Skip to main content
Log in

Lipid Nutrition in Asthma

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Asthma is a heterogeneous pulmonary disease that has constantly increased in prevalence over the past several decades. Primary symptoms include airway constriction, airway hyperresponsiveness, and airway remodeling with additional symptoms such as shortness of breath, wheezing, and difficulty breathing. Allergic asthma involves chronic inflammation of the lungs, and the rise in its yearly diagnosis is potentially associated with the increased global consumption of foods similar to the western diet. Thus, there is growing interest into the link between diet and asthma symptoms, with mounting evidence for an important modulatory role for dietary lipids. Lipids can act as biological mediators in both a proinflammatory and proresolution capacity. Fatty acids play key roles in signaling and in the production of mediators in the allergic and inflammatory pathways. The western diet leads to a disproportionate ω-6:ω-3 ratio, with drastically increased ω-6 levels. To counteract this, consumption of fish and fish oil and the use of dietary oils with anti-inflammatory properties such as olive and sesame oil can increase ω-3 and decrease ω-6 levels. Increasing vitamin intake, lowering LDL cholesterol levels, and limiting consumption of oxidized lipids can help reduce the risk of asthma and the exacerbation of asthmatic symptoms. These dietary changes can be achieved by increasing intake of fruits, vegetables, nuts, oily fish, seeds, animal-related foods (eggs, liver), cheeses, grains, oats, and seeds, and decreasing consumption of fried foods (especially fried in reused oils), fast foods, and heavily processed foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Maslan, J., & Mims, J. W. (2014). What is asthma? Pathophysiology, demographics, and health care costs. Otolaryngologic Clinics of North America, 47(1), 13–22. https://doi.org/10.1016/j.otc.2013.09.010.

    Article  PubMed  Google Scholar 

  2. Holgate, S. T. (2010). A brief history of asthma and its mechanisms to modern concepts of disease pathogenesis. Allergy, Asthma & Immunology Research, 2(3), 165–171. https://doi.org/10.4168/aair.2010.2.3.165.

    Article  CAS  Google Scholar 

  3. Mims, J. W. (2015). Asthma: definitions and pathophysiology. International Forum of Allergy & Rhinology, 5(Suppl 1), S2–S6. https://doi.org/10.1002/alr.21609.

    Article  Google Scholar 

  4. Kuruvilla, M. E., Lee, F. E., & Lee, G. B. (2019). Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clinical Reviews In Allergy & Immunology, 56(2), 219–233. https://doi.org/10.1007/s12016-018-8712-1.

    Article  Google Scholar 

  5. King-Biggs, M. B. (2019). Asthma. Annals of Internal Medicine, 171(7), ITC49–ITC64. https://doi.org/10.7326/AITC201910010.

    Article  Google Scholar 

  6. Moraes, T. J., Sears, M. R., & Subbarao, P. (2018). Epidemiology of asthma and influence of ethnicity. Seminars in Respiratory and Critical Care Medicine, 39(1), 3–11. https://doi.org/10.1055/s-0037-1618568.

    Article  PubMed  Google Scholar 

  7. Barnes, P. J. (2017). Cellular and molecular mechanisms of asthma and COPD. Clinical Science, 131(13), 1541–1558. https://doi.org/10.1042/CS20160487.

    Article  CAS  PubMed  Google Scholar 

  8. Varraso, R. (2012). Nutrition and asthma. Current Allergy and Asthma Reports, 12(3), 201–210. https://doi.org/10.1007/s11882-012-0253-8.

    Article  CAS  PubMed  Google Scholar 

  9. Wood, L. G. (2017). Diet, obesity, and asthma. Annals of the American Thoracic Society, 14(Suppl 5), S332–S338. https://doi.org/10.1513/AnnalsATS.201702-124AW.

    Article  PubMed  Google Scholar 

  10. Dixon, A. E., & Holguin, F. (2019). Diet and metabolism in the evolution of asthma and obesity. Clinics in Chest Medicine, 40(1), 97–106. https://doi.org/10.1016/j.ccm.2018.10.007.

    Article  PubMed  Google Scholar 

  11. Trompette, A., Gollwitzer, E. S., Yadava, K., Sichelstiel, A. K., Sprenger, N., Ngom-Bru, C., Blanchard, C., Junt, T., Nicod, L. P., Harris, N. L., & Marsland, B. J. (2014). Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nature Medicine, 20(2), 159–166. https://doi.org/10.1038/nm.3444.

    Article  CAS  PubMed  Google Scholar 

  12. Halnes, I., Baines, K. J., Berthon, B. S., MacDonald-Wicks, L. K., Gibson, P. G., & Wood, L. G. (2017). Soluble fibre meal challenge reduces airway inflammation and expression of GPR43 and GPR41 in asthma. Nutrients, 9(1), 57. https://doi.org/10.3390/nu9010057.

    Article  CAS  PubMed Central  Google Scholar 

  13. Chen, J. H., Huang, P. H., Lee, C. C., Chen, P. Y., & Chen, H. C. (2013). A bovine whey protein extract can induce the generation of regulatory T cells and shows potential to alleviate asthma symptoms in a murine asthma model. The British Journal of Nutrition, 109(10), 1813–1820. https://doi.org/10.1017/S0007114512003947.

