Skip to main content

Advertisement

Log in

Molecular Basis of P131 Cryptosporidial-IMPDH Selectivity—A Structural, Dynamical and Mechanistic Stance

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Cryptosporidiosis accounts for a surge in infant (<5 years) mortality and morbidity. To date, several drug discovery efforts have been put in place to develop effective therapeutic options against the causative parasite. Based on a recent report, P131 spares inosine monophosphate dehydrogenase (IMPDH) in a eukaryotic model (mouse IMPDH (mIMPDH)) while binding selectively to the NAD+ site in Cryptosporidium parvum (CpIMPDH). However, no structural detail exists on the underlining mechanisms of P131-CpIMPDH selective targeting till date. To this effect, we investigate the selective inhibitory dynamics of P131 in CpIMPDH relative to mIMPDH via molecular biocomputation methods. Pairwise sequence alignment revealed prominent variations at the NAD+ binding regions of both proteins that accounted for disparate P131 binding activities. The influence of these variations was further revealed by the MM/PBSA energy estimations coupled with per-residue energy decomposition which monitored the systematic binding of the compound. Furthermore, relative high-affinity interactions occurred at the CpIMPDH NAD+ site which were majorly mediated by SER22, VAL24, PRO26, SER354, GLY357, and TYR358 located on chain D. These residues are unique to the parasite IMPDH form and not in the eukaryotic protein, highlighting variations that account for preferential P131 binding. Molecular insights provided herein corroborate previous experimental reports and further underpin the basis of CpIMPDH inhibitor selectivity. Findings from this study could present attractive prospects toward the design of novel anticryptosporidials with improved selectivity and binding affinity against parasitic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bouzid, M., Kintz, E., & Hunter, P. R. (2018). Risk factors for Cryptosporidium infection in low and middle income countries: a systematic review and meta-analysis. PLoS Neglected Tropical Diseases, 12(6). https://doi.org/10.1371/journal.pntd.0006553.

  2. Fischer Walker, C. L., Aryee, M. J., Boschi-Pinto, C., & Black, R. E. (2012). Estimating diarrhea mortality among young children in low and middle income countries. PLoS ONE. https://doi.org/10.1371/journal.pone.0029151.

  3. Valentiner-Branth, P., Steinsland, H., Fischer, T. K., Perch, M., Scheutz, F., Dias, F., & Sommerfelt, H. (2003). Cohort study of Guinean children: incidence, pathogenicity, conferred protection, and attributable risk for enteropathogens during the first 2 years of life. Journal of Clinical Microbiology, 41(9), 4238–4245. https://doi.org/10.1128/JCM.41.9.4238-4245.2003.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Liu, L., Johnson, H. L., Cousens, S., Perin, J., Scott, S., Lawn, J. E., & Black, R. E. (2012). Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. The Lancet, 379(9832), 2151–2161. https://doi.org/10.1016/S0140-6736(12)60560-1.

    Article  Google Scholar 

  5. Kotloff, K. L., Nataro, J. P., Blackwelder, W. C., Nasrin, D., Farag, T. H., Panchalingam, S., & Levine, M. M. (2013). Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. The Lancet, 382(9888), 209–222. https://doi.org/10.1016/S0140-6736(13)60844-2.

    Article  Google Scholar 

  6. Sow, S. O., Muhsen, K., Nasrin, D., Blackwelder, W. C., Wu, Y., & Farag, T. H. et al. (2016). The burden of cryptosporidium diarrheal disease among children <24 months of age in moderate/high mortality regions of sub-Saharan Africa and South Asia, utilizing data from the global enteric multicenter study (GEMS). PLoS Neglected Tropical Diseases, 10(5), e0004729. https://doi.org/10.1371/journal.pntd.0004729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Odeniran, P. O., & Ademola, I. O. (2019). Epidemiology of Cryptosporidium infection in different hosts in Nigeria: a meta-analysis. Parasitology International, 71(May), 194–206. https://doi.org/10.1016/j.parint.2019.04.007.

