Skip to main content
Log in

Serum Uric Acid and Impaired Glucose Tolerance: The Cardiometabolic Risk in Chinese (CRC) Study

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Serum uric acid (SUA) elevation has been previously related to impaired fasting glucose and type 2 diabetes. The present study was comprehensive to examine the associations between SUA and impaired glucose tolerance (IGT) in Chinese adults. For this purpose, data were collected from a community-based health examination survey conducted in Central China; 2-h glucose (OGTT) and SUA were measured in 1956 men and women. In multivariate models, SUA levels were significantly associated with an increasing trend of 2-h glucose (OGTT) (P for trend < 0.0001). The odds ratios (OR; 95 % CI) of IGT across increasing quartiles of SUA were 1.0, 1.354 (0.948–2.087), 1.337 (0.959–2.251), and 2.192 (1.407–3.416), after adjusting for age, sex, body mass index, waist circumference, fasting insulin, blood pressure, serum lipids, serum creatinine, and estimated glomerular filtration rate. (P for trend = 0.001). In addition, we found an additive pattern between SUA and triglyceride (TG; P = 0.038) or between SUA and low-density lipoprotein cholesterol (LDL-C; P = 0.041) in relation to IGT. SUA was related to IGT in the Chinese adults, independent of other conventional metabolic risk factors. TG and LDL-C might modify the associations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

SUA:

Serum uric acid

IGT:

Impaired glucose tolerance

2-h glucose (OGTT):

2-hour glucose (oral glucose tolerance test)

BMI:

Body mass index

WC:

Waist circumference

SBP:

Systolic blood pressure

DBP:

Diastolic blood pressure

HOMA-IR:

Homeostasis model assessment of insulin resistance

HbA1c:

Glycated hemoglobin

FBG:

Fasting blood glucose

FPG:

Fasting plasma glucose

FINS:

Fasting insulin

TC:

Total cholesterol

TG:

Triglycerides

HDL-C:

High-density lipoprotein cholesterol

LDL-C:

Low-density lipoprotein cholesterol

OR:

Odds ratio

CI:

Confidence interval

eGFR:

Estimated glomerular filtration rate

References

  1. Tsouli, S. G., Liberopoulos, E. N., Mikhailidis, D. P., Athyros, V. G., & Elisaf, M. S. (2006). Elevated serum uric acid levels in metabolic syndrome: An active component or an innocent bystander? Metabolism, 55(10), 1293–1301.

    Article  CAS  PubMed  Google Scholar 

  2. De Oliveira, A., Miranda Hermsdorff, H. H., Guedes Cocate, P., Bressan, J., Azevedo Novello, A., Cardoso Dos Santos, E., & Jose, Natali. A. (2014). The impact of serum uric acid on the diagnostic of metabolic syndrome in apparently healthy Brazilian middle-aged men. Nutricion Hospitalaria, 30(3), 562–569.

    PubMed  Google Scholar 

  3. Sirota, J. C., McFann, K., Targher, G., Johnson, R. J., Chonchol, M., & Jalal, D. I. (2013). Elevated serum uric acid levels are associated with non-alcoholic fatty liver disease independently of metabolic syndrome features in the united states: Liver ultrasound data from the national health and nutrition examination survey. Metabolism, 62, 392–399.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Lee, Y. J., Lee, H. R., Lee, J. H., Shin, Y. H., & Shim, J. Y. (2010). Association between serum uric acid and non-alcoholic fatty liver disease in Korean adults. Clinical Chemistry and Laboratory Medicine, 48(2), 175–180.

    CAS  PubMed  Google Scholar 

  5. Liang, J., Xue, Y., Zou, C., Zhang, T., Song, H., & Qi, L. (2009). Serum uric acid and prehypertension among Chinese adults. Journal of Hypertension, 27, 1761–1765.

    Article  CAS  PubMed  Google Scholar 

  6. Teng, F., Zhu, R., Zou, C., Xue, Y., Yang, M., Song, H., & Liang, J. (2011). Interaction between serum uric acid and triglycerides in relation to blood pressure. Journal of Human Hypertension, 25(11), 686–691.

    Article  CAS  PubMed  Google Scholar 

  7. Chu, N. F., Wang, D. J., Liou, S. H., & Shieh, S. M. (2000). Relationship between hyperuricemia and other cardiovascular disease risk factors among adult males in Taiwan. European Journal of Epidemiology, 16, 13–17.

