Skip to main content
Log in

Construction and Characterization of UBC4 Mutants with Single Residues Swapped from UBC5

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Ubiquitination is tightly regulated to control degradation, localization and function of various proteins. Ubiquitination is catalysed by three enzymes, namely E1, E2 and E3. The specificity shown by E2s for E3s holds key to regulation of ubiquitination. Here we focussed on the E2 enzymes, UBC4 and UBC5 of Saccharomyces cerevisiae, which are almost identical differing only by 11 residues. They show functional complementation in protein degradation, especially during stress response. Existence of two almost identical proteins suggests specialized requirement of one of them under selective conditions. To understand the reasons for the residue differences between them, mutations were introduced in the UBC4 gene to generate single residue variants by swapping with codons from UBC5. Though the variants are found to be functionally active in Δubc4Δubc5 strain of yeast, they cause reduced growth under normal conditions, altered survival under heat and antibiotic stresses, when compared with UBC4. The variants indicated decrease in protein stability theoretically. Hence, the residues of UBC5 individually do not confer any structural advantage to UBC4. Interactive proteins of UBC4 are nearly three times more than those of UBC5. UBC5, therefore, is a functionally minimized version, evolved as another means of regulation to meet cell stage specific needs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wu, R. S., Kohn, K. W., & Bonner, W. M. (1981). Metabolism of ubiquitinated histones. Journal of Biological Chemistry, 256, 5916–5920.

    CAS  PubMed  Google Scholar 

  2. Ball, E., Karlik, C. C., Beall, C. J., Saville, L., Sparrow, J. C., Bullard, B., et al. (1987). Arthrin, a myofibrillar protein of insect flight muscle, is an actin-ubiquitin conjugate. Cell, 51, 221–228.

    Article  CAS  Google Scholar 

  3. Spence, J., Gali, R. R., Dittmar, G., Sherman, F., Karin, M., & Finley, D. (2000a). Cell cycle regulated modification of the ribosome by a variant multiubiquitin chain. Cell, 102, 67–76.

    Article  CAS  Google Scholar 

  4. Arnason, T., & Ellison, M. J. (1994). Stress resistance in Saccharomyces cerevisiae is strongly correlated with assembly of a novel type of multiubiquitin chain. Molecular and Cellular Biology, 14, 7876–7883.

    Article  CAS  Google Scholar 

  5. Finley, D., Ozkaynak, E., & Vasrshavsky, A. (1987). The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell, 48, 1035–1046.

    Article  CAS  Google Scholar 

  6. Morvan, J., Froissard, M., Tsapis, R. H., & Grimal, D. U. (2004). The Ubiquitin Ligase Rsp5p is required for modification and sorting of membrane proteins into multivesicular bodies. Traffic, 5, 383–392.

    Article  CAS  Google Scholar 

  7. Reggiori, F., & Pelham, H. R. B. (2002). A transmembrane ubiquitin ligase required to sort membrane proteins into multivesicular bodies. Nature Cell Biology, 4, 117–123.

    Article  CAS  Google Scholar 

  8. Kleiger, G., & Mayor, T. (2014). Perilous journey: a tour of the ubiquitin–proteasome system. Trends in Cell Biology, 24, 352–359.

    Article  CAS  Google Scholar 

  9. Finley, D., Ulrich, H. D., Sommer, T., & Kaiser, P. (2012). The ubiquitin-proteasome system of Saccharomyces cerevisiae. Genetics, 192, 319–360.

    Article  CAS  Google Scholar 

  10. Finley, D., & Chau, V. (1991). Ubiquitination. Annual Review of Cell Biology, 7, 25–69.

    Article  CAS  Google Scholar 

  11. Hershko, A., & Ciechanover, A. (1998). The ubiquitin system. Annual Review of Biochemistry, 67, 425–479.

    Article  CAS  Google Scholar 

  12. Ye, Y., & Rape, M. (2009). Building ubiquitin chains: E2 enzymes at work. Nature Reviews Molecular Cell Biology, 10, 755–764.