    Article  PubMed  Google Scholar 

  8. Delahoy, M. J., Omore, R., Ayers, T. L., Schilling, K. A., Blackstock, A. J., Ochieng, J. B., … O’Reilly, C. E. (2018). Clinical, environmental, and behavioral characteristics associated with Cryptosporidium infection among children with moderate-to-severe diarrhea in rural western Kenya, 2008–2012: The Global Enteric Multicenter Study (GEMS). PLoS Neglected Tropical Diseases, 12(7). https://doi.org/10.1371/journal.pntd.0006640.

  9. Umejiego, N. N., Li, C., Riera, T., Hedstrom, L., & Striepen, B. (2004). Cryptosporidium parvum IMP dehydrogenase: identification of functional, structural, and dynamic properties that can be exploited for drug design. Journal of Biological Chemistry, 279(39), 40320–40327. https://doi.org/10.1074/jbc.M407121200.

    Article  CAS  Google Scholar 

  10. Putignani, L., & Menichella, D. (2010). Global distribution, public health and clinical impact of the protozoan pathogen cryptosporidium. Interdisciplinary Perspectives on Infectious Diseases, 2010. https://doi.org/10.1155/2010/753512.

  11. O’connor, R. M., Shaffie, R., Kang, G., & Ward, H. D. (2011). Cryptosporidiosis in patients with HIV/AIDS. AIDS, 25(5), 549–60. https://doi.org/10.1097/QAD.0b013e3283437e88.

    Article  PubMed  Google Scholar 

  12. Chalmers, R. M., & Davies, A. P. (2010). Minireview: clinical cryptosporidiosis. Experimental Parasitology, 124(1), 138–46. https://doi.org/10.1016/j.exppara.2009.02.003.

    Article  PubMed  Google Scholar 

  13. Kang, G., Sarkar, R., & Desai, N. (2012). Cryptosporidiosis: an under-recognized public health problem. Tropical Parasitology, 2(2), 91 https://doi.org/10.4103/2229-5070.105173.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mor, S., & Tzipori, S. (2008). Cryptosporidiosis in children in sub-Saharan Africa: A lingering challenge. Clinical Infectious Diseases, 47(7), 915–921. https://doi.org/10.1086/591539.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Aldeyarbi, H. M., Abu El-Ezz, N. M. T., & Karanis, P. (2016). Cryptosporidium and cryptosporidiosis: the African perspective. Environmental Science and Pollution Research, 23(14), 13811–13821. https://doi.org/10.1007/s11356-016-6746-6.

    Article  CAS  PubMed  Google Scholar 

  16. Abdool Karim, S. S., Churchyard, G. J., Karim, Q. A., & Lawn, S. D. (2009). HIV infection and tuberculosis in South Africa: an urgent need to escalate the public health response. Lancet, 374(9693), 921–33. https://doi.org/10.1016/S0140-6736(09)60916-8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Checkley, W., White Jr, A. C., & Jaganath, D. et al. (2015). A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for cryptosporidium. The Lancet Infectious Diseases, 15(1), 85–94. https://doi.org/10.1016/s1473-3099(14)70772-8.

    Article  PubMed  Google Scholar 

  18. Mead, J. R. (2002). Cryptosporidiosis and the challenges of chemotherapy. Drug Resistance Updates: Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 5(1), 47–57. http://www.ncbi.nlm.nih.gov/pubmed/12127863.

  19. Lee, S., Harwood, M., Girouard, D., Meyers, M. J., Campbell, M. A., Beamer, G., & Tzipori, S. (2017). The therapeutic efficacy of azithromycin and nitazoxanide in the acute pig model of Cryptosporidium hominis. PLoS ONE, 12(10), e0185906. https://doi.org/10.1371/journal.pone.0185906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cabada, M. M., & White, A. C. (2010). Treatment of cryptosporidiosis: do we know what we think we know? Current Opinion in Infectious Diseases, 23(5), 494–9. https://doi.org/10.1097/QCO.0b013e32833de052.

    Article  CAS  PubMed  Google Scholar 

  21. Sparks, H., Nair, G., Castellanos-Gonzalez, A., & White, A. C. (2015). Treatment of Cryptosporidium: what we know, gaps, and the way forward. Current Tropical Medicine Reports, 2(3), 181–187. https://doi.org/10.1007/s40475-015-0056-9.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fan, X., Upadhyaya, B., Wu, L., Koh, C., Santín-Durán, M., Pittaluga, S., & Jain, A. (2012). CD40 agonist antibody mediated improvement of chronic Cryptosporidium infection in patients with X-linked hyper IgM syndrome. Clinical Immunology, 143(2), 152–161. https://doi.org/10.1016/j.clim.2012.01.014.

