Skip to main content
Log in

Potential Effects of Orally Ingesting Polyethylene Terephthalate Microplastics on the Mouse Heart

  • Research
  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Polyethylene terephthalate microplastics (PET MPs) are widespread in natural environment, and can enter organisms and accumulate in the body, but its toxicity has not been well studied. Therefore, in order to investigate the toxic effects of PET microplastics on mammals, this study investigated the toxic effects of PET MPs on ICR mice and H9C2 cells by different treatment groups. The results indicated the cardiac tissue of mice in the PET-H (50 µg/mL) group showed significant capillary congestion, myocardial fiber breakage, and even significant fibrosis compared to the PET-C (control) group (P < 0.01). Results of the TUNEL assay demonstrated significant apoptosis in myocardial tissue in the PET-H and PET-M (5 µg/mL) groups (P < 0.01). Meanwhile, Western blotting showed increased expression of the apoptosis-related protein Bax and decreased expression of PARP, caspase-3, and Bcl-2 proteins in both myocardial tissues and H9C2 cells. In addition, flow cytometry confirmed that PET MPs decreased the mitochondrial membrane potential and apoptosis in H9C2 cells; however, this trend was reversed by N-acetylcysteamine application. Moreover, PET MP treatment induced the accumulation of reactive oxygen species (ROS) in H9C2 cells, while the MDA level in the myocardial tissue was elevated, and the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were decreased (P < 0.01), indicating a change in the redox environment. In conclusion, PET MPs promoted cardiomyocyte apoptosis by inducing oxidative stress and activating mitochondria-mediated apoptotic processes, ultimately leading to myocardial fibrosis. This study provides ideas for the prevention of PET MP toxicity and promotes thinking about enhancing plastic pollution control.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data is provided within the manuscript. The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Thompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W., McGonigle, D., & Russell, A. E. (2004). Lost at sea: Where is all the plastic? Science (New York N Y), 304, 838.

    Article  CAS  PubMed  Google Scholar 

  2. Claessens, M., Van Cauwenberghe, L., Vandegehuchte, M. B., & Janssen, C. R. (2013). New techniques for the detection of microplastics in sediments and field collected organisms. Marine Pollution Bulletin, 70, 227–233.

    Article  CAS  PubMed  Google Scholar 

  3. Guzzetti, E., Sureda, A., Tejada, S., & Faggio, C. (2018). Microplastic in marine organism: Environmental and toxicological effects. Environmental Toxicology and Pharmacology, 64, 164–171.

    Article  CAS  PubMed  Google Scholar 

  4. Lusher, A. L., McHugh, M., & Thompson, R. C. (2013). Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Marine Pollution Bulletin, 67, 94–99.

    Article  CAS  PubMed  Google Scholar 

  5. Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62, 1596–1605.

    Article  CAS  PubMed  Google Scholar 

  6. Wu, P., Huang, J., Zheng, Y., Yang, Y., Zhang, Y., He, F., Chen, H., Quan, G., Yan, J., Li, T., & Gao, B. (2019). Environmental occurrences, fate, and impacts of microplastics. Ecotoxicology and Environmental Safety, 184, 109612.

    Article  CAS  PubMed  Google Scholar 

  7. Chackal, R., Eng, T., Rodrigues, E. M., Matthews, S., Pagé-Lariviére, F., Avery-Gomm, S., Xu, E. G., Tufenkji, N., Hemmer, E., & Mennigen, J. A. (2022). Metabolic Consequences of Developmental Exposure to Polystyrene Nanoplastics, the Flame Retardant BDE-47 and Their Combination in Zebrafish. Frontiers in Pharmacology, 13, 822111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lin, S., Zhang, H., Wang, C., Su, X. L., Song, Y., Wu, P., Yang, Z., Wong, M. H., Cai, Z., & Zheng, C. (2022). Metabolomics Reveal Nanoplastic-Induced mitochondrial damage in Human Liver and Lung cells. Environmental Science & Technology, 56, 12483–12493.

    Article  CAS  ADS  Google Scholar 

  9. Manuel, P., Almeida, M., Martins, M., & Oliveira, M. (2022). Effects of nanoplastics on zebrafish embryo-larval stages: A case study with polystyrene (PS) and polymethylmethacrylate (PMMA) particles. Environmental Research, 213, 113584.

    Article  CAS  PubMed  ADS  Google Scholar 

  10. van Pomeren, M., Brun, N. R., Peijnenburg, W. J. G. M., & Vijver, M. G. (2017). Exploring uptake and biodistribution of polystyrene (nano)particles in zebrafish embryos at different developmental stages. Aquatic Toxicology, 190, 40–45.

