Skip to main content
Log in

Polymorphism of DNA Repair Gene xrcc1 and Lung Cancer Risk

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The current large-scale meta-analysis was performed to reach a reliable conclusion on the association between X-ray repair cross-complementing 1 (xrcc1) rs1799782 and the development of lung cancer. Studies that investigated the association between rs1799782 and lung cancer risk were identified by searching PubMed. We calculated odds ratio (OR) with corresponding 95 % confidence interval (CI) for Trp/Trp vs Arg/Arg, Trp/Trp + Arg/Trp vs Arg/Arg, and Trp/Trp vs Arg/Trp + Arg/Arg contrast models. Combining all 25 studies, we yielded three summary ORs: 1.07 (95 % CI 0.92–1.23) for Trp/Trp vs Arg/Arg, 0.93 (95 % CI 0.87–1.00) for Trp/Trp + Arg/Trp vs Arg/Arg, and 1.08 (95 % CI 0.94–1.25) for Trp/Trp vs Arg/Trp + Arg/Arg, suggesting rs1799782 was not associated with overall risk of lung cancer. Strikingly, a significantly deceased risk was found among Caucasian populations (Trp/Trp + Arg/Trp vs Arg/Arg, OR = 0.86, 95 % CI 0.76–0.97). This study confirms that xrcc1 rs1799782 may lower the risk of lung cancer among Caucasians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Khuder, S. A. (2001). Effect of cigarette smoking on major histological types of lung cancer: a meta-analysis. Lung Cancer, 31(2–3), 139–148.

    Article  CAS  PubMed  Google Scholar 

  2. Doll, R., & Peto, R. (1981). The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. Journal of the National Cancer Institute, 66(6), 1191–1308.

    CAS  PubMed  Google Scholar 

  3. Doll, R., et al. (2004). Mortality in relation to smoking: 50 years’ observations on male British doctors. BMJ, 328(7455), 1519.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Hecht, S. S. (1999). Tobacco smoke carcinogens and lung cancer. Journal of the National Cancer Institute, 91(14), 1194–1210.

    Article  CAS  PubMed  Google Scholar 

  5. Livneh, Z. (2001). DNA damage control by novel DNA polymerases: translesion replication and mutagenesis. Journal of Biological Chemistry, 276(28), 25639–25642.

    Article  CAS  PubMed  Google Scholar 

  6. Li, D., et al. (2001). Sensitivity to DNA damage induced by benzo(a)pyrene diol epoxide and risk of lung cancer: a case-control analysis. Cancer Research, 61(4), 1445–1450.

    CAS  PubMed  Google Scholar 

  7. Hoeijmakers, J. H. (2001). Genome maintenance mechanisms for preventing cancer. Nature, 411(6835), 366–374.

    Article  CAS  PubMed  Google Scholar 

  8. Wood, R. D., et al. (2001). Human DNA repair genes. Science, 291(5507), 1284–1289.

    Article  CAS  PubMed  Google Scholar 

  9. Whitehouse, C. J., et al. (2001). XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair. Cell, 104(1), 107–117.

    Article  CAS  PubMed  Google Scholar 

  10. Caldecott, K. W. (2003). XRCC1 and DNA strand break repair. DNA Repair (Amst), 2(9), 955–969.

    Article  CAS  Google Scholar 

  11. Shen, M. R., Jones, I. M., & Mohrenweiser, H. (1998). Nonconservative amino acid substitution variants exist at polymorphic frequency in DNA repair genes in healthy humans. Cancer Research, 58(4), 604–608.

    CAS  PubMed  Google Scholar 

  12. Wei, B., et al. (2011). XRCC1 Arg399Gln and Arg194Trp polymorphisms in prostate cancer risk: a meta-analysis. Prostate Cancer and Prostatic Diseases, 14(3), 225–231.

    Article  CAS  PubMed  Google Scholar 

  13. Gsur, A., et al. (2011). No association of XRCC1 polymorphisms Arg194Trp and Arg399Gln with colorectal cancer risk. Cancer Epidemiology, 35(5), e38–e41.

    Article  CAS  PubMed  Google Scholar 

  14. Chen, B., et al. (2012). Polymorphisms of XRCC1 and gastric cancer susceptibility: a meta-analysis. Molecular Biology Reports, 39(2), 1305–1313.

