Skip to main content

Advertisement

Log in

Membrane Topology of Human Presenilin-1 in SK-N-SH Cells Determined by Fluorescence Correlation Spectroscopy and Fluorescent Energy Transfer

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Presenilin-1 (PS1) protein acts as passive ER Ca2+ leak channels that facilitate passive Ca2+ leak across ER membrane. Mutations in the gene encoding PS1 protein cause neurodegeneration in the brains of patients with familial Alzheimer’s disease (FAD). FADPS1 mutations abrogate the function of ER Ca2+ leak channel activity in human neuroblastoma SK-N-SH cells in vitro (Das et al., J Neurochem 122(3):487–500, 2012) and in mouse embryonic fibroblasts. Consequently, genetic deletion or mutations of the PS1 gene cause calcium (Ca2+) signaling abnormalities leading to neurodegeneration in FAD patients. By analogy with other known ion channels it has been proposed that the functional PS1 channels in ER may be multimers of several PS1 subunits. To test this hypothesis, we conjugated the human PS1 protein with an NH2-terminal YFP-tag and a COOH-terminal CFP-tag. As expected YFP–PS1, and PS1–CFP were found to be expressed on the plasma membranes by TIRF microscopy, and both these fusion proteins increased ER Ca2+ leak channel activity similar to PS1 (WT) in SK-N-SH cells, as determined by functional calcium imaging. PS1–CFP was either expressed alone or together with YFP–PS1 into SK-N-SH cell line and the interaction between YFP–PS1 and PS1–CFP was determined by Förster resonance energy transfer analysis. Our results suggest interaction between YFP–PS1 and PS1–CFP confirming the presence of a dimeric or multimeric form of PS1 in SK-N-SH cells. Lateral diffusion of PS1–CFP and YFP–PS1 in the plasma membrane of SK-N-SH cells was measured in the absence or in the presence of glycerol by fluorescence correlation spectroscopy to show that both COOH-terminal and NH2-terminal of human PS1 are located on the cytoplasmic side of the plasma membrane. Therefore, we conclude that both COOH-terminal and NH2-terminal of human PS1 may also be oriented on the cytosolic side of ER membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

APP:

Amyloid precursor protein

CFP:

Cyan fluorescent protein

ER:

Endoplasmic reticulum

FAD:

Familial Alzheimer’s disease

FCS:

Fluorescence correlation spectroscopy

FRET:

Förster resonance energy transfer

PBS:

Phosphate buffer saline

MEF:

Mouse embryonic fibroblast

NT:

NH2-terminal

PCR:

Polymerase chain reaction

PS1:

Presenilin-1

PS1CTF:

COOH-terminal fragment of PS1

PS1FL:

Full length PS1

PS1NTF:

NH2-terminal fragment of PS1

TIRF:

Total Internal Reflection Fluorescence

WT:

Wild type

YFP:

Yellow fluorescent protein

References

  1. De Strooper, B., Saftig, P., Craessaerts, K., Vanderstichele, H., Guhde, G., Annaert, W., et al. (1998). Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature, 391(6665), 387–390.

    Article  PubMed  Google Scholar 

  2. Wolfe, M. S., Xia, W., Ostaszewski, B. L., Diehl, T. S., Kimberly, W. T., & Selkoe, D. J. (1999). Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature, 398(6727), 513–517.

    Article  PubMed  CAS  Google Scholar 

  3. Selkoe, D. J. (1997). Alzheimer’s disease: Genotypes, phenotypes, and treatments. Science, 275(5300), 630–631.

    Article  PubMed  CAS  Google Scholar 

  4. Selkoe, D. J., & Schenk, D. (2003). Alzheimer’s disease: Molecular understanding predicts amyloid-based therapeutics. Annual Review of Pharmacology and Toxicology, 43, 545–584.

    Article  PubMed  CAS  Google Scholar 

  5. Sherrington, R., Rogaev, E. I., Liang, Y., Rogaeva, E. A., Levesque, G., Ikeda, M., et al. (1995). Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature, 375(6534), 754–760.

    Article  PubMed  CAS  Google Scholar 

  6. Tu, H., Nelson, O., Bezprozvanny, A., Wang, Z., Lee, S. F., Hao, Y. H., et al. (2006). Presenilins form ER Ca2+ leak channels, a function disrupted by familial Alzheimer’s disease-linked mutations. Cell, 126(5), 981–993.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Supnet, C., & Bezprozvanny, I. (2010). The dysregulation of intracellular calcium in Alzheimer disease. Cell Calcium, 47(2), 183–189.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Das, H. K., Tchedre, K., & Mueller, B. (2012). Repression of transcription of presenilin-1 inhibits gamma-secretase independent ER Ca(2)(+) leak that is impaired by FAD mutations. Journal of Neurochemistry, 122(3), 487–500.

    Article  PubMed  CAS  Google Scholar 

  9. Duff, K., Eckman, C., Zehr, C., Yu, X., Prada, C. M., Perez-tur, J., et al. (1996). Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature, 383(6602), 710–713.

    Article  PubMed  CAS  Google Scholar 

  10. Annaert, W. G., Levesque, L., Craessaerts, K., Dierinck, I., Snellings, G., Westaway, D., et al. (1999). Presenilin 1 controls gamma-secretase processing of amyloid precursor protein in pre-golgi compartments of hippocampal neurons. Journal of Cell Biology, 147(2), 277–294.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. De Strooper, B. (2003). Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex. Neuron, 38(1), 9–12.

