Skip to main content
Log in

COMP Improves Ang-II-Induced Atrial Fibrillation via TGF-β Signaling Pathway

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Cartilage oligomeric matrix protein (COMP) regulates transforming growth factor-β (TGF-β) signaling pathway, which has been proved to be associated with skin fibrosis and pulmonary fibrosis. Atrial fibrosis is a major factor of atrial fibrillation (AF). Nevertheless, the interaction between COMP and TGF-β as well as their role in AF remains undefined. The purpose of this study is to clarify the role of COMP in AF and explore its potential mechanism. The hub gene of AF was identified from two datasets using bioinformatics. Furthermore, it was verified by the downregulation of COMP in angiotensin-II (Ang-II)-induced AF in mice. Moreover, the effect on AF was examined using CCK8 assay, ELISA, and western blot. The involvement of TGF-β pathway was further discussed. The expression of COMP was the most significant among all these hub genes. Our experimental results revealed that the protein levels of TGF-β1, phosphorylated Smad2 (P-Smad2), and phosphorylated Smad3 (P-Smad3) were decreased after silencing COMP, which indicated that COMP knockdown could inhibit the activation of TGF-β pathway in AF cells. However, the phenomenon was reversed when the activator SRI was added. COMP acts as a major factor and can improve Ang-II-induced AF via TGF-β signaling pathway. Thus, our research enriches the understanding of the interaction between COMP and TGF-β in AF, and provides reference for the pathogenesis and diagnosis of AF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Yamamoto, C., & Trayanova, N. A. (2022). Atrial fibrillation: Insights from animal models, computational modeling, and clinical studies. eBioMedicine, 85(104310), 26.

    Google Scholar 

  2. Wang, W., Tian, B., Ning, Z., & Li, X. (2022). Research progress of LncRNAs in atrial fibrillation. Molecular Biotechnology, 64(7), 758–772.

    Article  CAS  PubMed  Google Scholar 

  3. Suwa, Y., Miyasaka, Y., Taniguchi, N., Harada, S., Nakai, E., & Shiojima, I. (2022). Atrial fibrillation and stroke: Importance of left atrium as assessed by echocardiography. Journal of Echocardiography, 20(2), 69–76. https://doi.org/10.1007/s12574-021-00561-6

    Article  PubMed  Google Scholar 

  4. Camm, A. J., Naccarelli, G. V., Mittal, S., Crijns, H., Hohnloser, S. H., Ma, C. S., Natale, A., Turakhia, M. P., & Kirchhof, P. (2022). The increasing role of rhythm control in patients with atrial fibrillation: JACC state-of-the-art review. Journal of the American College of Cardiology, 79(19), 1932–1948.

    Article  PubMed  Google Scholar 

  5. Wegner, F. K., Plagwitz, L., Doldi, F., Ellermann, C., Willy, K., Wolfes, J., Sandmann, S., Varghese, J., & Eckardt, L. (2022). Machine learning in the detection and management of atrial fibrillation. Clinical Research in Cardiology, 111(9), 1010–1017.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sehrawat, O., Kashou, A. H., & Noseworthy, P. A. (2022). Artificial intelligence and atrial fibrillation. Journal of Cardiovascular Electrophysiology, 33(8), 1932–1943.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Posey, K. L., Coustry, F., & Hecht, J. T. (2018). Cartilage oligomeric matrix protein: COMPopathies and beyond. Matrix Biology, 71–72, 161–173. https://doi.org/10.1016/j.matbio.2018.02.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liang, Y., Fu, Y., Qi, R., Wang, M., Yang, N., He, L., Yu, F., Zhang, J., Yun, C.-H., Wang, X., Liu, J., & Kong, W. (2015). Cartilage oligomeric matrix protein is a natural inhibitor of thrombin. Blood, 126(7), 905–914. https://doi.org/10.1182/blood-2015-01-621292

    Article  CAS  PubMed  Google Scholar 

  9. Nakayama, H., Endo, Y., Aota, S., Sato, M., Fujita, T., & Kikuchi, S. (2003). Novel mutations of the cartilage oligomeric matrix protein (COMP) gene in two Japanese patients with pseudoachondroplasia. Oncology Reports, 10(4), 871–873.

    CAS  PubMed  Google Scholar 

  10. Englund, E., Bartoschek, M., Reitsma, B., Jacobsson, L., Escudero-Esparza, A., Orimo, A., Leandersson, K., Hagerling, C., Aspberg, A., Storm, P., Okroj, M., Mulder, H., Jirstrom, K., Pietras, K., & Blom, A. M. (2016). Cartilage oligomeric matrix protein contributes to the development and metastasis of breast cancer. Oncogene, 35(43), 5585–5596.