    Article  CAS  PubMed  Google Scholar 

  14. Hosseini, B., Berthon, B. S., Wark, P., & Wood, L. G. (2017). Effects of fruit and vegetable consumption on risk of asthma, wheezing and immune responses: a systematic review and meta-analysis. Nutrients, 9(4), 341. https://doi.org/10.3390/nu9040341.

    Article  CAS  PubMed Central  Google Scholar 

  15. O'Keefe, J. H., DiNicolantonio, J. J., & Lavie, C. J. (2018). Coffee for cardioprotection and longevity. Progress in Cardiovascular Diseases, 61(1), 38–42. https://doi.org/10.1016/j.pcad.2018.02.002.

    Article  PubMed  Google Scholar 

  16. Ahmed, H. M. (2018). Ethnomedicinal, phytochemical and pharmacological investigations of Perilla frutescens (L.) Britt. Molecules, 24(1), 102. https://doi.org/10.3390/molecules24010102.

    Article  CAS  PubMed Central  Google Scholar 

  17. Zilaee, M., Hosseini, S. A., Jafarirad, S., Abolnezhadian, F., Cheraghian, B., Namjoyan, F., & Ghadiri, A. (2019). An evaluation of the effects of saffron supplementation on the asthma clinical symptoms and asthma severity in patients with mild and moderate persistent allergic asthma: a double-blind, randomized placebo-controlled trial. Respiratory Research, 20(1), 39. https://doi.org/10.1186/s12931-019-0998-x.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ahmad, M. F., Ahmad, F. A., Ashraf, S. A., Saad, H. H., Wahab, S., Khan, M. I., Ali, M., Mohan, S., Hakeem, K. R., & Athar, M. T. (2021). An updated knowledge of Black seed (Nigella sativa Linn.): review of phytochemical constituents and pharmacological properties. Journal of Herbal Medicine, 25, 100404. https://doi.org/10.1016/j.hermed.2020.100404.

    Article  PubMed  Google Scholar 

  19. Hsieh, C. C., Kuo, C. H., Kuo, H. F., Chen, Y. S., Wang, S. L., Chao, D., Lee, M. S., & Hung, C. H. (2014). Sesamin suppresses macrophage-derived chemokine expression in human monocytes via epigenetic regulation. Food & Function, 5(10), 2494–2500. https://doi.org/10.1039/c4fo00322e.

    Article  CAS  Google Scholar 

  20. Urushidate, S., Matsuzaka, M., Okubo, N., Iwasaki, H., Hasebe, T., Tsuya, R., Iwane, K., Inoue, R., Yamai, K., Danjo, K., Takahashi, I., Umeda, T., Ando, S., Itai, K., & Nakaji, S. (2010). Association between concentration of trace elements in serum and bronchial asthma among Japanese general population. Journal of Trace Elements in Medicine and Biology, 24(4), 236–242. https://doi.org/10.1016/j.jtemb.2010.06.001.

    Article  CAS  PubMed  Google Scholar 

  21. Mao, S., Wu, L., & Shi, W. (2018). Association between trace elements levels and asthma susceptibility. Respiratory Medicine, 145, 110–119. https://doi.org/10.1016/j.rmed.2018.10.028.

    Article  PubMed  Google Scholar 

  22. Hufnagl, K., & Jensen-Jarolim, E. (2019). Does a carrot a day keep the allergy away? Immunology letters, 206, 54–58. https://doi.org/10.1016/j.imlet.2018.10.009.

    Article  CAS  PubMed  Google Scholar 

  23. Marquez, H. A., & Cardoso, W. V. (2016). Vitamin A-retinoid signaling in pulmonary development and disease. Molecular and Cellular Pediatrics, 3(1), 28. https://doi.org/10.1186/s40348-016-0054-6.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Maslova, E., Hansen, S., Strøm, M., Halldorsson, T. I., & Olsen, S. F. (2014). Maternal intake of vitamins A, E and K in pregnancy and child allergic disease: a longitudinal study from the Danish National Birth Cohort. The British Journal of Nutrition, 111(6), 1096–1108. https://doi.org/10.1017/S0007114513003395.

    Article  CAS  PubMed  Google Scholar 

  25. Pfeffer, P. E., & Hawrylowicz, C. M. (2018). Vitamin D in asthma: mechanisms of action and considerations for clinical trials. Chest, 153(5), 1229–1239. https://doi.org/10.1016/j.chest.2017.09.005.

    Article  PubMed  Google Scholar 

  26. Litonjua, A. A. (2012). Fat-soluble vitamins and atopic disease: what is the evidence? The Proceedings of the Nutrition Society, 71(1), 67–74. https://doi.org/10.1017/S002966511100334X.

    Article  CAS  PubMed  Google Scholar 

  27. Stone, Jr, C. A., Cook-Mills, J., Gebretsadik, T., Rosas-Salazar, C., Turi, K., Brunwasser, S. M., Connolly, A., Russell, P., Liu, Z., Costello, K., & Hartert, T. V. (2019). Delineation of the individual effects of vitamin E isoforms on early life incident wheezing. The Journal of Pediatrics, 206, 156–163.e3. https://doi.org/10.1016/j.jpeds.2018.10.045.

    Article  CAS  PubMed  Google Scholar 

  28. Cook-Mills, J., Gebretsadik, T., Abdala-Valencia, H., Green, J., Larkin, E. K., Dupont, W. D., Shu, X. O., Gross, M., Bai, C., Gao, Y. T., Hartman, T. J., Rosas-Salazar, C., & Hartert, T. (2016). Interaction of vitamin E isoforms on asthma and allergic airway disease. Thorax, 71(10), 954–956. https://doi.org/10.1136/thoraxjnl-2016-208494.