    Article  PubMed  Google Scholar 

  11. Wang, H., Shi, X., Gao, Y., Zhang, X., Zhao, H., Wang, L., Zhang, X., & Chen, R. (2022). Polystyrene nanoplastics induce profound metabolic shift in human cells as revealed by integrated proteomic and metabolomic analysis. Environment International, 166, 107349.

    Article  CAS  PubMed  Google Scholar 

  12. Filho, W. L., Salvia, A. L., Bonoli, A., Saari, U. A., Voronova, V., Klõga, M., Kumbhar, S. S., Olszewski, K., De Quevedo, D. M., & Barbir, J. (2021). An assessment of attitudes towards plastics and bioplastics in Europe. Science of The Total Environment, 755, 142732.

    Article  PubMed  ADS  Google Scholar 

  13. Liu, Q., Chen, Y., Chen, Z., Yang, F., Xie, Y., & Yao, W. (2022). Current status of microplastics and nanoplastics removal methods: Summary, comparison and prospect. Science of The Total Environment, 851, 157991.

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Dhaka, V., Singh, S., Anil, A. G., Sunil Kumar Naik, T. S., Garg, S., Samuel, J., Kumar, M., Ramamurthy, P. C., & Singh, J. (2022). Occurrence, toxicity and remediation of polyethylene terephthalate plastics. A review. Environmental Chemistry Letters, 20, 1777–1800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bashirova, N., Poppitz, D., Klüver, N., Scholz, S., Matysik, J., & Alia, A. (2023). A mechanistic understanding of the effects of polyethylene terephthalate nanoplastics in the zebrafish (Danio rerio) embryo. Scientific Reports, 13, 1891.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Tejaswini, M. S. S. R., Pathak, P., Ramkrishna, S., & Ganesh, P. S. (2022). A comprehensive review on integrative approach for sustainable management of plastic waste and its associated externalities. Science of The Total Environment, 825, 153973.

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Bäuerlein, P. S., Hofman-Caris, R. C. H. M., Pieke, E. N., & Laak, T. L. (2022). Fate of microplastics in the drinking water production. Water Research, 221, 118790.

    Article  PubMed  Google Scholar 

  18. Jiang, Q., Chen, X., Jiang, H., Wang, M., Zhang, T., & Zhang, W. (2022). Effects of acute exposure to polystyrene nanoplastics on the channel catfish larvae: Insights from energy metabolism and transcriptomic analysis. Frontiers in Physiology, 13, 923278.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang, H., Zhang, S., Duan, Z., & Wang, L. (2022). Pulmonary toxicology assessment of polyethylene terephthalate nanoplastic particles in vitro. Environment International, 162, 107177.

    Article  CAS  PubMed  Google Scholar 

  20. Liu, Z., & You, X. (2023). Recent progress of microplastic toxicity on human exposure base on in vitro and in vivo studies. Science of The Total Environment, 903, 166766.

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Schwabl, P., Köppel, S., Königshofer, P., Bucsics, T., Trauner, M., Reiberger, T., & Liebmann, B. (2019). Detection of various microplastics in human stool. Annals of Internal Medicine, 171, 453–457.

    Article  PubMed  Google Scholar 

  22. Jenner, L. C., Rotchell, J. M., Bennett, R. T., Cowen, M., Tentzeris, V., & Sadofsky, L. R. (2022). Detection of microplastics in human lung tissue using µFTIR spectroscopy. Science of The Total Environment, 831, 154907.

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Mukherjee, A., Rotchell, J. M., Jenner, L. C., Chapman, E., Bennett, R. T., Bolanle, I. O., Loubani, M., Sadofsky, L., & Palmer, T. M. (2023). Detection of microplastics in human saphenous vein tissue using µFTIR: A pilot study. Plos One, 18(2), e0280594.

    Article  Google Scholar 

  24. Heil, B., & Tang, W. H. (2015). Biomarkers: Their potential in the diagnosis and treatment of heart failure. Cleveland Clinic Journal of Medicine, 82, S28–35.

    Article  PubMed  Google Scholar 

  25. Sistino, J. J. (2016). Epidemiology of cardiovascular disease in the last decade: Treatment options and implications for perfusion in the 21st century. Perfusion, 18, 73–77.

    Article  Google Scholar 

  26. Yang, H., Xiong, H., Mi, K., Xue, W., Wei, W., & Zhang, Y. (2020). Toxicity comparison of nano-sized and micron-sized microplastics to Goldfish Carassius auratus Larvae. Journal of Hazardous Materials, 388, 122058.