    Article  CAS  PubMed  Google Scholar 

  8. Liang, J., Li, Y., Zhou, N., Teng, F., Zhao, J., Zou, C., & Qi, L. (2012). Synergistic effects of serum uric acid and cardiometabolic risk factors on early stage atherosclerosis: The cardiometabolic risk in Chinese study. PLoS One, 7, e51101.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Niskanen, L. K., Laaksonen, D. E., Nyyssönen, K., Alfthan, G., Lakka, H. M., Lakka, T. A., & Salonen, J. T. (2004). Uric acid level as a risk factor for cardiovascular and all-cause mortality in middle-aged men: A prospective cohort study. Archives of Internal Medicine, 164, 1546–1551.

    Article  CAS  PubMed  Google Scholar 

  10. Verdoia, M., Barbieri, L., Schaffer, A., Cassetti, E., Nardin, M., Bellomo, G., et al. (2014). Impact of diabetes on uric acid and its relationship with the extent of coronary artery disease and platelet aggregation: A single-centre cohort study. Metabolism, 63(5), 640–646.

    Article  CAS  PubMed  Google Scholar 

  11. Krishnan, E., Pandya, B. J., Chung, L., Hariri, A., & Dabbous, O. (2012). Hyperuricemia in young adults and risk of insulin resistance, prediabetes, and diabetes: A 15-year follow-up study. American Journal of Epidemiology, 176, 108–116.

    Article  PubMed  Google Scholar 

  12. Jia, Z., Zhang, X., Kang, S., & Wu, Y. (2013). Serum uric acid levels and incidence of impaired fasting glucose and type 2 diabetes mellitus: A meta-analysis of cohort studies. Diabetes Research and Clinical Practice, 101, 88–96.

    Article  CAS  PubMed  Google Scholar 

  13. Cicero, A. F., Derosa, G., Rosticci, M., D’Addato, S., Agnoletti, D., Borghi, C., & Brisighella Heart Study group. (2014). Long-term predictors of impaired fasting glucose and type 2 diabetes in subjects with family history of type 2 diabetes: A 12-years follow-up of the Brisighella Heart Study historical cohort. Diabetes Research and Clinical Practice, 104(1), 183–188.

    Article  CAS  PubMed  Google Scholar 

  14. Kataoka, Y., Yasuda, S., Morii, I., Otsuka, Y., Kawamura, A., & Miyazaki, S. (2005). Quantitative coronary angiographic studies of patients with angina pectoris and impaired glucose tolerance. Diabetes Care, 28, 2217–2222.

    Article  PubMed  Google Scholar 

  15. Nurkalem, Z., Hasdemir, H., Ergelen, M., Aksu, H., Sahin, I., Erer, B., et al. (2010). The relationship between glucose tolerance and severity of coronary artery disease using the Gensini score. Angiology, 61, 751–755.

    Article  CAS  PubMed  Google Scholar 

  16. Daimon, M., Oizumi, T., & Kato, T. (2010). The Funagata study—Impaired glucose tolerance is a risk factor for stroke in a Japanese sample. Nihon Rinsho, 68, 843–846.

    PubMed  Google Scholar 

  17. Razeghi, E., Heydarian, P., & Heydari, M. (2011). The frequency of prediabetes and contributing factors in patients with chronic kidney disease. The Review of Diabetic Studies, 8, 276–281.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Mascarenhas-Melo, F., Palavra, F., Marado, D., Sereno, J., Teixeira-Lemos, E., Freitas, I., et al. (2013). Emergent biomarkers of residual cardiovascular risk in patients with low HDL-c and/or high triglycerides and average LDL-c concentrations: Focus on HDL subpopulations, oxidized LDL, adiponectin, and uric acid. Scientific World Journal, 2013, 387849.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Guerrero-Romero, F., & Rodríguez-Moran, M. (2014). Hypertriglyceridemia is associated with development of metabolic glucose disorders, irrespective of glucose and insulin levels: A 15-year follow-up study. European Journal of Internal Medicine, 25, 265–269.