    Article  CAS  PubMed  Google Scholar 

  15. Shen, W. D., Chen, H. L., & Liu, P. F. (2011). XRCC1 Polymorphisms and Pancreatic Cancer: A Meta-Analysis. Chinese Journal of Cancer Research, 23(3), 165–170.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Zhang, H., et al. (2011). Polymorphisms in DNA repair gene XRCC1 and skin cancer risk: a meta-analysis. Anticancer Research, 31(11), 3945–3952.

    CAS  PubMed  Google Scholar 

  17. De Ruyck, K., et al. (2007). Polymorphisms in base-excision repair and nucleotide-excision repair genes in relation to lung cancer risk. Mutation Research, 631(2), 101–110.

    Article  PubMed  Google Scholar 

  18. Chen, S., et al. (2002). DNA repair gene XRCC1 and XPD polymorphisms and risk of lung cancer in a Chinese population. Carcinogenesis, 23(8), 1321–1325.

    Article  PubMed  Google Scholar 

  19. Yin, J., et al. (2008). Haplotypes of nine single nucleotide polymorphisms on chromosome 19q13.2-3 associated with susceptibility of lung cancer in a Chinese population. Mutation Research, 641(1–2), 12–18.

    Article  CAS  PubMed  Google Scholar 

  20. Wang, Y., et al. (2009). Association between X-ray repair cross complementing group 1 codon 399 and 194 polymorphisms and lung cancer risk: a meta-analysis. Cancer Letters, 285(2), 134–140.

    Article  CAS  PubMed  Google Scholar 

  21. Dai, L., et al. (2012). XRCC1 gene polymorphisms and lung cancer susceptibility: a meta-analysis of 44 case-control studies. Molecular Biology Reports, 39(10), 9535–9547.

    Article  CAS  PubMed  Google Scholar 

  22. Tobias, A. (1999). Assessing the influence of a single study in the meta-analysis estimate. Stata Technical Bulletin, 8, 15–17.

    Google Scholar 

  23. Egger, M., et al. (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315(7109), 629–634.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Mantel, N., & Haenszel, W. (1959). Statistical aspects of the analysis of data from retrospective studies of disease. Journal of the National Cancer Institute, 22(4), 719–748.

    CAS  PubMed  Google Scholar 

  25. DerSimonian, R., & Laird, N. (1986). Meta-analysis in clinical trials. Controlled Clinical Trials, 7(3), 177–188.

    Article  CAS  PubMed  Google Scholar 

  26. Guo, S., et al. (2013). The relationship between XRCC1 and XRCC3 gene polymorphisms and lung cancer risk in northeastern Chinese. PLoS ONE, 8(2), e56213.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Wang, N., Wu, Y., & Zhou, X. (2012). Association between genetic polymorphism of metabolizing enzymes and DNA repairing enzymes and the susceptibility of lung cancer in Henan population. Wei Sheng Yan Jiu, 41(2), 251–256.

    PubMed  Google Scholar 

  28. Buch, S. C., et al. (2012). Genetic variability in DNA repair and cell cycle control pathway genes and risk of smoking-related lung cancer. Molecular Carcinogenesis, 51(Suppl 1), E11–E20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Janik, J., et al. (2011). 8-Oxoguanine incision activity is impaired in lung tissues of NSCLC patients with the polymorphism of OGG1 and XRCC1 genes. Mutation Research, 709–710, 21–31.

    Article  PubMed  Google Scholar 

  30. Tanaka, Y., et al. (2010). Nonsynonymous single nucleotide polymorphisms in DNA damage repair pathways and lung cancer risk. Cancer, 116(4), 896–902.

    Article  CAS  PubMed  Google Scholar 

  31. Chang, J. S., et al. (2009). Base excision repair genes and risk of lung cancer among San Francisco Bay Area Latinos and African-Americans. Carcinogenesis, 30(1), 78–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Improta, G., et al. (2008). Polymorphisms of the DNA repair genes XRCC1 and XRCC3 and risk of lung and colorectal cancer: a case-control study in a Southern Italian population. Anticancer Research, 28(5B), 2941–2946.

    CAS  PubMed  Google Scholar 

  33. Li, M., et al. (2008). XRCC1 polymorphisms, cooking oil fume and lung cancer in Chinese women nonsmokers. Lung Cancer, 62(2), 145–151.