    Article  CAS  PubMed  Google Scholar 

  27. Browne, M. A., Dissanayake, A., Galloway, T. S., Lowe, D. M., & Thompson, R. C. (2008). Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L). Environmental Science and Technology, 42, 5026–5031.

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Mostovenko, E., Young, T., Muldoon, P. P., Bishop, L., Canal, C. G., Vucetic, A., Zeidler-Erdely, P. C., Erdely, A., Campen, M. J., & Ottens, A. K. (2019). Nanoparticle exposure driven circulating bioactive peptidome causes systemic inflammation and vascular dysfunction. Particle and Fibre Toxicology, 16, 1–23.

    Article  CAS  Google Scholar 

  29. Li, Z., Zhu, S., Liu, Q., Wei, J., Jin, Y., Wang, X., & Zhang, L. (2020). Polystyrene microplastics cause cardiac fibrosis by activating Wnt/β-catenin signaling pathway and promoting cardiomyocyte apoptosis in rats. Environmental Pollution, 265, 115025.

    Article  CAS  PubMed  Google Scholar 

  30. Senathirajah, K., Attwood, S., Bhagwat, G., Carbery, M., Wilson, S., & Palanisami, T. (2021). Estimation of the mass of microplastics ingested—A pivotal first step towards human health risk assessment. Journal of Hazardous Materials, 404, 124004.

    Article  CAS  PubMed  Google Scholar 

  31. Cole, M., Lindeque, P., Halsband, C., & Galloway, T. S. (2011). Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin, 62, 2588–2597.

    Article  CAS  PubMed  Google Scholar 

  32. Hwang, J., Choi, D., Han, S., Choi, J., & Hong, J. (2019). An assessment of the toxicity of polypropylene microplastics in human derived cells. Science of the Total Environment, 684, 657–669.

    Article  CAS  PubMed  ADS  Google Scholar 

  33. Jeon, S., Lee, D. K., Jeong, J., Yang, S. I., Kim, J. S., Kim, J., & Cho, W. S. (2021). The reactive oxygen species as pathogenic factors of fragmented microplastics to macrophages. Environmental Pollution, 281, 117006.

    Article  CAS  PubMed  Google Scholar 

  34. Stock, V., Fahrenson, C., Thuenemann, A., Dönmez, M. H., Voss, L., Böhmert, L., Braeuning, A., Lampen, A., & Sieg, H. (2020). Impact of artificial digestion on the sizes and shapes of microplastic particles. Food and Chemical Toxicology, 135, 111010.

    Article  CAS  PubMed  Google Scholar 

  35. Choi, D., Hwang, J., Bang, J., Han, S., Kim, T., Oh, Y., Hwang, Y., Choi, J., & Hong, J. (2021). In vitro toxicity from a physical perspective of polyethylene microplastics based on statistical curvature change analysis. Science of The Total Environment, 752, 142242.

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Choi, J. S., Jung, Y. J., Hong, N. H., Hong, S. H., & Park, J. W. (2018). Toxicological effects of irregularly shaped and spherical microplastics in a marine teleost, the sheepshead minnow (Cyprinodon variegatus). Marine Pollution Bulletin, 129, 231–240.

    Article  CAS  PubMed  Google Scholar 

  37. Chen, R., Hu, B., Liu, Y., Xu, J., Yang, G., Xu, D., & Chen, C. (2016). Beyond PM2.5: The role of ultrafine particles on adverse health effects of air pollution. Biochimica et Biophysica Acta (BBA). - General Subjects, 1860, 2844–2855.

    Article  CAS  Google Scholar 

  38. Franzellitti, S., Canesi, L., Auguste, M., Wathsala, R. H. G. R., & Fabbri, E. (2019). Microplastic exposure and effects in aquatic organisms: A physiological perspective. Environmental Toxicology and Pharmacology, 68, 37–51.

    Article  CAS  PubMed  Google Scholar 

  39. Jaiswal, K. K., Dutta, S., Banerjee, I., Pohrmen, C. B., Singh, R. K., Das, H. T., Dubey, S., & Kumar, V. (2022). Impact of aquatic microplastics and nanoplastics pollution on ecological systems and sustainable remediation strategies of biodegradation and photodegradation. Science of The Total Environment, 806, 151358.

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Li, C., Busquets, R., & Campos, L. C. (2020). Assessment of microplastics in freshwater systems: A review. Science of The Total Environment, 707, 135578.

    Article  CAS  PubMed  ADS  Google Scholar 

  41. Frangogiannis, N. G. (2019). Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Molecular Aspects of Medicine, 65, 70–99.