    Article  CAS  PubMed  Google Scholar 

  23. Hewitt, R. G., Yiannoutsos, C. T., Higgs, E. S., Carey, J. T., Geiseler, P. J., Soave, R., & Bender, J. F. (2000). Paromomycin: no more effective than placebo for treatment of cryptosporidiosis in patients with advanced human immunodeficiency virus infection. AIDS Clinical Trial Group. Clinical Infectious Diseases, 31(4), 1084–92. https://doi.org/10.1086/318155.

    Article  CAS  PubMed  Google Scholar 

  24. Hussien, S. M. M., Abdella, O. H., Abu-Hashim, A. H., Aboshiesha, G. A., Taha, M. A. A., El-Shemy, A. S., & El-Bader, M. M. (2013). Comparative study between the effect of nitazoxanide and paromomycine in treatment of cryptosporidiosis in hospitalized children. Journal of the Egyptian Society of Parasitology, 43(2), 463–470. http://www.ncbi.nlm.nih.gov/pubmed/24260825.

  25. Allam, A. F., & Shehab, A. Y. (2002). Efficacy of azithromycin, praziquantel and mirazid in treatment of cryptosporidiosis in school children. Journal of the Egyptian Society of Parasitology, 32(3), 969–978. http://www.ncbi.nlm.nih.gov/pubmed/12512828.

  26. Raja, K., Abbas, Z., Hassan, S. M., Luck, N. H., Aziz, T., & Mubarak, M. (2014). Prevalence of cryptosporidiosis in renal transplant recipients presenting with acute diarrhea at a single center in Pakistan. Journal of Nephropathology, 3(4), 127–131. https://doi.org/10.12860/jnp.2014.25.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Holmberg, S. D., Moorman, A. C., Von Bargen, J. C., Palella, F. J., Loveless, M. O., Ward, D. J., & Navin, T. R. (1998). Possible effectiveness of clarithromycin and rifabutin for cryptosporidiosis chemoprophylaxis in HIV disease. HIV Outpatient Study (HOPS) Investigators. JAMA, 279(5), 384–386. https://doi.org/10.1001/jama.279.5.384.

    Article  CAS  PubMed  Google Scholar 

  28. Amenta, M., Dalle Nogare, E. R., Colomba, C., Prestileo, T. S., Di Lorenzo, F., Fundaro, S., & Ferrieri, A. (1999). Intestinal protozoa in HIV-infected patients: effect of rifaximin in Cryptosporidium parvum and Blastocystis hominis infections. Journal of Chemotherapy, 11(5), 391–395. https://doi.org/10.1179/joc.1999.11.5.391.

    Article  CAS  PubMed  Google Scholar 

  29. Gathe, J. C., Mayberry, C., Clemmons, J., & Nemecek, J. (2008). Resolution of severe cryptosporidial diarrhea with rifaximin in patients with AIDS. Journal of Acquired Immune Deficiency Syndromes, 48(3), 363–364. https://doi.org/10.1097/QAI.0b013e31817beb78.

    Article  PubMed  Google Scholar 

  30. Legrand, F., Grenouillet, F., Larosa, F., Dalle, F., Saas, P., Millon, L., & Rohrlich, P. S. (2011). Diagnosis and treatment of digestive cryptosporidiosis in allogeneic haematopoietic stem cell transplant recipients: a prospective single centre study. Bone Marrow Transplantation, 46(6), 858–862. https://doi.org/10.1038/bmt.2010.200.

    Article  CAS  PubMed  Google Scholar 

  31. Bonatti, H., Barroso, L. F., Sawyer, R. G., Kotton, C. N., & Sifri, C. D. (2012). Cryptosporidium enteritis in solid organ transplant recipients: Multicenter retrospective evaluation of 10 cases reveals an association with elevated tacrolimus concentrations. Transplant Infectious Disease, 14(6), 635–648. https://doi.org/10.1111/j.1399-3062.2012.00719.x.

