Skip to main content
Log in

Functional Basis and Biophysical Approaches to Characterize the C-Terminal Domain of Human—Ribosomal S6 Kinases-3

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Ribosomal S6 kinases (RSKs) are the major functional components in mitogen-activated protein kinase (MAPK) pathway, and these are activated by upstream Extracellular signal-regulated kinase. Upon activation, RSKs activate a number of substrate molecules involved in transcription, translation and cell-cycle regulation. But how cellular binding partners are engaged in the MAPK pathways and regulate the molecular mechanisms have not been explored. Considering the importance of protein–protein interactions in cell signalling and folding pattern of native protein, functional C-terminal kinase domain of RSK3 has been characterized using in vitro, in silico and biophysical approaches. RSKs discharge different functions by binding to downstream kinase partners. Hence, depending upon cellular binding partners, RSKs translocate between cytoplasm and nucleus. In our study, it has been observed that the refolded C-terminal Kinase domain (CTKD) of RSK 3 has a compact domain structure which is predominantly α-helical in nature by burying the tryptophans deep into the core, which was confirmed by CD, Fluorescence spectroscopy and limited proteolysis assay. Our study also revealed that RSK 3 CTKD was found to be a homotrimer from DLS experiments. A model was also built for RSK 3 CTKD and was further validated using PROCHECK and ProSA webservers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

RSK:

Ribosomal s6 kinase

MAPK:

Mitogen-Activated Protein Kinase

ERK:

Extracellular signal-regulated kinase

PPI:

Protein–Protein Interactions

CTKD:

C-terminal kinase Domain

IPTG:

Isopropyl-β-D-thiogalactoside

DLS:

Dynamic Light Scattering

IMAC:

Immobilized Metal ion Affinity Chromatography

RMSD:

Root Mean Square Deviation

References

  1. Sutherland, C., Campbell, D. G., & Cohen, P. (1993). Identification of insulin-stimulated protein kinase-1 as the rabbit equivalent of rskmo-2. Identification of two threonines phosphorylated during activation by mitogen-activated protein kinase. European Journal of Biochemistry, 212(2), 581–588.

    Article  CAS  PubMed  Google Scholar 

  2. Smith, J. A., et al. (1999). Identification of an extracellular signal-regulated kinase (ERK) docking site in ribosomal S6 kinase, a sequence critical for activation by ERK in vivo. Journal of Biological Chemistry, 274(5), 2893–2898.

    Article  CAS  PubMed  Google Scholar 

  3. Jensen, C. J., et al. (1999). 90-kDa ribosomal S6 kinase is phosphorylated and activated by 3-phosphoinositide-dependent protein kinase-1. Journal of Biological Chemistry, 274(38), 27168–27176.

    Article  CAS  PubMed  Google Scholar 

  4. Carriere, A., et al. (2008). The RSK factors of activating the Ras/MAPK signaling cascade. Front Biosci, 13, 4258–4275.

    Article  CAS  PubMed  Google Scholar 

  5. Jones, S. W., et al. (1988). A Xenopus ribosomal protein S6 kinase has two apparent kinase domains that are each similar to distinct protein kinases. Proceedings of the National Academy of Sciences, 85(10), 3377–3381.

    Article  CAS  Google Scholar 

  6. Fisher, T. L., & Blenis, J. (1996). Evidence for two catalytically active kinase domains in pp90rsk. Molecular and Cellular Biology, 16(3), 1212–1219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Frodin, M., & Gammeltoft, S. (1999). Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Molecular and Cellular Endocrinology, 151(1–2), 65–77.

    Article  CAS  PubMed  Google Scholar 

  8. Chen, R. H., Sarnecki, C., & Blenis, J. (1992). Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Molecular and Cellular Biology, 12(3), 915–927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. De Cesare, D., et al. (1998). Rsk-2 activity is necessary for epidermal growth factor-induced phosphorylation of CREB protein and transcription of c-fos gene. Proceedings of the National Academy of Sciences, 95(21), 12202–12207.

    Article  Google Scholar 

  10. Joel, P. B., et al. (1998). pp90rsk1 regulates estrogen receptor-mediated transcription through phosphorylation of Ser-167. Molecular and Cellular Biology, 18(4), 1978–1984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhao, J., et al. (2003). ERK-dependent phosphorylation of the transcription initiation factor TIF-IA is required for RNA polymerase I transcription and cell growth. Molecular Cell, 11(2), 405–413.

    Article  CAS  PubMed  Google Scholar 

  12. Nakajima, T., et al. (1996). The signal-dependent coactivator CBP is a nuclear target for pp90RSK. Cell, 86(3), 465–474.

    Article  CAS  PubMed  Google Scholar 

  13. Roberts, P. J., & Der, C. J. (2007). Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene, 26(22), 3291–3310.

    Article  CAS  PubMed  Google Scholar 

  14. Jagilinki, B. P., et al. (2014). Conserved residues at the MAPKs binding interfaces that regulate transcriptional machinery. Journal of Biomolecular Structure and Dynamics, 33(4), 1–9.