    Article  CAS  PubMed  Google Scholar 

  42. Li, L., Zhao, Q., & Kong, W. (2018). Extracellular matrix remodeling and cardiac fibrosis. Matrix Biology, 68–69, 490–506.

    Article  PubMed  Google Scholar 

  43. Wynn, T. A. (2007). Cellular and molecular mechanisms of fibrosis. The Journal of Pathology, 214, 199–210.

    Article  Google Scholar 

  44. Wei, J., Wang, X., Liu, Q., Zhou, N., Zhu, S., Li, Z., Li, X., Yao, J., & Zhang, L. (2021). The impact of polystyrene microplastics on cardiomyocytes pyroptosis through NLRP3/Caspase-1 signaling pathway and oxidative stress in Wistar rats. Environmental Toxicology, 36, 935–944.

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Jia, R., Han, J., Liu, X., Li, K., Lai, W., Bian, L., Yan, J., & Xi, Z. (2023). Exposure to Polypropylene microplastics via oral ingestion induces colonic apoptosis and intestinal barrier damage through oxidative stress and inflammation in mice. Toxics, 11(2), 127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chang, X., Xue, Y., Li, J., Zou, L., & Tang, M. (2019). Potential health impact of environmental micro- and nanoplastics pollution. Journal of Applied Toxicology, 40, 4–15.

    Article  PubMed  Google Scholar 

  47. Jeong, C. B., Won, E. J., Kang, H. M., Lee, M. C., Hwang, D. S., Hwang, U. K., Zhou, B., Souissi, S., Lee, S. J., & Lee, J. S. (2016). Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the Monogonont Rotifer (Brachionus Koreanus). Environmental Science & Technology, 50, 8849–8857.

    Article  CAS  ADS  Google Scholar 

  48. Ding, P., Xiang, C., Li, X., Chen, H., Shi, X., Li, X., Huang, C., Yu, Y., Qi, J., Li, A. J., Zhang, L., & Hu, G. (2023). Photoaged microplastics induce neurotoxicity via oxidative stress and abnormal neurotransmission in zebrafish larvae (Danio rerio). Science of The Total Environment, 881, 163480.

    Article  CAS  PubMed  ADS  Google Scholar 

  49. Wang, J., Li, Y., Lu, L., Zheng, M., Zhang, X., Tian, H., Wang, W., & Ru, S. (2019). Polystyrene microplastics cause tissue damages, sex-specific reproductive disruption and transgenerational effects in marine medaka (Oryzias melastigma). Environmental Pollution, 254, 113024.

    Article  CAS  PubMed  Google Scholar 

  50. Xie, X., Deng, T., Duan, J., Xie, J., Yuan, J., & Chen, M. (2020). Exposure to polystyrene microplastics causes reproductive toxicity through oxidative stress and activation of the p38 MAPK signaling pathway. Ecotoxicology and Environmental Safety, 190, 110133.

    Article  CAS  PubMed  Google Scholar 

  51. Crow, M. T., Mani, K., Nam, Y. J., & Kitsis, R. N. (2004). The mitochondrial death pathway and Cardiac Myocyte apoptosis. Circulation Research, 95, 957–970.

    Article  CAS  PubMed  Google Scholar 

  52. Green, D. R. (2022). The death receptor pathway of apoptosis. Cold Spring Harbor perspectives in biology, 14(2), a041053–a041053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (grant numbers 82004008, 81903867). We thank Editage (www.editage.cn) for English language editing.

Author information

Authors and Affiliations

Authors

Contributions

Tao Lu: Investigation, Data curation, Formal analysis, Writing-original draft. Desheng Li: Data curation, Writing-original draft. Xiaoqing Yuan: Data curation. Zhenzhen Wang: Data curation. Zhuang Shao: Data curation. Xiaotian Feng: Data curation. Chen Yang: Data curation. Huan Liu: Data curation. Guanqing Zhang: Data curation. Yue Wang: Data curation. Xiaohan Liu: Data curation. Ling Zhou: Conceptualization, Funding acquisition, Writing-review & editing. Maolei Xu: Conceptualization, Funding acquisition, Supervision, Writing-review & editing.

Corresponding authors

Correspondence to Ling Zhou or Maolei Xu.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Matthew Campen.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, T., Li, D., Yuan, X. et al. Potential Effects of Orally Ingesting Polyethylene Terephthalate Microplastics on the Mouse Heart. Cardiovasc Toxicol 24, 291–301 (2024). https://doi.org/10.1007/s12012-024-09837-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-024-09837-6

Keywords

Navigation