    Article  PubMed  Google Scholar 

  29. Guerrera, M. P., Volpe, S. L., & Mao, J. J. (2009). Therapeutic uses of magnesium. American Family Physician, 80(2), 157–162.

    PubMed  Google Scholar 

  30. Norton, R. L., & Hoffmann, P. R. (2012). Selenium and asthma. Molecular Aspects of Medicine, 33(1), 98–106. https://doi.org/10.1016/j.mam.2011.10.003.

    Article  CAS  PubMed  Google Scholar 

  31. Diamant, Z., Aalders, W., Parulekar, A., Bjermer, L., & Hanania, N. A. (2019). Targeting lipid mediators in asthma: time for reappraisal. Current Opinion in Pulmonary Medicine, 25(1), 121–127. https://doi.org/10.1097/MCP.0000000000000544.

    Article  CAS  PubMed  Google Scholar 

  32. Calder, P. C. (2013). Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? British Journal of Clinical Pharmacology, 75(3), 645–662. https://doi.org/10.1111/j.1365-2125.2012.04374.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Monga, N., Sethi, G. S., Kondepudi, K. K., & Naura, A. S. (2020). Lipid mediators and asthma: scope of therapeutics. Biochemical Pharmacology, 179, 113925. https://doi.org/10.1016/j.bcp.2020.113925.

    Article  CAS  PubMed  Google Scholar 

  34. Kytikova, O., Novgorodtseva, T., Denisenko, Y., Antonyuk, M., & Gvozdenko, T. (2019). Pro-resolving lipid mediators in the pathophysiology of asthma. Medicina, 55(6), 284. https://doi.org/10.3390/medicina55060284.

    Article  PubMed Central  Google Scholar 

  35. Miyata, J., & Arita, M. (2015). Role of omega-3 fatty acids and their metabolites in asthma and allergic diseases. Allergology International, 64(1), 27–34. https://doi.org/10.1016/j.alit.2014.08.003.

    Article  CAS  PubMed  Google Scholar 

  36. Adams, S., Lopata, A. L., Smuts, C. M., Baatjies, R., & Jeebhay, M. F. (2018). Relationship between serum omega-3 fatty acid and asthma endpoints. International Journal of Environmental Research and Public Health, 16(1), 43. https://doi.org/10.3390/ijerph16010043.

    Article  CAS  PubMed Central  Google Scholar 

  37. Brannan, J. D., Bood, J., Alkhabaz, A., Balgoma, D., Otis, J., Delin, I., Dahlén, B., Wheelock, C. E., Nair, P., Dahlén, S. E., & O’Byrne, P. M. (2015). The effect of omega-3 fatty acids on bronchial hyperresponsiveness, sputum eosinophilia, and mast cell mediators in asthma. Chest, 147(2), 397–405. https://doi.org/10.1378/chest.14-1214.

    Article  PubMed  Google Scholar 

  38. Rago, D., Rasmussen, M. A., Lee-Sarwar, K. A., Weiss, S. T., Lasky-Su, J., Stokholm, J., Bønnelykke, K., Chawes, B. L., & Bisgaard, H. (2019). Fish-oil supplementation in pregnancy, child metabolomics and asthma risk. EBioMedicine, 46, 399–410. https://doi.org/10.1016/j.ebiom.2019.07.057.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kim, E. K., & Ju, S. Y. (2019). Asthma and dietary intake of fish, seaweeds, and fatty acids in Korean adults. Nutrients, 11(9), 2187. https://doi.org/10.3390/nu11092187.

    Article  CAS  PubMed Central  Google Scholar 

  40. Stoodley, I., Garg, M., Scott, H., Macdonald-Wicks, L., Berthon, B., & Wood, L. (2019). Higher omega-3 index is associated with better asthma control and lower medication dose: a cross-sectional study. Nutrients, 12(1), 74. https://doi.org/10.3390/nu12010074.

    Article  CAS  PubMed Central  Google Scholar 

  41. Hansen, S., Strøm, M., Maslova, E., Dahl, R., Hoffmann, H. J., Rytter, D., Bech, B. H., Henriksen, T. B., Granström, C., Halldorsson, T. I., Chavarro, J. E., Linneberg, A., & Olsen, S. F. (2017). Fish oil supplementation during pregnancy and allergic respiratory disease in the adult offspring. The Journal of Allergy and Clinical Immunology, 139(1), 104–111.e4. https://doi.org/10.1016/j.jaci.2016.02.042.

    Article  CAS  PubMed  Google Scholar 

  42. Bisgaard, H., Stokholm, J., Chawes, B. L., Vissing, N. H., Bjarnadóttir, E., Schoos, A. M., Wolsk, H. M., Pedersen, T. M., Vinding, R. K., Thorsteinsdóttir, S., Følsgaard, N. V., Fink, N. R., Thorsen, J., Pedersen, A. G., Waage, J., Rasmussen, M. A., Stark, K. D., Olsen, S. F., & Bønnelykke, K. (2016). Fish oil-derived fatty acids in pregnancy and wheeze and asthma in offspring. The New England Journal of Medicine, 375(26), 2530–2539. https://doi.org/10.1056/NEJMoa1503734.