    Google Scholar 

  15. Bjorbaek, C., Zhao, Y., & Moller, D. E. (1995). Divergent functional roles for p90rsk kinase domains. Journal of Biological Chemistry, 270(32), 18848–18852.

    Article  CAS  PubMed  Google Scholar 

  16. Vik, T. A., & Ryder, J. W. (1997). Identification of serine 380 as the major site of autophosphorylation of Xenopus pp90rsk. Biochemical and Biophysical Research Communications, 235(2), 398–402.

    Article  CAS  Google Scholar 

  17. Roux, P. P., Richards, S. A., & Blenis, J. (2003). Phosphorylation of p90 ribosomal S6 kinase (RSK) regulates extracellular signal-regulated kinase docking and RSK activity. Molecular and Cellular Biology, 23(14), 4796–4804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ikuta, M., et al. (2007). Crystal structures of the N-terminal kinase domain of human RSK1 bound to three different ligands: implications for the design of RSK1 specific inhibitors. Protein Science, 16(12), 2626–2635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Malakhova, M., et al. (2009). Structural diversity of the active N-terminal kinase domain of p90 ribosomal S6 kinase 2. PLoS One, 4(11), e8044.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Malakhova, M., et al. (2008). Structural basis for activation of the autoinhibitory C-terminal kinase domain of p90 RSK2. Nature Structural & Molecular Biology, 15(1), 112–113.

    Article  CAS  Google Scholar 

  21. Li, D., et al. (2012). Structural basis for the autoinhibition of the C-terminal kinase domain of human RSK1. Acta Crystallographica. Section D, Biological Crystallography, 68(Pt 6), 680–685.

    Article  CAS  PubMed  Google Scholar 

  22. Serafimova, I. M., et al. (2012). Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles. Nature Chemical Biology, 8(5), 471–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shevchenko, A., et al. (2006). In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protocols, 1(6), 2856–2860.

    Article  CAS  PubMed  Google Scholar 

  24. Pappin, D. J., Hojrup, P., & Bleasby, A. J. (1993). Rapid identification of proteins by peptide-mass fingerprinting. Current Biology, 3(6), 327–332.

    Article  CAS  PubMed  Google Scholar 

  25. Louis-Jeune, C., Andrade-Navarro, M. A., & Perez-Iratxeta, C. (2012). Prediction of protein secondary structure from circular dichroism using theoretically derived spectra. Proteins, 80(2), 374–381.

    Article  CAS  PubMed  Google Scholar 

  26. Fiser, A., & Sali, A. (2003). Modeller: generation and refinement of homology-based protein structure models. Methods in Enzymology, 374, 461–491.

    Article  CAS  PubMed  Google Scholar 

  27. Eswar, N., et al. (2006). Comparative protein structure modeling using Modeller. Current Protocols in Bioinformatics, Chapter 5, 5–6.

    Google Scholar 

  28. Laskowski, R. A., et al. (1996). AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR, 8(4), 477–486.

    Article  CAS  Google Scholar 

  29. Sippl, M. J. (1993). Recognition of errors in three-dimensional structures of proteins. Proteins, 17(4), 355–362.

    Article  CAS  PubMed  Google Scholar 

  30. Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–W410.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Geourjon, C., & Deleage, G. (1995). SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences, 11(6), 681–684.

    CAS  PubMed  Google Scholar 

  32. Pace, C. N., & Shaw, K. L. (2000). Linear extrapolation method of analyzing solvent denaturation curves. Proteins, Suppl 4, 1–7.

    Article  CAS  PubMed  Google Scholar 

  33. Armstrong, N., de Lencastre, A., & Gouaux, E. (1999). A new protein folding screen: application to the ligand binding domains of a glutamate and kainate receptor and to lysozyme and carbonic anhydrase. Protein Science, 8(7), 1475–1483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Holbourn, K. P., & Acharya, K. R. (2011). Cloning, expression and purification of the CCN family of proteins in Escherichia coli. Biochemical and Biophysical Research Communications, 407(4), 837–841.

    Article  CAS  PubMed  Google Scholar 

  35. Bignone, P. A., et al. (2007). RPS6KA2, a putative tumour suppressor gene at 6q27 in sporadic epithelial ovarian cancer. Oncogene, 26(5), 683–700.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank CRI common facility, DBT funded BTIS, Proteomics facility at ACTREC. Mr Bhanu thanks UGC, New Delhi for fellowship. Dr. M.V. Hosur is thankful to DAE for RRF award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok K. Varma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 992 kb)

Supplementary material 2 (JPEG 588 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagilinki, B.P., Choudhary, R.K., Thapa, P.S. et al. Functional Basis and Biophysical Approaches to Characterize the C-Terminal Domain of Human—Ribosomal S6 Kinases-3. Cell Biochem Biophys 74, 317–325 (2016). https://doi.org/10.1007/s12013-016-0745-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-016-0745-6

Keywords

Navigation