    Article  CAS  PubMed  Google Scholar 

  11. Englund, E., Canesin, G., Papadakos, K. S., Vishnu, N., Persson, E., Reitsma, B., Anand, A., Jacobsson, L., Helczynski, L., Mulder, H., Bjartell, A., & Blom, A. M. (2017). Cartilage oligomeric matrix protein promotes prostate cancer progression by enhancing invasion and disrupting intracellular calcium homeostasis. Oncotarget, 8(58), 98298–98311.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li, Q., Wang, C., Wang, Y., Sun, L., Liu, Z., Wang, L., Song, T., Yao, Y., Liu, Q., & Tu, K. (2018). HSCs-derived COMP drives hepatocellular carcinoma progression by activating MEK/ERK and PI3K/AKT signaling pathways. Journal of Experimental & Clinical Cancer Research, 37(1), 018–0908.

    Article  Google Scholar 

  13. Liu, T. T., Liu, X. S., Zhang, M., Liu, X. N., Zhu, F. X., Zhu, F. M., Ouyang, S. W., Li, S. B., Song, C. L., Sun, H. M., Lu, S., Zhang, Y., Lin, J., Tang, H. M., & Peng, Z. H. (2018). Cartilage oligomeric matrix protein is a prognostic factor and biomarker of colon cancer and promotes cell proliferation by activating the Akt pathway. Journal of Cancer Research and Clinical Oncology, 144(6), 1049–1063.

    Article  CAS  PubMed  Google Scholar 

  14. Fu, Y., Huang, Y., Yang, Z., Chen, Y., Zheng, J., Mao, C., Li, Z., Liu, Z., Yu, B., Li, T., Wang, M., Xu, C., Zhou, Y., Zhao, G., Jia, Y., Guo, W., Jia, X., Zhang, T., Li, L., … Kong, W. (2021). Cartilage oligomeric matrix protein is an endogenous β-arrestin-2-selective allosteric modulator of AT1 receptor counteracting vascular injury. Cell Research, 31(7), 773–790. https://doi.org/10.1038/s41422-020-00464-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schulz, J.-N., Plomann, M., Sengle, G., Gullberg, D., Krieg, T., & Eckes, B. (2018). New developments on skin fibrosis - Essential signals emanating from the extracellular matrix for the control of myofibroblasts. Matrix Biology, 68–69, 522–532. https://doi.org/10.1016/j.matbio.2018.01.025

    Article  CAS  PubMed  Google Scholar 

  16. Yu, H., Alruwaili, N., Hu, B., Kelly, M. R., Zhang, B., Sun, D., & Wolin, M. S. (2019). Potential role of cartilage oligomeric matrix protein in the modulation of pulmonary arterial smooth muscle superoxide by hypoxia. American Journal of Physiology. Lung Cellular and Molecular Physiology, 317(5), L569–L577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yu, H., Jia, Q., Feng, X., Chen, H., Wang, L., Ni, X., & Kong, W. (2017). Hypoxia decrease expression of cartilage oligomeric matrix protein to promote phenotype switching of pulmonary arterial smooth muscle cells. International Journal of Biochemistry & Cell Biology, 91(Pt A), 37–44.

    Article  CAS  Google Scholar 

  18. Wang, H., Yuan, Z., Wang, B., Li, B., Lv, H., He, J., Huang, Y., Cui, Z., Ma, Q., Li, T., Fu, Y., Tan, X., Liu, Y., Wang, S., Wang, C., Kong, W., & Zhu, Y. (2022). COMP (cartilage oligomeric matrix protein), a novel PIEZO1 regulator that controls blood pressure. Hypertension, 79(3), 549–561.

    Article  PubMed  Google Scholar 

  19. Wang, M., Fu, Y., Gao, C., Jia, Y., Huang, Y., Liu, L., Wang, X., Wang, W., & Kong, W. (2016). Cartilage oligomeric matrix protein prevents vascular aging and vascular smooth muscle cells senescence. Biochemical and Biophysical Research Communications, 478(2), 1006–1013.

    Article  CAS  PubMed  Google Scholar 

  20. Sandstedt, J., Vargmar, K., Bjorkman, K., Ruetschi, U., Bergstrom, G., Hulten, L. M., & Skioldebrand, E. (2021). COMP (cartilage oligomeric matrix protein) neoepitope: A novel biomarker to identify symptomatic carotid stenosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 41(3), 1218–1228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yeh, H. W., Lee, S. S., Chang, C. Y., Lang, Y. D., & Jou, Y. S. (2019). A new switch for TGFbeta in cancer. Cancer Research, 79(15), 3797–3805.