    Article  CAS  PubMed  Google Scholar 

  43. Best, K. P., Gold, M., Kennedy, D., Martin, J., & Makrides, M. (2016). Omega-3 long-chain PUFA intake during pregnancy and allergic disease outcomes in the offspring: a systematic review and meta-analysis of observational studies and randomized controlled trials. The American Journal of Clinical Nutrition, 103(1), 128–143. https://doi.org/10.3945/ajcn.115.111104.

    Article  CAS  PubMed  Google Scholar 

  44. Sordillo, J. E., Rifas-Shiman, S. L., Switkowski, K., Coull, B., Gibson, H., Rice, M., Platts-Mills, T., Kloog, I., Litonjua, A. A., Gold, D. R., & Oken, E. (2019). Prenatal oxidative balance and risk of asthma and allergic disease in adolescence. The Journal of Allergy and Clinical Immunology, 144(6), 1534–1541.e5. https://doi.org/10.1016/j.jaci.2019.07.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Øien, T., Schjelvaag, A., Storrø, O., Johnsen, R., & Simpson, M. R. (2019). Fish consumption at one year of age reduces the risk of eczema, asthma and wheeze at six years of age. Nutrients, 11(9), 1969. https://doi.org/10.3390/nu11091969.

    Article  CAS  PubMed Central  Google Scholar 

  46. Zhang, G. Q., Liu, B., Li, J., Luo, C. Q., Zhang, Q., Chen, J. L., Sinha, A., & Li, Z. Y. (2017). Fish intake during pregnancy or infancy and allergic outcomes in children: a systematic review and meta-analysis. Pediatric Allergy and Immunology, 28(2), 152–161. https://doi.org/10.1111/pai.12648.

    Article  PubMed  Google Scholar 

  47. Hansell, A. L., Bakolis, I., Cowie, C. T., Belousova, E. G., Ng, K., Weber-Chrysochoou, C., Britton, W. J., Leeder, S. R., Tovey, E. R., Webb, K. L., Toelle, B. G., & Marks, G. B. (2018). Childhood fish oil supplementation modifies associations between traffic related air pollution and allergic sensitisation. Environmental Health, 17(1), 27. https://doi.org/10.1186/s12940-018-0370-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hsu, D. Z., Liu, C. T., Chu, P. Y., Li, Y. H., Periasamy, S., & Liu, M. Y. (2013). Sesame oil attenuates ovalbumin-induced pulmonary edema and bronchial neutrophilic inflammation in mice. BioMed Research International, 2013, 905670. https://doi.org/10.1155/2013/905670.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Li, L., Piao, H., Zheng, M., Jin, Z., Zhao, L., & Yan, G. (2016). Sesamin attenuates allergic airway inflammation through the suppression of nuclear factor-kappa B activation. Experimental and Therapeutic Medicine, 12(6), 4175–4181. https://doi.org/10.3892/etm.2016.3903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lin, C. H., Shen, M. L., Zhou, N., Lee, C. C., Kao, S. T., & Wu, D. C. (2014). Protective effects of the polyphenol sesamin on allergen-induced T(H)2 responses and airway inflammation in mice. PLoS ONE, 9(4), e96091. https://doi.org/10.1371/journal.pone.0096091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liou, C. J., Chen, Y. L., Yu, M. C., Yeh, K. W., Shen, S. C., & Huang, W. C. (2020). Sesamol alleviates airway hyperresponsiveness and oxidative stress in asthmatic mice. Antioxidants, 9(4), 295. https://doi.org/10.3390/antiox9040295.

    Article  CAS  PubMed Central  Google Scholar 

  52. Lee, S. Y., Bae, C. S., Seo, N. S., Na, C. S., Yoo, H. Y., Oh, D. S., Bae, M. S., Kwon, M. S., Cho, S. S., & Park, D. H. (2019). Camellia japonica oil suppressed asthma occurrence via GATA-3 & IL-4 pathway and its effective and major component is oleic acid. Phytomedicine, 57, 84–94. https://doi.org/10.1016/j.phymed.2018.12.004.

    Article  CAS  PubMed  Google Scholar 

  53. Mazzocchi, A., Leone, L., Agostoni, C., & Pali-Schöll, I. (2019). The secrets of the Mediterranean diet. Does [only] olive oil matter? Nutrients, 11(12), 2941. https://doi.org/10.3390/nu11122941.

    Article  PubMed Central  Google Scholar 

  54. Cazzoletti, L., Zanolin, M. E., Spelta, F., Bono, R., Chamitava, L., Cerveri, I., Garcia-Larsen, V., Grosso, A., Mattioli, V., Pirina, P., & Ferrari, M. (2019). Dietary fats, olive oil and respiratory diseases in Italian adults: a population-based study. Clinical and Experimental Allergy, 49(6), 799–807. https://doi.org/10.1111/cea.13352.

    Article  CAS  PubMed  Google Scholar 

  55. Nagel, G., & Linseisen, J. (2005). Dietary intake of fatty acids, antioxidants and selected food groups and asthma in adults. European Journal of Clinical Nutrition, 59(1), 8–15. https://doi.org/10.1038/sj.ejcn.1602025.

    Article  CAS  PubMed  Google Scholar 

  56. Morvaridi, M., Jafarirad, S., Seyedian, S. S., Alavinejad, P., & Cheraghian, B. (2020). The effects of extra virgin olive oil and canola oil on inflammatory markers and gastrointestinal symptoms in patients with ulcerative colitis. European Journal of Clinical Nutrition, 74(6), 891–899. https://doi.org/10.1038/s41430-019-0549-z.