    Article  CAS  Google Scholar 

  13. Bedford, L., Lowe, J., Dick, L. R., Mayer, R. J., & Brownell, J. E. (2011). Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets. Nature Reviews Drug Discovery, 10, 29–46.

    Article  CAS  Google Scholar 

  14. Harper, J. W., & King, R. W. (2011). Stuck in the middle: drugging the Ubiquitin system at E2 step. Cell, 145, 1007–1009.

    Article  CAS  Google Scholar 

  15. Ceccarelli, D. F., Tang, X., Pelletier, B., Orlicky, S., Xie, W., Plantevin, V., et al. (2011). An allosteric inhibitor of the human Cdc34 ubiquitin-conjugating enzyme. Cell, 145, 1075–1087.

    Article  CAS  Google Scholar 

  16. Skaar, J. R., & Pagano, M. (2009). Control of cell growth by the SCF and APC/C ubiquitin ligases. Current opinion in Cell Biology, 21, 816–824.

    Article  CAS  Google Scholar 

  17. Cook, W. J., Jeffrey, L. C., Xu, Y., & Chau, V. (1993). Tertiary structures of Class I ubiquitin-conjugating enzymes are highly conserved: crystal structure of yeast Ubc4. Biochemistry, 32, 13809–13817.

    Article  CAS  Google Scholar 

  18. Seufert, W., & Jentsch, S. (1990). Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins. EMBO Journal, 9, 543–550.

    Article  CAS  Google Scholar 

  19. Chuang, S.-M., & Madura, K. (2005). Saccharomyces cerevisiae Ub-conjugating enzyme Ubc4 binds the proteasome in the presence of translationally damaged proteins. Genetics, 171, 1477–1484.

    Article  CAS  Google Scholar 

  20. Seufert, W., Mcgrath, J. P., & Jentsch, S. (1990). UBC1 Encodes a novel member of an essential subfamily of yeast ubiquitin-conjugating enzymes involved in protein degradation. EMBO Journal, 9, 4535–4541.

    Article  CAS  Google Scholar 

  21. Mishra, P., Volety, S., Rao, Ch,M., & Prabha, C. R. (2009). Glutamate64 to glycine substitution in G1 beta-bulge of ubiquitin impairs function and stabilizes structure of the protein. The Journal of Biochemistry, 146, 563–569.

    Article  CAS  Google Scholar 

  22. Prabha, C. R., Mishra, P., & Shahukar, M. (2010). Isolation of a dosage dependent lethal mutation in ubiquitin gene of Saccharomyces cerevisiae. Macromolecular Symposia, 287, 87–94.

    Article  Google Scholar 

  23. Mishra, P., Prabha, C. R., Rao Ch, M., & Volety, S. (2011). Q2N and S65D substitutions of ubiquitin unravel functional significance of the invariant residues Gln2 and Ser65. Cell Biochemistry and Biophysics, 61, 619–628.

    Article  CAS  Google Scholar 

  24. Sharma, M., & Prabha, C. R. (2011). Construction and functional characterization of double and triple mutants of parallel beta-bulge of ubiquitin. Indian Journal of Experimental Biology, 49, 919–924.

    CAS  PubMed  Google Scholar 

  25. Sharma, M., & Prabha, C. R. (2015). Q2N and E64G double mutation of ubiquitin confers a stress sensitive phenotype on Saccharomyces cerevisiae. Indian Journal of Experimental Biology, 53, 617–620.

    PubMed  Google Scholar 

  26. Doshi, A., Mishra, P., Sharma, M., & Prabha, C. R. (2014). Functional characterization of dosage-dependent lethal mutation of ubiquitin in Saccharomyces cerevisiae. FEMS Yeast Research, 14, 1080–1089.

    CAS  PubMed  Google Scholar 

  27. Doshi, A., Sharma, M., & Prabha, C. R. (2017). Structural changes induced by L50P and I61T single mutations of ubiquitin affect cell cycle progression while impairing its regulatory and degradative functions in Saccharomyces cerevisiae. International Journal of Biological Macromolecules, 99, 128–140.