    Article  CAS  PubMed  Google Scholar 

  32. Krause, I., Amir, J., Cleper, R., Dagan, A., Behor, J., Samra, Z., & Davidovits, M. (2012). Cryptosporidiosis in children following solid organ transplantation. Pediatric Infectious Disease Journal, 31(11), 1135–1138. https://doi.org/10.1097/INF.0b013e31826780f7.

    Article  Google Scholar 

  33. Chen, L., Wilson, D. J., Xu, Y., Aldrich, C. C., Felczak, K., Sham, Y. Y., & Pankiewicz, K. W. (2010). Triazole-linked inhibitors of inosine monophosphate dehydrogenase from human and mycobacterium tuberculosis. Journal of Medicinal Chemistry, 53(12), 4768–4778. https://doi.org/10.1021/jm100424m.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gollapalli, D. R., MacPherson, I. S., Liechti, G., Gorla, S. K., Goldberg, J. B., & Hedstrom, L. (2010). Structural determinants of inhibitor selectivity in prokaryotic IMP dehydrogenases. Chemistry and Biology, 17(10), 1084–1091. https://doi.org/10.1016/j.chembiol.2010.07.014.

    Article  CAS  PubMed  Google Scholar 

  35. Hedstrom, L., Liechti, G., Goldberg, J. B., & Gollapalli, D. R. (2011). The antibiotic potential of prokaryotic IMP dehydrogenase inhibitors. Current Medicinal Chemistry, 18(13), 1909–18. https://doi.org/10.2174/092986711795590129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Usha, V., Hobrath, J. V., Gurcha, S. S., Reynolds, R. C., & Besra, G. S. (2012). Identification of novel Mt-Guab2 inhibitor series active against M. tuberculosis. PLoS ONE, 7(3). https://doi.org/10.1371/journal.pone.0033886.

  37. Wang, W., & Hedstrom, L. (1997). Kinetic mechanism of human inosine 5’-monophosphate dehydrogenase type II: random addition of substrates and ordered release of products. Biochemistry, 36(28), 8479–8483. https://doi.org/10.1021/bi970226n.

    Article  CAS  PubMed  Google Scholar 

  38. Zimmermann, A., Gu, J. J., Spychala, J., & Mitchell, B. S. (1996). Inosine monophosphate dehydrogenase expression: transcriptional regulation of the type I and type II genes. In Advances in Enzyme Regulation (Vol. 36, pp. 75–84). Elsevier Ltd. https://doi.org/10.1016/0065-2571(95)00012-7.

  39. Striepen, B., Pruijssers, A. J. P., Huang, J., Li, C., Gubbels, M. J., Umejiego, N. N., & Kissinger, J. C. (2004). Gene transfer in the evolution of parasite nucleotide biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 3154–3159. https://doi.org/10.1073/pnas.0304686101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, R. G., Evans, G., Rotella, F. J., Westbrook, E. M., Beno, D., Huberman, E., & Collart, F. R. (1999). Characteristics and crystal structure of bacterial inosine-5’-monophosphate dehydrogenase. Biochemistry, 38(15), 4691–4700. https://doi.org/10.1021/bi982858v.

    Article  CAS  PubMed  Google Scholar 

  41. Kim, Y., Makowska-Grzyska, M., Gorla, S. K., Gollapalli, D. R., Cuny, G. D., Joachimiak, A., & Hedstrom, L. (2015). Structure of Cryptosporidium IMP dehydrogenase bound to an inhibitor with in vivo antiparasitic activity. Acta Crystallographica Section F: Structural Biology Communications, 71, 531–538. https://doi.org/10.1107/S2053230X15000187.

    Article  CAS  Google Scholar 

  42. Makowska-Grzyska, M., Kim, Y., Maltseva, N., Osipiuk, J., Gu, M., Zhang, M., & Joachimiak, A. (2015). A novel cofactor-binding mode in bacterial IMP dehydrogenases explains inhibitor selectivity. Journal of Biological Chemistry, 290(9), 5893–5911. https://doi.org/10.1074/jbc.M114.619767.