    Article  CAS  PubMed  Google Scholar 

  57. Antunes, M. M., Godoy, G., Fernandes, I. L., Manin, L. P., Zappielo, C., Masi, L. N., Oliveira, V., Visentainer, J. V., Curi, R., & Bazotte, R. B. (2020). The dietary replacement of soybean oil by canola oil does not prevent liver fatty acid accumulation and liver inflammation in mice. Nutrients, 12(12), 3667. https://doi.org/10.3390/nu12123667.

    Article  CAS  PubMed Central  Google Scholar 

  58. Navarro-Xavier, R. A., de Barros, K. V., de Andrade, I. S., Palomino, Z., Casarini, D. E., & Flor Silveira, V. L. (2016). Protective effect of soybean oil- or fish oil-rich diets on allergic airway inflammation. Journal of Inflammation Research, 9, 79–89. https://doi.org/10.2147/JIR.S102221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Samarasinghe, A. E., Penkert, R. R., Hurwitz, J. L., Sealy, R. E., LeMessurier, K. S., Hammond, C., Dubin, P. J., & Lew, D. B. (2020). Questioning cause and effect: children with severe asthma exhibit high levels of inflammatory biomarkers including beta-hexosaminidase, but low levels of vitamin A and immunoglobulins. Biomedicines, 8(10), 393. https://doi.org/10.3390/biomedicines8100393.

    Article  CAS  PubMed Central  Google Scholar 

  60. Andino, D., Moy, J., & Gaynes, B. I. (2019). Serum vitamin A, zinc and visual function in children with moderate to severe persistent asthma. The Journal of Asthma, 56(11), 1198–1203. https://doi.org/10.1080/02770903.2018.1531992.

    Article  CAS  PubMed  Google Scholar 

  61. Niu, C., Liu, N., Liu, J., Zhang, M., Ying, L., Wang, L., Tian, D., Dai, J., Luo, Z., Liu, E., Zou, L., & Fu, Z. (2016). Vitamin A maintains the airway epithelium in a murine model of asthma by suppressing glucocorticoid-induced leucine zipper. Clinical and Experimental Allergy, 46(6), 848–860. https://doi.org/10.1111/cea.12646.

    Article  CAS  PubMed  Google Scholar 

  62. Solidoro, P., Bellocchia, M., & Facchini, F. (2016). The immunobiological and clinical role of vitamin D in obstructive lung diseases. Minerva Medica, 107(3 Suppl 1), 12–19.

    PubMed  Google Scholar 

  63. Castro, M., King, T. S., Kunselman, S. J., Cabana, M. D., Denlinger, L., Holguin, F., Kazani, S. D., Moore, W. C., Moy, J., Sorkness, C. A., Avila, P., Bacharier, L. B., Bleecker, E., Boushey, H. A., Chmiel, J., Fitzpatrick, A. M., Gentile, D., Hundal, M., Israel, E., & Kraft, M., National Heart, Lung, and Blood Institute’s AsthmaNet. (2014). Effect of vitamin D3 on asthma treatment failures in adults with symptomatic asthma and lower vitamin D levels: the VIDA randomized clinical trial. JAMA, 311(20), 2083–2091. https://doi.org/10.1001/jama.2014.5052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, M., Liu, M., Wang, C., Xiao, Y., An, T., Zou, M., & Cheng, G. (2019). Association between vitamin D status and asthma control: a meta-analysis of randomized trials. Respiratory Medicine, 150, 85–94. https://doi.org/10.1016/j.rmed.2019.02.016.

    Article  PubMed  Google Scholar 

  65. Ozturk Thomas, G., Tutar, E., Tokuc, G., & Oktem, S. (2019). 25-hydroxy vitamin D levels in pediatric asthma patients and its link with asthma severity. Cureus, 11(3), e4302. https://doi.org/10.7759/cureus.4302.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Liu, J., Dong, Y. Q., Yin, J., Yao, J., Shen, J., Sheng, G. J., Li, K., Lv, H. F., Fang, X., & Wu, W. F. (2019). Meta-analysis of vitamin D and lung function in patients with asthma. Respiratory Research, 20(1), 161. https://doi.org/10.1186/s12931-019-1072-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ozkars, M. Y., Keskin, O., Almacioglu, M., Kucukosmanoglu, E., Keskin, M., & Balci, O. (2019). The relationship between serum vitamin D level and asthma. Northern Clinics of Istanbul, 6(4), 334–340. https://doi.org/10.14744/nci.2019.82195.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Litonjua, A. A. (2019). Vitamin D and childhood asthma: causation and contribution to disease activity. Current Opinion in Allergy and Clinical Immunology, 19(2), 126–131. https://doi.org/10.1097/ACI.0000000000000509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jensen, M. E., Murphy, V. E., Gibson, P. G., Mattes, J., & Camargo, Jr, C. A. (2019). Vitamin D status in pregnant women with asthma and its association with adverse respiratory outcomes during infancy. The Journal of Maternal-fetal & Neonatal Medicine, 32(11), 1820–1825. https://doi.org/10.1080/14767058.2017.1419176.