    Article  PubMed  Google Scholar 

  34. Pachouri, S. S., et al. (2007). Contrasting impact of DNA repair gene XRCC1 polymorphisms Arg399Gln and Arg194Trp on the risk of lung cancer in the north-Indian population. DNA and Cell Biology, 26(3), 186–191.

    Article  CAS  PubMed  Google Scholar 

  35. Matullo, G., et al. (2006). DNA repair polymorphisms and cancer risk in non-smokers in a cohort study. Carcinogenesis, 27(5), 997–1007.

    Article  CAS  PubMed  Google Scholar 

  36. Zienolddiny, S., et al. (2006). Polymorphisms of DNA repair genes and risk of non-small cell lung cancer. Carcinogenesis, 27(3), 560–567.

    Article  CAS  PubMed  Google Scholar 

  37. Landi, S., et al. (2006). DNA repair and cell cycle control genes and the risk of young-onset lung cancer. Cancer Research, 66(22), 11062–11069.

    Article  CAS  PubMed  Google Scholar 

  38. Hao, B., et al. (2006). A novel T-77C polymorphism in DNA repair gene XRCC1 contributes to diminished promoter activity and increased risk of non-small cell lung cancer. Oncogene, 25(25), 3613–3620.

    Article  CAS  PubMed  Google Scholar 

  39. Chan, E. C., et al. (2005). Polymorphisms of the GSTM1, GSTP1, MPO, XRCC1, and NQO1 genes in Chinese patients with non-small cell lung cancers: relationship with aberrant promoter methylation of the CDKN2A and RARB genes. Cancer Genetics and Cytogenetics, 162(1), 10–20.

    Article  CAS  PubMed  Google Scholar 

  40. Schneider, J., et al. (2005). XRCC1 polymorphism and lung cancer risk in relation to tobacco smoking. International Journal of Molecular Medicine, 16(4), 709–716.

    CAS  PubMed  Google Scholar 

  41. Shen, M., et al. (2005). Polymorphisms in the DNA base excision repair genes APEX1 and XRCC1 and lung cancer risk in Xuan Wei, China. Anticancer Research, 25(1B), 537–542.

    CAS  PubMed  Google Scholar 

  42. Hu, Z., et al. (2005). A promoter polymorphism (−77T > C) of DNA repair gene XRCC1 is associated with risk of lung cancer in relation to tobacco smoking. Pharmacogenetics and Genomics, 15(7), 457–463.

    Article  CAS  PubMed  Google Scholar 

  43. Hung, R. J., et al. (2005). Large-scale investigation of base excision repair genetic polymorphisms and lung cancer risk in a multicenter study. Journal of the National Cancer Institute, 97(8), 567–576.

    Article  CAS  PubMed  Google Scholar 

  44. Ratnasinghe, D., et al. (2001). Polymorphisms of the DNA repair gene XRCC1 and lung cancer risk. Cancer Epidemiology, Biomarkers & Prevention, 10(2), 119–123.

    CAS  Google Scholar 

  45. David-Beabes, G. L., & London, S. J. (2001). Genetic polymorphism of XRCC1 and lung cancer risk among African-Americans and Caucasians. Lung Cancer, 34(3), 333–339.

    Article  CAS  PubMed  Google Scholar 

  46. Spitz, M. R., et al. (2003). Genetic susceptibility to lung cancer: the role of DNA damage and repair. Cancer Epidemiology, Biomarkers & Prevention, 12(8), 689–698.

    CAS  Google Scholar 

  47. Lunn, R. M., et al. (1999). XRCC1 polymorphisms: effects on aflatoxin B1-DNA adducts and glycophorin A variant frequency. Cancer Research, 59(11), 2557–2561.

    CAS  PubMed  Google Scholar 

  48. Sutton, A. J., et al. (2000). Empirical assessment of effect of publication bias on meta-analyses. BMJ, 320(7249), 1574–1577.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (NSFC No. 81372827).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Liu, Z. Polymorphism of DNA Repair Gene xrcc1 and Lung Cancer Risk. Cell Biochem Biophys 70, 1881–1886 (2014). https://doi.org/10.1007/s12013-014-0146-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0146-7

Keywords

Navigation