    Article  CAS  Google Scholar 

  28. Oughtred, R., Chatr-Aryamontri, A., Breitkreutz, B. J., Chang, C. S., Rust, J. M., & Theesfeld, C. L., et al. (2016). BioGRID: a resource for studying biological interactions in yeast. Cold Spring Harbor Protocols, 2016, pdb.top080754.

  29. Oughtred, R., Stark, C., Breitkreutz, B. J., Rust, J., Boucher, L., Chang, C. et al. (2019). The BioGRID interaction database: 2019 update. Nucleic Acids Research, 47(D1), D529–D541.

    Article  CAS  Google Scholar 

  30. Pires, D. E. V., David, B. A., & Blundell, T. L. (2014). mCSM: predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics, 30, 335–342.

    Article  CAS  Google Scholar 

  31. Chen, P., Johnson, P., Sommer, T., Jentsch, S., & Hochstrasser, M. (1993). Multiple ubiquitin-conjugating enzymes participate in the in vivo degradation of the yeast MAT α 2 repressor. Cell, 74, 357–369.

    Article  CAS  Google Scholar 

  32. Finley, D., Ozkaynak, E., & Varshavsky, A. (1987a). The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell, 48, 1035–1046.

    Article  CAS  Google Scholar 

  33. Finley, D., Sadis, S., Monia, B. P., Boucher, P., Ecker, D. J., Crooke, S. T et al. (1994). Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant. Molecular and Cellular Biology, 14, 5501–5509.

    Article  CAS  Google Scholar 

  34. Chen, D. C., Yang, B. C., & Kuo, T. T. (1992). One-step transformation of yeast in stationary phase. Current Genetics, 21, 83–84.

    Article  CAS  Google Scholar 

  35. Wijk, S. J., Melquiond, A., Vries, S. J., Timmers, S., & Bonvin, A. (2012). Dynamic Control of Selectivity in the Ubiquitination Pathway Revealed by an ASP to GLU Substitution in an Intra-Molecular Salt-Bridge Network. PLoS Computational Biology, 8(11), e1002754.

    Article  Google Scholar 

  36. Chou, P. Y., & Fasman, G. D. (1974). Conformational parameters for amino acids in helical, β-Sheet and random coil regions calculated from proteins. Biochemistry, 13, 211–222.

    Article  CAS  Google Scholar 

  37. Hopp, T. P., & Woods, K. R. (1981). Prediction of protein antigenic determinants from amino acid sequences. Proceedings of the National Academy of Sciences, 78, 3824–3828.

    Article  CAS  Google Scholar 

  38. Betts, M. J., & Russell, R. B. (2003). Amino acid properties and consequences of substitutions, In R. B. Michael & C. G. Ian (eds), Bioinformatics for geneticists (pp. 289–316). John Wiley & Sons, Ltd.

  39. Hutchinson, E. G., & Thornton, J. M. (1994). A revised set of potentials for β-turn formation in proteins. Protein Science, 3, 2207–2216.

    Article  CAS  Google Scholar 

  40. Szklarczyk, D., Morris, J. H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M. et al. (2017). The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Research, 45(Database issue), D362–D368.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to Prof. Stefan Jentsch of Max Planck Institute of Biochemistry, Germany, for the plasmid carrying UBC4 gene and Prof. Mark Hochstrasser of Yale University, New Haven, CT, USA, for providing the S. cerevisiae strains MHY501 and MHY508. V.R. and B.P. were supported by University Fellowship of The M. S. University of Baroda, Vadodara, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ratna Prabha.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raimalani, V., Panchamia, B. & Prabha, C.R. Construction and Characterization of UBC4 Mutants with Single Residues Swapped from UBC5. Cell Biochem Biophys 78, 43–53 (2020). https://doi.org/10.1007/s12013-019-00894-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-019-00894-1

Keywords

Navigation