    Article  CAS  Google Scholar 

  70. Adams, S. N., Adgent, M. A., Gebretsadik, T., Hartman, T. J., Vereen, S., Ortiz, C., Tylavsky, F. A., & Carroll, K. N. (2021). Prenatal vitamin D levels and child wheeze and asthma. The Journal of Maternal-fetal & Neonatal Medicine, 34(3), 323–331. https://doi.org/10.1080/14767058.2019.1607286.

    Article  CAS  Google Scholar 

  71. Lewis, E. D., Meydani, S. N., & Wu, D. (2019). Regulatory role of vitamin E in the immune system and inflammation. IUBMB Life, 71(4), 487–494. https://doi.org/10.1002/iub.1976.

    Article  CAS  PubMed  Google Scholar 

  72. Kurti, S. P., Murphy, J. D., Ferguson, C. S., Brown, K. R., Smith, J. R., & Harms, C. A. (2016). Improved lung function following dietary antioxidant supplementation in exercise-induced asthmatics. Respiratory Physiology & Neurobiology, 220, 95–101. https://doi.org/10.1016/j.resp.2015.09.012.

    Article  CAS  Google Scholar 

  73. Larkin, E. K., Gao, Y. T., Gebretsadik, T., Hartman, T. J., Wu, P., Wen, W., Yang, G., Bai, C., Jin, M., Roberts, 2nd, L. J., Gross, M., Shu, X. O., & Hartert, T. V. (2015). New risk factors for adult-onset incident asthma. A nested case-control study of host antioxidant defense. American Journal of Respiratory and Critical Care Medicine, 191(1), 45–53. https://doi.org/10.1164/rccm.201405-0948OC.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wu, H., Zhang, C., Wang, Y., & Li, Y. (2018). Does vitamin E prevent asthma or wheeze in children: a systematic review and meta-analysis. Paediatric Respiratory Reviews, 27, 60–68. https://doi.org/10.1016/j.prrv.2017.08.002.

    Article  PubMed  Google Scholar 

  75. Allan, K. M., Prabhu, N., Craig, L. C., McNeill, G., Kirby, B., McLay, J., Helms, P. J., Ayres, J. G., Seaton, A., Turner, S. W., & Devereux, G. (2015). Maternal vitamin D and E intakes during pregnancy are associated with asthma in children. The European Respiratory Journal, 45(4), 1027–1036. https://doi.org/10.1183/09031936.00102214.

    Article  CAS  PubMed  Google Scholar 

  76. Devereux, G., Craig, L., Seaton, A., & Turner, S. (2019). Maternal vitamin D and E intakes in pregnancy and asthma to age 15 years: a cohort study. Pediatric Pulmonology, 54(1), 11–19. https://doi.org/10.1002/ppul.24184.

    Article  PubMed  Google Scholar 

  77. Feingold, K. R. Introduction to Lipids and Lipoproteins. (2021). In: K. R. Feingold, B. Anawalt, A. Boyce, G. Chrousos, WW. de Herder, K. Dhatariya, K. Dungan, A. Grossman, JM. Hershman, J. Hofland, S. Kalra, G. Kaltsas, C. Koch, P. Kopp, M. Korbonits, C.S. Kovacs, W. Kuohung, B. Laferrère, E.A. McGee, R. McLachlan, J.E. Morley, M. New, J. Purnell, R. Sahay, F. Singer, C.A. Stratakis, D. L. Trence, D.P. Wilson, (eds). South Dartmouth (MA): MDText.com, Inc.

  78. Staprans, I., Pan, X. M., Rapp, J. H., & Feingold, K. R. (2005). The role of dietary oxidized cholesterol and oxidized fatty acids in the development of atherosclerosis. Molecular Nutrition & Food Research, 49(11), 1075–1082. https://doi.org/10.1002/mnfr.200500063.

    Article  CAS  Google Scholar 

  79. Ramaraju, K., Krishnamurthy, S., Maamidi, S., Kaza, A. M., & Balasubramaniam, N. (2013). Is serum cholesterol a risk factor for asthma? Lung India, 30(4), 295–301. https://doi.org/10.4103/0970-2113.120604.

    Article  PubMed  Google Scholar 

  80. Stokes, K. Y., Cooper, D., Tailor, A., & Granger, D. N. (2002). Hypercholesterolemia promotes inflammation and microvascular dysfunction: role of nitric oxide and superoxide. Free Radical Biology & Medicine, 33(8), 1026–1036. https://doi.org/10.1016/s0891-5849(02)01015-8.

    Article  CAS  Google Scholar 

  81. Al-Shawwa, B., Al-Huniti, N., Titus, G., & Abu-Hasan, M. (2006). Hypercholesterolemia is a potential risk factor for asthma. The Journal of Asthma, 43(3), 231–233. https://doi.org/10.1080/02770900600567056.

    Article  CAS  PubMed  Google Scholar 

  82. Schäfer, T., Ruhdorfer, S., Weigl, L., Wessner, D., Heinrich, J., Döring, A., Wichmann, H. E., & Ring, J. (2003). Intake of unsaturated fatty acids and HDL cholesterol levels are associated with manifestations of atopy in adults. Clinical and Experimental Allergy, 33(10), 1360–1367. https://doi.org/10.1046/j.1365-2222.2003.01780.x.