    Article  CAS  PubMed  Google Scholar 

  22. Davis, M. D., Suzaki, I., Kawano, S., Komiya, K., Cai, Q., Oh, Y., & Rubin, B. K. (2019). Tissue factor facilitates wound healing in human airway epithelial cells. Chest, 155(3), 534–539.

    Article  CAS  PubMed  Google Scholar 

  23. Seoane, J., & Gomis, R. R. (2017). TGF-beta family signaling in tumor suppression and cancer progression. Cold Spring Harbor Perspectives in Biology, 9(12), a022277.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Peng, D., Fu, M., Wang, M., Wei, Y., & Wei, X. (2022). Targeting TGF-β signal transduction for fibrosis and cancer therapy. Molecular Cancer. https://doi.org/10.1186/s12943-022-01569-x

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ge, C., Zhao, Y., Liang, Y., & He, Y. (2022). Silencing of TLR4 inhibits atrial fibrosis and susceptibility to atrial fibrillation via downregulation of NLRP3-TGF-beta in spontaneously hypertensive rats. Disease Markers, 11, 2466150.

    Google Scholar 

  26. Saljic, A., Grandi, E., & Dobrev, D. (2022). TGF-beta1-induced endothelial–mesenchymal transition: a potential contributor to fibrotic remodeling in atrial fibrillation? Journal of Clinical Investigation. https://doi.org/10.1172/JCI161070

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nattel, S., & Harada, M. (2014). Atrial remodeling and atrial fibrillation: Recent advances and translational perspectives. Journal of the American College of Cardiology, 63(22), 2335–2345.

    Article  PubMed  Google Scholar 

  28. Woods, C. E., & Olgin, J. (2014). Atrial fibrillation therapy now and in the future: Drugs, biologicals, and ablation. Circulation Research, 114(9), 1532–1546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen, D., Qin, Y., Dai, M., Li, L., Liu, H., Zhou, Y., Qiu, C., Chen, Y., & Jiang, Y. (2020). BGN and COL11A1 regulatory network analysis in colorectal cancer (CRC) reveals that BGN influences CRC cell biological functions and interacts with miR-6828-5p. Cancer Management and Research, 12, 13051–13069. https://doi.org/10.2147/cmar.s277261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Beigel, R., Wunderlich, N. C., Ho, S. Y., Arsanjani, R., & Siegel, R. J. (2014). The left atrial appendage: Anatomy, function, and noninvasive evaluation. JACC: Cardiovascular Imaging, 7(12), 1251–1265.

    PubMed  Google Scholar 

  31. Dzeshka, M. S., Lip, G. Y., Snezhitskiy, V., & Shantsila, E. (2015). Cardiac fibrosis in patients with atrial fibrillation: Mechanisms and clinical implications. Journal of the American College of Cardiology, 66(8), 943–959.

    Article  PubMed  Google Scholar 

  32. Ajoolabady, A., Nattel, S., Lip, G. Y. H., & Ren, J. (2022). Inflammasome signaling in atrial fibrillation: JACC state-of-the-art review. Journal of the American College of Cardiology, 79(23), 2349–2366.

    Article  CAS  PubMed  Google Scholar 

  33. Orlov, Y. L., Anashkina, A. A., Klimontov, V. V., & Baranova, A. V. (2021). Medical genetics, genomics and bioinformatics aid in understanding molecular mechanisms of human diseases. International Journal of Molecular Sciences, 22(18), 9962.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cui, J., & Zhang, J. (2022). Cartilage oligomeric matrix protein, diseases, and therapeutic opportunities. International Journal of Molecular Sciences, 23(16), 9253. https://doi.org/10.3390/ijms23169253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maly, K., Andres Sastre, E., Farrell, E., Meurer, A., & Zaucke, F. (2021). COMP and TSP-4: Functional roles in articular cartilage and relevance in osteoarthritis. International Journal of Molecular Sciences, 22(5), 2242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Caron, M. M. J., Janssen, M. P. F., Peeters, L., Haudenschild, D. R., Cremers, A., Surtel, D. A. M., van Rhijn, L. W., Emans, P. J., & Welting, T. J. M. (2020). Aggrecan and COMP improve periosteal chondrogenesis by delaying chondrocyte hypertrophic maturation. Frontiers in Bioengineering and Biotechnology. https://doi.org/10.3389/fbioe.2020.01036