    Article  CAS  Google Scholar 

  43. Hedstrom, L. (2009). IMP dehydrogenase: structure, mechanism, and inhibition. Chemical Reviews, 109(7), 2903–2928. https://doi.org/10.1021/cr900021w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Felczak, K., Chen, L., Wilson, D., Williams, J., Vince, R., Petrelli, R., & Pankiewicz, K. W. (2011). Cofactor-type inhibitors of inosine monophosphate dehydrogenase via modular approach: Targeting the pyrophosphate binding sub-domain. Bioorganic and Medicinal Chemistry, 19(5), 1594–1605. https://doi.org/10.1016/j.bmc.2011.01.042.

    Article  CAS  PubMed  Google Scholar 

  45. Colby, T. D., Vanderveen, K., Strickler, M. D., Markham, G. D., & Goldstein, B. M. (1999). Crystal structure of human type II inosine monophosphate dehydrogenase: implications for ligand binding and drug design. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 3531–3536. https://doi.org/10.1073/pnas.96.7.3531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gorla, S. K., Kavitha, M., Zhang, M., Liu, X., Sharling, L., Gollapalli, D. R., & Cuny, G. D. (2012). Selective and potent urea inhibitors of Cryptosporidium parvum inosine 5′-monophosphate dehydrogenase. Journal of Medicinal Chemistry, 55(17), 7759–7771. https://doi.org/10.1021/jm3007917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Macpherson, I. S., Kirubakaran, S., Gorla, S. K., Riera, T. V., D’Aquino, J. A., Zhang, M., & Hedstrom, L. (2010). The structural basis of Cryptosporidium-specific IMP dehydrogenase inhibitor selectivity. Journal of the American Chemical Society, 132(4), 1230–1. https://doi.org/10.1021/ja909947a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gorla, S. K., McNair, N. N., Yang, G., Gao, S., Hu, M., Jala, V. R., & Hedstrom, L. (2014). Validation of IMP dehydrogenase inhibitors in a mouse model of cryptosporidiosis. Antimicrobial Agents and Chemotherapy, 58(3), 1603–1614. https://doi.org/10.1128/AAC.02075-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Johnson, C. R., Gorla, S. K., Kavitha, M., Zhang, M., Liu, X., Striepen, B., & Hedstrom, L. (2013). Phthalazinone inhibitors of inosine-5’-monophosphate dehydrogenase from Cryptosporidium parvum. Bioorganic & Medicinal Chemistry Letters, 23(4), 1004–1007. https://doi.org/10.1016/j.bmcl.2012.12.037.

    Article  CAS  Google Scholar 

  50. Kirubakaran, S., Gorla, S. K., Sharling, L., Zhang, M., Liu, X., Ray, S. S., & Cuny, G. D. (2012). Structure-activity relationship study of selective benzimidazole-based inhibitors of Cryptosporidium parvum IMPDH. Bioorganic & Medicinal Chemistry Letters, 22(5), 1985–1988. https://doi.org/10.1016/j.bmcl.2012.01.029.

    Article  CAS  Google Scholar 

  51. Maurya, S. K., Gollapalli, D. R., Kirubakaran, S., Zhang, M., Johnson, C. R., Benjamin, N. N., & Cuny, G. D. (2009). Triazole inhibitors of Cryptosporidium parvum inosine 5’-monophosphate dehydrogenase. Journal of Medicinal Chemistry, 52(15), 4623–4630. https://doi.org/10.1021/jm900410u.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sharling, L., Liu, X., Gollapalli, D. R., Maurya, S. K., Hedstrom, L., & Striepen, B. (2010). A screening pipeline for antiparasitic agents targeting Cryptosporidium inosine monophosphate dehydrogenase. PLoS Neglected Tropical Diseases, 4(8), e794. https://doi.org/10.1371/journal.pntd.0000794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Umejiego, N. N., Gollapalli, D., Sharling, L., Volftsun, A., Lu, J., Benjamin, N. N., & Hedstrom, L. (2008). Targeting a prokaryotic protein in a eukaryotic pathogen: identification of lead compounds against cryptosporidiosis. Chemistry & Biology, 15(1), 70–77. https://doi.org/10.1016/j.chembiol.2007.12.010.