    Article  PubMed  Google Scholar 

  83. Yiallouros, P. K., Savva, S. C., Kolokotroni, O., Behbod, B., Zeniou, M., Economou, M., Chadjigeorgiou, C., Kourides, Y. A., Tornaritis, M. J., Lamnisos, D., Middleton, N., & Milton, D. K. (2012). Low serum high-density lipoprotein cholesterol in childhood is associated with adolescent asthma. Clinical and Experimental Allergy, 42(3), 423–432. https://doi.org/10.1111/j.1365-2222.2011.03940.x.

    Article  CAS  PubMed  Google Scholar 

  84. Fessler, M. B., Massing, M. W., Spruell, B., Jaramillo, R., Draper, D. W., Madenspacher, J. H., Arbes, S. J., Calatroni, A., & Zeldin, D. C. (2009). Novel relationship of serum cholesterol with asthma and wheeze in the United States. The Journal of Allergy and Clinical Immunology, 124(5), 967–74.e1-15. https://doi.org/10.1016/j.jaci.2009.08.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Andersen, C. J. (2018). Impact of dietary cholesterol on the pathophysiology of infectious and autoimmune disease. Nutrients, 10(6), 764. https://doi.org/10.3390/nu10060764.

    Article  CAS  PubMed Central  Google Scholar 

  86. Gowdy, K. M., & Fessler, M. B. (2013). Emerging roles for cholesterol and lipoproteins in lung disease. Pulmonary Pharmacology & Therapeutics, 26(4), 430–437. https://doi.org/10.1016/j.pupt.2012.06.002.

    Article  CAS  Google Scholar 

  87. Gao, S., Wang, C., Li, W., Shu, S., Zhou, J., Yuan, Z., & Wang, L. (2019). Allergic asthma aggravated atherosclerosis increases cholesterol biosynthesis and foam cell formation in apolipoprotein E-deficient mice. Biochemical and Biophysical Research Communications, 519(4), 861–867. https://doi.org/10.1016/j.bbrc.2019.09.085.

    Article  CAS  PubMed  Google Scholar 

  88. Tuleta, I., Skowasch, D., Aurich, F., Eckstein, N., Schueler, R., Pizarro, C., Schahab, N., Nickenig, G., Schaefer, C., & Pingel, S. (2017). Asthma is associated with atherosclerotic artery changes. PLoS ONE, 12(10), e0186820. https://doi.org/10.1371/journal.pone.0186820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Han, W., Li, J., Tang, H., & Sun, L. (2017). Treatment of obese asthma in a mouse model by simvastatin is associated with improving dyslipidemia and decreasing leptin level. Biochemical and Biophysical Research Communications, 484(2), 396–402. https://doi.org/10.1016/j.bbrc.2017.01.135.

    Article  CAS  PubMed  Google Scholar 

  90. Dobarganes, C., & Márquez-Ruiz, G. (2003). Oxidized fats in foods. Current Opinion in Clinical Nutrition and Metabolic Care, 6(2), 157–163. https://doi.org/10.1097/00075197-200303000-00004.

    Article  CAS  PubMed  Google Scholar 

  91. Mozuraityte, R., Kristinova, V., & Rustad, T. (2016). Oxidation of food components. Encyclopedia of Food and Health, 186–190. https://doi.org/10.1016/b978-0-12-384947-2.00508-0.

  92. Nwanguma, B. C., Achebe, A. C., Ezeanyika, L. U., & Eze, L. C. (1999). Toxicity of oxidized fats II: tissue levels of lipid peroxides in rats fed a thermally oxidized corn oil diet. Food and Chemical Toxicology, 37(4), 413–416. https://doi.org/10.1016/s0278-6915(99)00023-x.

    Article  CAS  PubMed  Google Scholar 

  93. Huang, W. C., Kang, Z. C., Li, Y. J., & Shaw, H. M. (2009). Effects of oxidized frying oil on proteins related to alpha-tocopherol metabolism in rat liver. Journal of Clinical Biochemistry and Nutrition, 45(1), 20–28. https://doi.org/10.3164/jcbn08-250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hayam, I., Cogan, U., & Mokady, S. (1997). Enhanced peroxidation of proteins of the erythrocyte membrane and of muscle tissue by dietary oxidized oil. Bioscience, Biotechnology, and Biochemistry, 61(6), 1011–1012. https://doi.org/10.1271/bbb.61.1011.

    Article  CAS  PubMed  Google Scholar 

  95. Ogino, H., Sakazaki, F., Okuno, T., Arakawa, T., & Ueno, H. (2015). Oxidized dietary oils enhance immediate- and/or delayed-type allergic reactions in BALB/c mice. Allergology International, 64(1), 66–72. https://doi.org/10.1016/j.alit.2014.07.004.

    Article  CAS  PubMed  Google Scholar 

  96. Lin, B. F., Lai, C. C., Lin, K. W., & Chiang, B. L. (2000). Dietary oxidized oil influences the levels of type 2 T-helper cell-related antibody and inflammatory mediators in mice. The British Journal of Nutrition, 84(6), 911–917.

    Article  CAS  Google Scholar 

  97. Svedahl, S., Svendsen, K., Qvenild, T., Sjaastad, A. K., & Hilt, B. (2009). Short term exposure to cooking fumes and pulmonary function. Journal of Occupational Medicine and Toxicology, 4, 9. https://doi.org/10.1186/1745-6673-4-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Oldenburger, D., Maurer, W. J., Beltaos, E., & Magnin, G. E. (1972). Inhalation lipoid pneumonia from burning fats. A newly recognized industrial hazard. JAMA, 222(10), 1288–1289.

