., Bauld L., Bogdanovica I., Britton J., Chenoweth M., Collin J., Dockrell M., Hajek P.: Nicotine without smoke: Tobacco harm reduction. In: 2016: Royal College of Physicians; 2016.

  19. Phillips, G., Czekala, L., Behrsing, H. P., Amin, K., Budde, J., Stevenson, M., Wieczorek, R., Walele, T., & Simms, L. (2021). Acute electronic vapour product whole aerosol exposure of 3D human bronchial tissue results in minimal cellular and transcriptomic responses when compared to cigarette smoke. Toxicology Research and Application, 5, 2397847320988496.

  20. Wang, L., Wang, Y., Chen, J., Yang, X.-M., Jiang, X.-T., Liu, P., & Li, M. (2021). Comparison of biological and transcriptomic effects of conventional cigarette and electronic cigarette smoke exposure at toxicological dose in BEAS-2B cells. Ecotoxicology and Environmental Safety, 222, 112472.

    Article  PubMed  Google Scholar 

  21. Banerjee, A., Haswell, L. E., Baxter, A., Parmar, A., Azzopardi, D., Corke, S., Thorne, D., Adamson, J., Mushonganono, J., & Gaca, M. D., et al. (2017). Differential gene expression using RNA sequencing profiling in a reconstituted airway epithelium exposed to conventional cigarette smoke or electronic cigarette aerosols. App In Vitro Toxicol, 3(1), 84–98.

    Article  CAS  Google Scholar 

  22. Haswell, L. E., Baxter, A., Banerjee, A., Verrastro, I., Mushonganono, J., Adamson, J., Thorne, D., Gaça, M., & Minet, E. (2017). Reduced biological effect of e-cigarette aerosol compared to cigarette smoke evaluated in vitro using normalized nicotine dose and RNA-seq-based toxicogenomics. Sci Rep, 7(1), 1–16.

    Article  CAS  Google Scholar 

  23. Rayner, R. E., Makena, P., Prasad, G. L. & Cormet-Boyaka, E. (2021). Cigarette smoke preparations, not electronic nicotine delivery system preparations, induce features of lung disease in a 3D lung repeat-dose model. Am J Physiol Lung Cell Mol Physiol, 320(2), L276–L287.

    Article  CAS  PubMed  Google Scholar 

  24. Shen, Y., Wolkowicz, M. J., Kotova, T., Fan, L., & Timko, M. P. (2016). Transcriptome sequencing reveals e-cigarette vapor and mainstream-smoke from tobacco cigarettes activate different gene expression profiles in human bronchial epithelial cells. Sci Rep, 6(4), 23984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moses, E., Wang, T., Corbett, S., Jackson, G. R., Drizik, E., Perdomo, C., Perdomo, C., Kleerup, E., Brooks, D., & O’Connor, G., et al. (2017). Molecular impact of electronic cigarette aerosol exposure in human bronchial epithelium. Toxicol Sci, 155(1), 248–257.

    Article  CAS  PubMed  Google Scholar 

  26. Rayner, R. E., Makena, P., Prasad, G. L., & Cormet-Boyaka, E. (2019). Cigarette and ENDS preparations differentially regulate ion channels and mucociliary clearance in primary normal human bronchial 3D cultures. AJP - Lung Mol Cell Phys, 317(2), 295–302.

    Article  Google Scholar 

  27. Arimilli, S., Damratoski, B. E., Bombick, B., Borgerding, M. F., & Prasad, G. L. (2012). Evaluation of cytotoxicity of different tobacco product preparations. Reg Toxicol Pharmacol, 64(3), 350–360.

    Article  CAS  Google Scholar 

  28. Rayner, R. E., Makena, P., Prasad, G. L., & Cormet-Boyaka, E. (2019). Cigarette and ENDS preparations differentially regulate ion channels and mucociliary clearance in primary normal human bronchial 3D cultures. AJP - Lung Mol Cell Phys, 317(2), L295–L302.