    Article  CAS  Google Scholar 

  54. Sun, Z., Khan, J., Makowska-Grzyska, M., Zhang, M., Cho, J. H., Suebsuwong, C., & Cuny, G. D. (2014). Synthesis, in vitro evaluation and cocrystal structure of 4-oxo-[1]benzopyrano[4,3-c]pyrazole Cryptosporidium parvum inosine 5’-monophosphate dehydrogenase (CpIMPDH) inhibitors. Journal of Medicinal Chemistry, 57(24), 10544–10550. https://doi.org/10.1021/jm501527z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gorla, S. K., Kavitha, M., Zhang, M., Chin, J. E. W., Liu, X., Striepen, B., & Cuny, G. D. (2013). Optimization of benzoxazole-based inhibitors of Cryptosporidium parvum inosine 5’-monophosphate dehydrogenase. Journal of Medicinal Chemistry, 56(10), 4028–4043. https://doi.org/10.1021/jm400241j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., … Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7. https://doi.org/10.1038/msb.2011.75.

  57. Abrahamsen, M. S., Templeton, T. J., Enomoto, S., Abrahante, J. E., Zhu, G., Lancto, C. A., & Kapur, V. (2004). Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science, 304(5669), 441–445. https://doi.org/10.1126/science.1094786.

    Article  CAS  PubMed  Google Scholar 

  58. Tiedeman, A. A., & Smith, J. M. (1991). Isolation and sequence of a cDNA encoding mouse IMP dehydrogenase. Gene, 97(2), 289–293. https://doi.org/10.1016/0378-1119(91)90065-j.

    Article  CAS  PubMed  Google Scholar 

  59. Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., & Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sintchak, M. D., Fleming, M. A., Futer, O., Raybuck, S. A., Chambers, S. P., Caron, P. R., & Wilson, K. P. (1996). Structure and mechanism of inosine monophosphate dehydrogenase in complex with the immunosuppressant mycophenolic acid. Cell, 85(6), 921–930. https://doi.org/10.1016/S0092-8674(00)81275-1.

    Article  PubMed  Google Scholar 

  61. Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server), W407–W410. https://doi.org/10.1093/nar/gkm290.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997). VERIFY3D: assessment of protein models with three-dimensional profiles. Methods in Enzymology, 277, 396–404.

    Article  CAS  Google Scholar 

  63. Gopalakrishnan, K., Sowmiya, G., Sheik, S. S., & Sekar, K. (2007). Ramachandran plot on the web (2.0). Protein & Peptide Letters, 14(7), 669–671. https://doi.org/10.2174/092986607781483912.

    Article  CAS  Google Scholar 

  64. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084.

    Article  CAS  PubMed  Google Scholar 

  65. Eswar, N., Webb, B., Marti-Renom, M. A., Madhusudhan, M. S., Eramian, D., Shen, M.-Y., & Sali, A. (2006). Comparative protein structure modeling using Modeller. Current Protocols in Bioinformatics, 5, Unit-5.6 https://doi.org/10.1002/0471250953.bi0506s15.

    Article  PubMed  Google Scholar 

  66. Trott, O., & Olson, A. J. (2010). Software news and update AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, Z., Sun, H., Yao, X., Li, D., Xu, L., Li, Y., & Hou, T. (2016). Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power. Physical Chemistry Chemical Physics, 18(18), 12964–12975. https://doi.org/10.1039/c6cp01555g.

    Article  CAS  PubMed  Google Scholar 

  68. Machaba, K. E., Mhlongo, N. N., & Soliman, M. E. S. (2018). Induced mutation proves a potential target for TB therapy: a molecular dynamics study on LprG. Cell Biochemistry and Biophysics, 76(3), 345–356. https://doi.org/10.1007/s12013-018-0852-7.

    Article  CAS  PubMed  Google Scholar 

  69. Oguntade, S., Ramharack, P., & Soliman, M. E. (2017). Characterizing the ligand-binding landscape of Zika NS3 helicase-promising lead compounds as potential inhibitors. Future Virology, 12(6), 261–273. https://doi.org/10.2217/fvl-2017-0014.

    Article  CAS  Google Scholar 

  70. Olotu, F. A., & Soliman, M. E. S. (2018). From mutational inactivation to aberrant gain-of-function: Unraveling the structural basis of mutant p53 oncogenic transition. Journal of Cellular Biochemistry, 119(3), 2646–2652. https://doi.org/10.1002/jcb.26430.