    Article  CAS  Google Scholar 

  99. Svendsen, K., Sjaastad, A. K., & Sivertsen, I. (2003). Respiratory symptoms in kitchen workers. American Journal of Industrial Medicine, 43(4), 436–439. https://doi.org/10.1002/ajim.10197.

    Article  PubMed  Google Scholar 

  100. Ng, T. P., Hui, K. P., & Tan, W. C. (1993). Respiratory symptoms and lung function effects of domestic exposure to tobacco smoke and cooking by gas in non-smoking women in Singapore. Journal of Epidemiology and Community Health, 47(6), 454–458. https://doi.org/10.1136/jech.47.6.454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zahir, E., Saeed, R., Hameed, M. A., & Yousuf, A. (2017). Study of physicochemical properties of edible oil and evaluation of frying oil quality by Fourier transform-infrared (FT-IR) spectroscopy. Arabian Journal of Chemistry, 10, S3870–S3876. https://doi.org/10.1016/j.arabjc.2014.05.025.

    Article  CAS  Google Scholar 

  102. Cohn, J. S. (2002). Oxidized fat in the diet, postprandial lipaemia and cardiovascular disease. Current Opinion in Lipidology, 13(1), 19–24. https://doi.org/10.1097/00041433-200202000-00004.

    Article  CAS  PubMed  Google Scholar 

  103. Ursini, F., Zamburlini, A., Cazzolato, G., Maiorino, M., Bon, G. B., & Sevanian, A. (1998). Postprandial plasma lipid hydroperoxides: a possible link between diet and atherosclerosis. Free Radical Biology & Medicine, 25(2), 250–252. https://doi.org/10.1016/s0891-5849(98)00044-6.

    Article  CAS  Google Scholar 

  104. Alwarith, J., Kahleova, H., Crosby, L., Brooks, A., Brandon, L., Levin, S. M., & Barnard, N. D. (2020). The role of nutrition in asthma prevention and treatment. Nutrition Reviews, 78(11), 928–938. https://doi.org/10.1093/nutrit/nuaa005.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Guilleminault, L., Williams, E. J., Scott, H. A., Berthon, B. S., Jensen, M., & Wood, L. G. (2017). Diet and asthma: is it time to adapt our message? Nutrients, 9(11), 1227 https://doi.org/10.3390/nu9111227.

    Article  CAS  PubMed Central  Google Scholar 

  106. Spector, S. L., & Surette, M. E. (2003). Diet and asthma: has the role of dietary lipids been overlooked in the management of asthma? Annals of Allergy, Asthma & Immunology, 90(4), 371–421. https://doi.org/10.1016/S1081-1206(10)61817-0.

    Article  CAS  Google Scholar 

  107. Wendell, S. G., Baffi, C., & Holguin, F. (2014). Fatty acids, inflammation, and asthma. The Journal of Allergy and Clinical Immunology, 133(5), 1255–1264. https://doi.org/10.1016/j.jaci.2013.12.1087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Devereux, G., & Seaton, A. (2005). Diet as a risk factor for atopy and asthma. The Journal of Allergy and Clinical Immunology, 115(6), 1109–1118. https://doi.org/10.1016/j.jaci.2004.12.1139.

    Article  PubMed  Google Scholar 

  109. Parr, C. L., Magnus, M. C., Karlstad, Ø., Holvik, K., Lund-Blix, N. A., Haugen, M., Page, C. M., Nafstad, P., Ueland, P. M., London, S. J., Håberg, S. E., & Nystad, W. (2018). Vitamin A and D intake in pregnancy, infant supplementation, and asthma development: the Norwegian Mother and Child Cohort. The American Journal of Clinical Nutrition, 107(5), 789–798. https://doi.org/10.1093/ajcn/nqy016.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Chen, Y. C., Tung, K. Y., Tsai, C. H., Su, M. W., Wang, P. C., Chen, C. H., & Lee, Y. L. (2013). Lipid profiles in children with and without asthma: interaction of asthma and obesity on hyperlipidemia. Diabetes & Metabolic Syndrome, 7(1), 20–25. https://doi.org/10.1016/j.dsx.2013.02.026.

    Article  Google Scholar 

  111. Ko, S. H., Jeong, J., Baeg, M. K., Han, K. D., Kim, H. S., Yoon, J. S., Kim, H. H., Kim, J. T., & Chun, Y. H. (2018). Lipid profiles in adolescents with and without asthma: Korea National Health and nutrition examination survey data. Lipids in Health and Disease, 17(1), 158. https://doi.org/10.1186/s12944-018-0807-4.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Vieira, S. A., McClements, D. J., & Decker, E. A. (2015). Challenges of utilizing healthy fats in foods. Advances in Nutrition, 6(3), 309S–317SS. https://doi.org/10.3945/an.114.006965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support provided by the Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, and the Dorothy M. Davis Heart & Lung Research Institute of the Ohio State University Wexner Medical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narasimham L. Parinandi.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

This study is dedicated to Professor Viswanathan Natarajan of the University of Illinois at Chicago for his 50 years of research contribution to lipidology and biochemistry and mentoring students, postdoctoral fellows, and faculty.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliver, P.J., Arutla, S., Yenigalla, A. et al. Lipid Nutrition in Asthma. Cell Biochem Biophys 79, 669–694 (2021). https://doi.org/10.1007/s12013-021-01020-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-021-01020-w

Keywords

Navigation