    Article  PubMed  Google Scholar 

  12. Sobhanifar, S., Schneider, B., Lohr, F., Gottstein, D., Ikeya, T., Mlynarczyk, K., et al. (2010). Structural investigation of the C-terminal catalytic fragment of presenilin 1. Proceedings of the National Academy of Sciences USA, 107(21), 9644–9649.

    Article  CAS  Google Scholar 

  13. Laudon, H., Hansson, E. M., Melen, K., Bergman, A., Farmery, M. R., Winblad, B., et al. (2005). A nine-transmembrane domain topology for presenilin 1. Journal of Biological Chemistry, 280(42), 35352–35360.

    Article  PubMed  CAS  Google Scholar 

  14. Spasic, D., Tolia, A., Dillen, K., Baert, V., De Strooper, B., Vrijens, S., et al. (2006). Presenilin-1 maintains a nine-transmembrane topology throughout the secretory pathway. Journal of Biological Chemistry, 281(36), 26569–26577.

    Article  PubMed  CAS  Google Scholar 

  15. Tolia, A., Chavez-Gutierrez, L., & De Strooper, B. (2006). Contribution of presenilin transmembrane domains 6 and 7 to a water-containing cavity in the gamma-secretase complex. Journal of Biological Chemistry, 281(37), 27633–27642.

    Article  PubMed  CAS  Google Scholar 

  16. Tolia, A., & De Strooper, B. (2009). Structure and function of gamma-secretase. Seminars in Cell & Developmental Biology, 20(2), 211–218.

    Article  CAS  Google Scholar 

  17. Bammens, L., Chavez-Gutierrez, L., Tolia, A., Zwijsen, A., & De Strooper, B. (2011). Functional and topological analysis of Pen-2, the fourth subunit of the gamma-secretase complex. Journal of Biological Chemistry, 286(14), 12271–12282.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Nelson, O., Supnet, C., Tolia, A., Horre, K., De Strooper, B., & Bezprozvanny, I. (2011). Mutagenesis mapping of the presenilin 1 calcium leak conductance pore. Journal of Biological Chemistry, 286(25), 22339–22347.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Herl, L., Lleo, A., Thomas, A. V., Nyborg, A. C., Jansen, K., Golde, T. E., et al. (2006). Detection of presenilin-1 homodimer formation in intact cells using fluorescent lifetime imaging microscopy. Biochemical and Biophysical Research Communications, 340(2), 668–674.

    Article  PubMed  CAS  Google Scholar 

  20. Story, G. M., Peier, A. M., Reeve, A. J., Eid, S. R., Mosbacher, J., Hricik, T. R., et al. (2003). ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell, 112(6), 819–829.

    Article  PubMed  CAS  Google Scholar 

  21. Midde, K., Luchowski, R., Das, H. K., Fedorick, J., Dumka, V., Gryczynski, I., et al. (2011). Evidence for pre- and post-power stroke of cross-bridges of contracting skeletal myofibrils. Biophysical Journal, 100(4), 1024–1033.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Doan, A., Thinakaran, G., Borchelt, D. R., Slunt, H. H., Ratovitsky, T., Podlisny, M., et al. (1996). Protein topology of presenilin 1. Neuron, 17(5), 1023–1030.

    Article  PubMed  CAS  Google Scholar 

  23. Li, X., & Greenwald, I. (1996). Membrane topology of the C. elegans SEL-12 presenilin. Neuron, 17(5), 1015–1021.

    Article  PubMed  CAS  Google Scholar 

  24. Kim, J., & Schekman, R. (2004). The ins and outs of presenilin 1 membrane topology. Proceedings of the National Academy of Sciences USA, 101(4), 905–906.

    Article  CAS  Google Scholar 

  25. De Strooper, B., Beullens, M., Contreras, B., Levesque, L., Craessaerts, K., Cordell, B., et al. (1997). Phosphorylation, subcellular localization, and membrane orientation of the Alzheimer’s disease-associated presenilins. Journal of Biological Chemistry, 272(6), 3590–3598.

    Article  PubMed  Google Scholar 

  26. Li, L., Cheung, T., Chen, J., & Herrup, K. (2011). A comparative study of five mouse models of Alzheimer’s disease: Cell cycle events reveal new insights into neurons at risk for death. International Journal of Alzheimer’s Disease, 2011, 171464.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. Michael Wolfe (Harvard Medical School) for providing us with pCDNA3.1-PS1 expression vector. This research was supported by NIH Grant R01HL090786 to Dr. Julian Borejdo and research support from Graduate School of Biomedical Sciences of UNTHSC to Dr. Hriday K. Das. Mr. Krishna Midde is supported by Predoctoral Fellowship 12PRE8730003 from American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hriday K. Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Midde, K., Rich, R., Saxena, A. et al. Membrane Topology of Human Presenilin-1 in SK-N-SH Cells Determined by Fluorescence Correlation Spectroscopy and Fluorescent Energy Transfer. Cell Biochem Biophys 70, 923–932 (2014). https://doi.org/10.1007/s12013-014-9999-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-9999-z

Keywords

Navigation