    Article  CAS  PubMed  Google Scholar 

  71. Agoni, C., Munsamy, G., Ramhrack, P., & Soliman, M. (2020). Human rhinovirus inhibition through capsid “Canyon” perturbation: structural insights into the role of a novel benzothiophene derivative. Cell Biochemistry and Biophysics, 78, 3–13.

    Article  CAS  Google Scholar 

  72. Agoni, C., Salifu, E. Y., Munsamy, G., Olotu, F. A., & Soliman, M. (2019). CF3‐pyridinyl substitution on anti‐malarial therapeutics: probing differential ligand binding and dynamical inhibitory effects of a novel triazolopyrimidine‐based inhibitor on Plasmodium falciparum Dihydroorotate dehydrogenase. Chemistry & Biodiversity. https://doi.org/10.1002/cbdv.201900365.

  73. Olotu, F. A., & Soliman, M. E. S. (2019). Dynamic perspectives into the mechanisms of mutation-induced p53-DNA binding loss and inactivation using active perturbation theory: structural and molecular insights toward the design of potent reactivators in cancer therapy. Journal of Cellular Biochemistry, 120(1), 951–966. https://doi.org/10.1002/jcb.27458.

    Article  CAS  PubMed  Google Scholar 

  74. Nair, P. C., & Miners, J. O. (2014). Molecular dynamics simulations: from structure function relationships to drug discovery. In Silico Pharmacology, 2(1). https://doi.org/10.1186/s40203-014-0004-8.

  75. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035.

    Article  CAS  PubMed  Google Scholar 

  76. Grest, G. S., & Kremer, K. (1986). Molecular dynamics simulation for polymers in the presence of a heat bath. Physical Review A, 33(5), 3628–3631. https://doi.org/10.1103/PhysRevA.33.3628.

    Article  CAS  Google Scholar 

  77. Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., Dinola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118.

    Article  CAS  Google Scholar 

  78. Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes.Journal of Computational Physics, 23(3), 327–341.

    Article  CAS  Google Scholar 

  79. Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p.

    Article  CAS  PubMed  Google Scholar 

  80. Seifert, E. (2014). OriginPro 9.1: scientific data analysis and graphing software-software review. Journal of Chemical Information and Modeling, 54(5), 1552. https://doi.org/10.1021/ci500161d.

    Article  CAS  PubMed  Google Scholar 

  81. Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51(1), 69–82. https://doi.org/10.1021/ci100275a.

    Article  CAS  PubMed  Google Scholar 

  83. Chaudhary, N., & Aparoy, P. (2017). Deciphering the mechanism behind the varied binding activities of COXIBs through Molecular Dynamic Simulations, MM-PBSA binding energy calculations and per-residue energy decomposition studies. Journal of Biomolecular Structure & Dynamics, 35(4), 868–882. https://doi.org/10.1080/07391102.2016.1165736.

    Article  CAS  Google Scholar 

  84. Gupta, A., Chaudhary, N., & Aparoy, P. (2018). MM-PBSA and per-residue decomposition energy studies on 7-Phenyl-imidazoquinolin-4(5H)-one derivatives: identification of crucial site points at microsomal prostaglandin E synthase-1 (mPGES-1) active site. International Journal of Biological Macromolecules, 119, 352–359. https://doi.org/10.1016/j.ijbiomac.2018.07.050.

    Article  CAS  PubMed  Google Scholar 

  85. Beg, A., Khan, F., Lobb, K., Islam, A., Ahmad, F., & Hassan, M. (2019). High throughput screening, docking, and molecular dynamics studies to identify potential inhibitors of human calcium/calmodulin-dependent protein kinase IV. Journal of Biomolecular Structure & Dynamics, 37, 2179–2192.

    Article  CAS  Google Scholar 

  86. Dahiya, R., Mohammad, T., Roy, S., Anwar, S., Gupta, P., Haque, A., & Ahmad, F. (2019). Investigation of inhibitory potential of quercetin to the pyruvate dehydrogenase kinase 3: towards implications in anticancer therapy. International Journal of Biological Macromolecules, 136, 1076–1085.

    Article  CAS  Google Scholar 

  87. Fatima, S., Mohammad, T., Jairajpuri, D., Rehman, M., Hussain, A., Samim, M., & … Hassan, M. (2019). Identification and evaluation of glutathione conjugate gamma-l-glutamyl-l-cysteine for improved drug delivery to the brain. Journal of Biomolecular Structure & Dynamics, 38(12), 3610–3620.