    Article  CAS  PubMed  Google Scholar 

  20. Fan, H. Q., Tang, W., Wang, Z. X., Wang, S. J., Qin, Y. H., Fu, Q., et al. (2013). Association of serum uric acid with 2-hour postload glucose in Chinese with impaired fasting plasma glucose and/or HbA1c. PLoS One, 8(7), e67759.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Liang, J., Zhou, N., Teng, F., Zou, C., Xue, Y., Yang, M., et al. (2012). Hemoglobin A1c levels and aortic arterial stiffness: The Cardiometabolic Risk in Chinese (CRC) Study. PLoS One, 7, e38485.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Liang, J., Wang, Y., Li, H., Liu, X., Qiu, Q., & Qi, L. (2014). Neck circumference and early stage atherosclerosis: The cardiometabolic risk in Chinese (CRC) study. Cardiovascular Diabetology, 13(1), 107.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Liang, J., Wang, Y., Li, H., Liu, X., Qiu, Q., & Qi, L. (2014). Combination of diabetes risk factors and hepatic steatosis in Chinese: The Cardiometabolic Risk in Chinese (CRC) Study. PLoS One, 9(3), e90101.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Haffner, S. M., Mykkanen, L., Festa, A., Burke, J. P., & Stern, M. P. (2000). Insulin resistant prediabetic subjects have more atherogenic risk factors than insulin-sensitive prediabetic subjects. Circulation, 101, 957–980.

    Article  Google Scholar 

  25. Levey, A. S., Stevens, L. A., Schmid, C. H., Zhang, Y. L., Castro, A. F., I. I. I., Feldman, H. I., et al. (2009). A new equation to estimate glomerular filtration rate. Annals of Internal Medicine, 150, 604–612.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Levey, A. S., Coresh, J., Greene, T., Stevens, L. A., Zhang, Y. L., Hendriksen, S., et al. (2006). Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Annals of Internal Medicine, 145(4), 247–254.

    Article  CAS  PubMed  Google Scholar 

  27. Tso, A. W. K., Sham, P. C., Wat, N. M., Xu, A., Cheung, B. M., Rong, R., et al. (2006). Polymorphisms of the gene encoding adiponectin and glycaemic outcome of Chinese subjects with impaired glucose tolerance: A 5-year follow-up study. Diabetologia, 49, 1806–1815.

    Article  CAS  PubMed  Google Scholar 

  28. Zhou, B. (2002). Predictive values of body mass index and waist circumference to risk factors of related diseases in Chinese adult population. Zhonghua liuxingbingxue zazhi, 23(1), 5–10.

    PubMed  Google Scholar 

  29. Juraschek, S. P., McAdams-Demarco, M., Miller, E. R., Gelber, A. C., Maynard, J. W., Pankow, J. S., et al. (2014). Temporal relationship between uric acid concentration and risk of diabetes in a community-based study population. American Journal of Epidemiology, 179, 684–691.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Sluijs, I., Beulens, J. W., van der, A. D. L., Spijkerman, A. M., Schulze, M. B., & van der Schouw, Y. T. (2013). Plasma uric acid is associated with increased risk of type 2 diabetes independent of diet and metabolic risk factors. Journal of Nutrition, 143, 80–85.

    Article  CAS  PubMed  Google Scholar 

  31. Pratley, R. E., & Gilbert, M. (2012). Clinical management of elderly patients with type 2 diabetes mellitus. Postgraduate Medicine, 124, 133–143.

    Article  PubMed  Google Scholar 

  32. Liu, Y., Li, J., Zhang, Z., Tang, Y., Chen, Z., & Wang, Z. (2013). Effects of exercise intervention on vascular endothelium functions of patients with impaired glucose tolerance during prediabetes mellitus. Experimental and Therapeutic Medicine, 5, 1559–1565.

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Li, C. H., Wu, J. S., Yang, Y. C., Shih, C. C., Lu, F. H., & Chang, C. J. (2012). Increased arterial stiffness in subjects with impaired glucose tolerance and newly diagnosed diabetes but not isolated impaired fasting glucose. Journal of Clinical Endocrinology and Metabolism, 97, E658–E662.

    Article  CAS  PubMed  Google Scholar 

  34. Niskanen, L., Laaksonen, D. E., Lindström, J., Eriksson, J. G., Keinänen-Kiukaanniemi, S., Ilanne-Parikka, P., et al. (2006). Serum uric acid as a harbinger of metabolic outcome in subjects with impaired glucose tolerance: The Finnish Diabetes Prevention Study. Diabet Care, 29, 709–711.

    Article  Google Scholar 

  35. Meisinger, C., Döring, A., Stöckl, D., Thorand, B., Kowall, B., & Rathmann, W. (2012). Uric acid is more strongly associated with impaired glucose regulation in women than in men from the general population: The KORA F4-Study. PLoS One, 7, e37180.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Kivity, S., Kopel, E., Steinlauf, S., Segev, S., Sidi, Y., & Olchovsky, D. (2013). The association between serum uric acid and diabetes mellitus is stronger in women. Journal of Women’s Health (Larchmt), 22, 782–789.