    Article  PubMed  PubMed Central  Google Scholar 

  37. Idriss, N. K., Gamal, R. M., Gaber, M. A., El-Hakeim, E. H., Hammam, N., Ghandour, A. M., Abdelaziz, M. M., & Goma, S. H. (2020). Joint remodeling outcome of serum levels of Dickkopf-1 (DKK1), cartilage oligomeric matrix protein (COMP), and C-telopeptide of type II collagen (CTXII) in rheumatoid arthritis. Central European Journal of Immunology, 45(1), 73–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nishida, Y., Hashimoto, Y., Orita, K., Nishino, K., Kinoshita, T., & Nakamura, H. (2022). Serum cartilage oligomeric matrix protein detects early osteoarthritis in patients with anterior cruciate ligament deficiency. Arthroscopy, 38(3), 873–878.

    Article  PubMed  Google Scholar 

  39. Zachou, K., Gabeta, S., Shums, Z., Gatselis, N. K., Koukoulis, G. K., Norman, G. L., & Dalekos, G. N. (2017). COMP serum levels: A new non-invasive biomarker of liver fibrosis in patients with chronic viral hepatitis. European Journal of Internal Medicine, 38, 83–88.

    Article  CAS  PubMed  Google Scholar 

  40. Agarwal, P., Schulz, J. N., Blumbach, K., Andreasson, K., Heinegard, D., Paulsson, M., Mauch, C., Eming, S. A., Eckes, B., & Krieg, T. (2013). Enhanced deposition of cartilage oligomeric matrix protein is a common feature in fibrotic skin pathologies. Matrix Biology, 32(6), 325–331.

    Article  CAS  PubMed  Google Scholar 

  41. Inui, S., Shono, F., Nakajima, T., Hosokawa, K., & Itami, S. (2011). Identification and characterization of cartilage oligomeric matrix protein as a novel pathogenic factor in keloids. American Journal of Pathology, 179(4), 1951–1960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jansa, V., Klancic, T., Pusic, M., Klein, M., Vrtacnik Bokal, E., Ban Frangez, H., & Rizner, T. L. (2021). Proteomic analysis of peritoneal fluid identified COMP and TGFBI as new candidate biomarkers for endometriosis. Science and Reports, 11(1), 021–00299.

    Google Scholar 

  43. Bartosinska, J., Michalak-Stoma, A., Juszkiewicz-Borowiec, M., Kowal, M., & Chodorowska, G. (2015). The assessment of selected bone and cartilage biomarkers in psoriatic patients from Poland. Mediators of Inflammation, 194535(10), 4.

    Google Scholar 

  44. Denton, N., Pinnick, K. E., & Karpe, F. (2018). Cartilage oligomeric matrix protein is differentially expressed in human subcutaneous adipose tissue and regulates adipogenesis. Molecular Metabolism, 16, 172–179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schulz, J., Plomann, M., Sengle, G., Gullberg, D., Krieg, T., & Eckes, B. (2018). New developments on skin fibrosis—Essential signals emanating from the extracellular matrix for the control of myofibroblasts. Matrix Biology: Journal of the International Society for Matrix Biology. https://doi.org/10.1016/j.matbio.2018.01.025

    Article  PubMed  Google Scholar 

  46. Vuga, L., Milosevic, J., Pandit, K., Ben-Yehudah, A., Chu, Y., Richards, T., Sciurba, J., Myerburg, M., Zhang, Y., Parwani, A., Gibson, K., & Kaminski, N. (2013). Cartilage oligomeric matrix protein in idiopathic pulmonary fibrosis. PLoS ONE, 8(12), e83120. https://doi.org/10.1371/journal.pone.0083120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

XBC: conceptualization; formal analysis; methodology; writing—original draft; validation; resources; ML: data curation; investigation; software; writing—review & editing; YZ: formal analysis; resources; writing—review & editing; visualization; WY and ZL: methodology; project administration; supervision; writing—review & editing; validation; all authors have read and approved the manuscript.

Corresponding author

Correspondence to Zhu Liang.

Ethics declarations

Competing Interests

The author declares that he have no competing interests.

Ethics Approval and Consent to Participate

No human and animal studies were used in this study.

Consent for Publication

Not applicable.

Additional information

Handling Editor: Gerrit Frommeyer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 495 KB)

Supplementary file2 (PDF 582 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Li, M., Zhong, Y. et al. COMP Improves Ang-II-Induced Atrial Fibrillation via TGF-β Signaling Pathway. Cardiovasc Toxicol 23, 305–316 (2023). https://doi.org/10.1007/s12012-023-09799-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-023-09799-1

Keywords

Navigation