    Article  Google Scholar 

  88. Gulzar, M., Ali, S., Khan, F., Khan, P., Taneja, P., & Hassan, M. (2019). Binding mechanism of ca eic acid and simvastatin to the integrin linked kinase for therapeutic implications: a comparative docking and MD simulation studies. Journal of Biomolecular Structure & Dynamics, 37, 4327–4337.

    Article  CAS  Google Scholar 

  89. Kuzmanic, A., & Zagrovic, B. (2010). Determination of ensemble-average pairwise root mean square deviation from experimental B-factors. Biophysical Journal, 98, 861–871.

    Article  CAS  Google Scholar 

  90. Naz, F., Shahbaaz, M., Bisetty, K., Islam, A., Ahmad, F., & Hassan, M. (2015). Designing new kinase inhibitor derivatives as therapeutics against common complex diseases: structural basis of microtubule affinity-regulating kinase 4 (MARK4) inhibition. OMICS, 19, 700–711.

    Article  CAS  Google Scholar 

  91. Naz, F., Shahbaaz, M., Khan, S., Bisetty, K., Islam, A., Ahmad, F., & Hassan, M. (2015). PKR-inhibitor binds efficiently with human microtubule affinity-regulating kinase 4. Journal of Molecular Graphics and Modelling, 62, 245–252.

    Article  CAS  Google Scholar 

  92. Naz, H., Shahbaaz, M., Haque, M., Bisetty, K., Islam, A., Ahmad, F., & Hassan, M. (2017). Urea-induced denaturation of human calcium/calmodulin-dependent protein kinase IV: a combined spectroscopic and MD simulation studies. Journal of Biomolecular Structure & Dynamics, 35, 463–475.

    Article  CAS  Google Scholar 

  93. Menendez, C., Mazola, Y., Guirola, O., Palomares, S., Chinea, G., Hernandez, L., & Musacchio, A. (2015). A comparative molecular dynamics study of thermophilic and mesophilic beta-fructosidase enzymes. Journal of Molecular Modeling, 21, 2772.

    Google Scholar 

  94. Ali, S., Hassan, M., Islam, A., & Ahmad, F. (2014). A review of methods available to estimate solvent-accessible surface areas of soluble proteins in the folded and unfolded states. Current Protein & Peptide Science, 15, 456–476.

    Article  CAS  Google Scholar 

  95. Durham, E., Dorr, B., Woetzel, N., Staritzbichler, R., & Meiler, J. (2009). Solvent accessible surface area approximations for rapid and accurate protein structure prediction. Journal of Molecular Modeling, 15(9), 1093–1108. https://doi.org/10.1007/s00894-009-0454-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ali, S., Khan, F., Mohammad, T., Lan, D., Hassan, M., & Wang, Y. (2019). Identification and evaluation of inhibitors of lipase from Malassezia restricta using virtual high-throughput screening and molecular dynamics studies. International Journal of Molecular Sciences, 20, 884.

    Article  Google Scholar 

  97. Khan, F., Shahbaaz, M., Bisetty, K., Waheed, A., Sly, W., Ahmad, F., & Hassan, M. (2016). Large scale analysis of the mutational landscape in beta-glucuronidase: a major player of mucopolysaccharidosis type VII. Gene, 576, 36–44.

    Article  CAS  Google Scholar 

  98. Bhagavan, N. V., & Ha, C.-E. (2015). Nucleotide metabolism. In Essentials of medical biochemistry (pp. 465–487). Elsevier. https://doi.org/10.1016/b978-0-12-416687-5.00025-7.

Download references

Acknowledgements

Appreciation goes to Center for High Performance Computing, Cape Town, South Africa for providing computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud E. S. Soliman.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omolabi, K.F., Agoni, C., Olotu, F.A. et al. Molecular Basis of P131 Cryptosporidial-IMPDH Selectivity—A Structural, Dynamical and Mechanistic Stance. Cell Biochem Biophys 79, 11–24 (2021). https://doi.org/10.1007/s12013-020-00950-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-020-00950-1

Keywords

Navigation