    Article  CAS  Google Scholar 

  29. Johnson, M. D., Schilz, J., Djordjevic, M. V., Rice, J. R., & Shields, P. G. (2009). Evaluation of in vitro assays for assessing the toxicity of cigarette smoke and smokeless tobacco. Cancer Epidemiol Biomarkers Prev, 18(12), 3263–3304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rayner R. E., Makena P., Prasad G. L., Cormet-Boyaka E. Cigarette Smoke Preparations, Not Electronic Nicotine Delivery Systems (ENDS) Preparations, Induce Features of Lung Disease in a 3D Lung Repeat-Dose Model. In: AJP-Lung Cell Mol Physiol. vol. Epub ahead of print; 2020.

  31. Zhang, Y., Xie, J., Yang, J., Fennell, A., Zhang, C., & Ma, Q. (2017). QUBIC: a bioconductor package for qualitative biclustering analysis of gene co-expression data. Bioinformatics, 33(3), 450–452.

    Article  PubMed  Google Scholar 

  32. Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Gen Biol, 15(12), 550.

    Article  Google Scholar 

  33. Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z., Koplev, S., Jenkins, S. L., Jagodnik, K. M., & Lachmann, A. (2016). Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Research, 44(W1), W90–W97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., Gillespie, M., Garapati, P., Haw, R., Jassal, B., Korninger, F., & May, B. (2018). The reactome pathway knowledgebase. Nucleic Acids Research, 46(D1), D649–D655.

    Article  CAS  PubMed  Google Scholar 

  35. Xiong, R., Wu, Y., Wu, Q., Muskhelishvili, L., Davis, K., Tripathi, P., Chen, Y., Chen, T., Bryant, M., & Rosenfeldt, H., et al. (2021). Integration of transcriptome analysis with pathophysiological endpoints to evaluate cigarette smoke toxicity in an in vitro human airway tissue model. Arch Toxicol, 95(5), 1739–1761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Krishnamurthy, P., & Schuetz, J. D. (2011). The role of ABCG2 and ABCB6 in porphyrin metabolism and cell survival. Curr Pharm Biotechnol, 12(4), 647–655.

    Article  CAS  PubMed  Google Scholar 

  37. Krishnamurthy, P., Xie, T., & Schuetz, J. D. (2007). The role of transporters in cellular heme and porphyrin homeostasis. Pharmacol Ther, 114(3), 345–358.

    Article  CAS  PubMed  Google Scholar 

  38. Krishnamurthy, P. C., Du, G., Fukuda, Y., Sun, D., Sampath, J., Mercer, K. E., Wang, J., Sosa-Pineda, B., Murti, K. G., & Schuetz, J. D. (2006). Identification of a mammalian mitochondrial porphyrin transporter. Nature, 443(7111), 586–589.

    Article  CAS  PubMed  Google Scholar 

  39. Song, G., Zhang, S., Tian, M., Zhang, L., Guo, R., Zhuo, W., & Yang, M. (2021). Molecular insights into the human ABCB6 transporter. Cell Discov, 7(1), 55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Szakacs, G., Annereau, J. P., Lababidi, S., Shankavaram, U., Arciello, A., Bussey, K. J., Reinhold, W., Guo, Y., Kruh, G. D., & Reimers, M., et al. (2004). Predicting drug sensitivity and resistance: profiling ABC transporter genes in cancer cells. Cancer Cell, 6(2), 129–137.

    Article  CAS  PubMed  Google Scholar 

  41. Chavan, H., Oruganti, M., & Krishnamurthy, P. (2011). The ATP-binding cassette transporter ABCB6 is induced by arsenic and protects against arsenic cytotoxicity. Toxicol Sci, 120(2), 519–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Aguiar, J. A., Tamminga, A., Lobb, B., Huff, R. D., Nguyen, J. P., Kim, Y., Dvorkin-Gheva, A., Stampfli, M. R., Doxey, A. C., & Hirota, J. A. (2019). The impact of cigarette smoke exposure, COPD, or asthma status on ABC transporter gene expression in human airway epithelial cells. Scientific Reports, 9(1), 1–12.