    Article  Google Scholar 

  37. Nakagawa, T., Hu, H., Zharikov, S., Tuttle, K. R., Short, R. A., Glushakova, O., et al. (2006). A causal role for uric acid in fructose-induced metabolic syndrome. American Journal of Physiology. Renal Physiology, 290(3), F625–F631.

    Article  CAS  PubMed  Google Scholar 

  38. Bjornstad, P., Maahs, D. M., Rivard, C. J., Pyle, L., Rewers, M., Johnson, R. J., & Snell-Bergeon, J. K. (2014). Serum uric acid predicts vascular complications in adults with type 1 diabetes: The coronary artery calcification in type 1 diabetes study. Acta Diabetologica, 51(5), 783–791.

    Article  CAS  PubMed  Google Scholar 

  39. Sochett, E. B., Cherney, D. Z., Curtis, J. R., Dekker, M. G., Scholey, J. W., & Miller, J. A. (2006). Impact of renin angiotensin system modulation on the hyper filtration state in type 1 diabetes. Journal of the American Society of Nephrology, 17(6), 1703–1709.

    Article  CAS  PubMed  Google Scholar 

  40. Bjornstad, P., Snell-Bergeon, J. K., McFann, K., Wadwa, R. P., Rewers, M., Rivard, C. J., et al. (2014). Serum uric acid and insulin sensitivity in adolescents and adults with and without type 1 diabetes. Journal of Diabetes and Its Complications, 28, 298–304.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Davies, M. J., Raymond, N. T., Day, J. L., Hales, C. N., & Burden, A. C. (2000). Impaired glucose tolerance and fasting hyperglycaemia have different characteristics. Diabetic Medicine, 17, 433–440.

    Article  CAS  PubMed  Google Scholar 

  42. Kahn, S. E., Montgomery, B., & Howell, W. (2001). Importance of early phase insulin secretion to intravenous glucose tolerance in subjects with type 2 diabetes mellitus. Journal of Clinical Endocrinology and Metabolism, 86, 5824–5829.

    Article  CAS  PubMed  Google Scholar 

  43. Mc Garry, J. D. (2002). Banting Lecture 2001: Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes, 57, 7–18.

    Article  Google Scholar 

  44. Yuan, H. J., Yang, X. G., Shi, X. Y., Tian, R., & Zhao, Z. G. (2011). Association of serum uric acid with different levels of glucose and related factors. Chinese Medical Journal, 124, 443–448.

    Google Scholar 

  45. Lee, S. W., Kwon, H. S., Park, Y. M., Ha, H. S., Jeong, S. H., Yang, H. K., et al. (2014). Predicting the development of diabetes using the product of triglycerides and glucose: The Chungju Metabolic Disease Cohort (CMC) Study. PLoS One, 9, e90430.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Boden, G., & Shulman, G. I. (2002). Free fatty acids in obesity and type 2 diabetes: Defining the role in the development of insulin resistance and beta-cell dysfunction. European Journal of Clinical Investigation, 32, 14–23.

    Article  CAS  PubMed  Google Scholar 

  47. Goldberg, R. (2014). Targeting low-density lipoprotein and dysmetabolism in type 2 diabetes mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology, 34, 477–478.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Ruíz-Hernández, N., Espinoza-Zavala, M., González, J. C., Leal-Herrera, U., & Reigosa-Yaniz, A. (2011). Oxidized LDL and anti-oxidized LDL antibodies according uric acid levels in overweight women. Archivos de Cardiología de México, 81, 188–196.

    PubMed  Google Scholar 

  49. Clavreul, N., Baehselimid, M. M., & Hou, X. (2006). S-glutathiolation of P2l ras by peroxynitrite mediates endothelial insulin resistance caused by oxidized low-density lipoprotein. Arteriosclerosis Thrombosis and Vascular Biology, 26, 2454–2461.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Lu Qi for critical comments, help with language, and proof reading of the manuscript. We also thank all our study participants. This work was supported by grants from Jiangsu Provincial Bureau of Health Foundation (# H201356), International Exchange Program and Jiangsu Six Talent Peaks Program (# 2013-WSN-013), and Xuzhou Outstanding Medical Academic Leader Project and Xuzhou Science and Technology Grants (# XM13B066, XZZD1242).

Conflict of interest

The authors have no conflict of interest involved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liang.

Additional information

Qinqin Qiu, Ying Gong and Jun Liang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Q., Gong, Y., Liu, X. et al. Serum Uric Acid and Impaired Glucose Tolerance: The Cardiometabolic Risk in Chinese (CRC) Study. Cell Biochem Biophys 73, 155–162 (2015). https://doi.org/10.1007/s12013-015-0597-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-015-0597-5

Keywords

Navigation