    Article  CAS  Google Scholar 

  43. Kaisar, M. A., Sivandzade, F., Bhalerao, A., & Cucullo, L. (2018). Conventional and electronic cigarettes dysregulate the expression of iron transporters and detoxifying enzymes at the brain vascular endothelium: In vivo evidence of a gender-specific cellular response to chronic cigarette smoke exposure. Neurosci Lett, 682, 1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lakshmi, S. P., Reddy, A. T., Kodidhela, L. D., & Varadacharyulu, N. C. (2020). Epigallocatechin gallate diminishes cigarette smoke-induced oxidative stress, lipid peroxidation, and inflammation in human bronchial epithelial cells. Life Sciences, 259, 118260.

    Article  CAS  PubMed  Google Scholar 

  45. Venkatesan, A., Hemalatha, A., Bobby, Z., Selvaraj, N., & Sathiyapriya, V. (2006). Effects of smoking on lipid profile and lipid peroxidation in normal subjects. Indian Journal of Physiology and Pharmacology, 50(3), 273.

    PubMed  Google Scholar 

  46. Solak, Z., Kabaroğlu, C., Çok, G., Parıldar, Z., Bayındır, Ü., Özmen, D., & Bayındır, O. (2005). Effect of different levels of cigarette smoking on lipid peroxidation, glutathione enzymes and paraoxonase 1 activity in healthy people. Clinical and Experimental Medicine, 5(3), 99–105.

    Article  CAS  PubMed  Google Scholar 

  47. Song, M.-A., Freudenheim, J. L., Brasky, T. M., Mathe, E. A., McElroy, J. P., Nickerson, Q. A., Reisinger, S. A., Smiraglia, D. J., Weng, D. Y., & Ying, K. L. (2020). Biomarkers of Exposure and Effect in the Lungs of Smokers, Nonsmokers, and Electronic Cigarette Users. Cancer Epide Biomar, 29(2), 443–451.

    Article  CAS  Google Scholar 

  48. Huang, J., Jiang, W., Tong, X., Zhang, L., Zhang, Y., & Fan, H.AC Identification of gene and microRNA changes in response to smoking in human airway epithelium by bioinformatics analyses. Medicine 2019, 98(38).

  49. Goldfarbmuren, K. C., Jackson, N. D., Sajuthi, S. P., Dyjack, N., Li, K. S., Rios, C. L., Plender, E. G., Montgomery, M. T., Everman, J. L., & Bratcher, P. E. (2020). Dissecting the cellular specificity of smoking effects and reconstructing lineages in the human airway epithelium. Nature Communications, 11(1), 1–21.

    Article  Google Scholar 

Download references

Acknowledgements

This work was in part funded by RAI Services Company under a collaborative research agreement with the Ohio State University. We would like to acknowledge the assistance of the Genomics Core at The Ohio State University which was supported by NIH grant P30 CA016058.

Author information

Authors and Affiliations

Authors

Contributions

R.E.R. designed the study, completed experiments, analyzed the data, drafted, and edited the manuscript. J.W. helped complete experiments and edited the manuscript. J.Z. analyzed the transcriptomics data and edited the manuscript. P.M. designed the study and edited the manuscript. G.L.P. reviewed and edited the manuscript. E.C.-B. designed the study, analyzed the data, and edited the manuscript.

Corresponding author

Correspondence to Estelle Cormet-Boyaka.

Ethics declarations

Conflict of interest

P.M. and G.L.P. are employees of RAI Services Company. RAI Services Company is a wholly-owned subsidiary of Reynolds American, Inc. which is a wholly-owned subsidiary of British American Tobacco plc. R.E.R., J.W., J.Z., and E.C.B. declare that they have no competing financial interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rayner, R.E., Wellmerling, J., Makena, P. et al. Transcriptomic Response of Primary Human Bronchial Cells to Repeated Exposures of Cigarette and ENDS Preparations. Cell Biochem Biophys 80, 217–228 (2022). https://doi.org/10.1007/s12013-021-01042-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-021-01042-4

Keywords

Navigation