Skip to main content

Advertisement

Log in

The Acute Effect of Trimethylamine-N-Oxide on Vascular Function, Oxidative Stress, and Inflammation in Rat Aortic Rings

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

A growing body of evidence suggests that the gut microbiota affects the cardiovascular system directly and indirectly via biologically active molecules. TMAO, a key metabolite produced by gut bacteria is implicated in atherosclerosis and chronic endothelial dysfunction, but with an unclear effect on vascular tone, oxidative stress, and inflammation. Our study aimed to evaluate the acute effects of TMAO on vascular contractility in relation with oxidative stress markers and inflammation. Aortic rings were harvested from laboratory rats and placed in a tissue bath system containing TMAO in concentrations of 300, 100, 10 µM, and control. Vascular tone under the influence of vasoconstrictor phenylephrine and non-endothelial-dependent vasodilator sodium nitroprusside was assessed using force transducers connected to a computer-based acquisition system. Oxidative stress and inflammation were quantified by vascular assessment of the activity of NF-κB, NRF2, SOD1, and iNOS by western-blotting and MDA by spectrofluorimetry. After the incubation of the aortic rings in TMAO solutions for 1 h, there was no difference in vasoconstrictor and non-endothelial vasodilator response between the studied doses. TMAO acutely induced oxidative stress and inflammation, significantly increasing levels of MDA and the expression of NF-κB, NRF2, SOD1, and iNOS, mostly in a dose-dependent manner. Our study showed the lack of a short-term effect of studied TMAO doses on vascular contractility, but demonstrated an acute prooxidative effect and activation of major inflammatory pathways, which can partially explain the detrimental effects of TMAO in cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Roth, G. A., Johnson, C., Abajobir, A., Abd-Allah, F., Abera, S. F., Abyu, G., Ahmed, M., Aksut, B., Alam, T., Alam, K., Alla, F., Alvis-Guzman, N., Amrock, S., Ansari, H., Ärnlöv, J., Asayesh, H., Mehari Atey, T., Avila-Burgos, L., & Murray, C. (2017). Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. Journal of the American College of Cardiology., 70, 1–25.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Roth, G. A., Mensah, G. A., Johnson, C. O., Addolorato, G., Ammirati, E., Baddour, L. M., Barengo, N. C., Beaton, A. Z., Benjamin, E. J., Benziger, C. P., Bonny, A., Brauer, M., Brodmann, M., Cahill, T. J., Carapetis, J., Catapano, A. L., Chugh, S. S., Cooper, L. T., & Fuster, V. (2020). GBD-NHLBI-JACC global burden of cardiovascular diseases writing group. Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 study. Journal of the American College of Cardiology., 76(25), 2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010. PMID: 33309175; PMCID: PMC7755038.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Verhaar, B. J. H., Prodan, A., Nieuwdorp, M., & Muller, M. (2020). Gut microbiota in hypertension and atherosclerosis: A review. Nutrients, 12(10), 2982. https://doi.org/10.3390/nu12102982. PMID: 33003455; PMCID: PMC7601560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Koeth, R. A., Wang, Z., Levison, B. S., Buffa, J. A., Org, E., Sheehy, B. T., Britt, E. B., Fu, X., Wu, Y., Li, L., Smith, J. D., DiDonato, J. A., Chen, J., Li, H., Wu, G. D., Lewis, J. D., Warrier, M., Brown, J. M., Krauss, R. M., … Hazen, S. L. (2013). Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Medicine, 19(5), 576–585. https://doi.org/10.1038/nm.3145. PMID: 23563705; PMCID: PMC3650111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Heianza, Y., Ma, W., Manson, J. E., Rexrode, K. M., & Qi, L. (2017). Gut microbiota metabolites and risk of major adverse cardiovascular disease events and death: A systematic review and meta-analysis of prospective studies. Journal of American Heart Association., 6(7), e004947. https://doi.org/10.1161/JAHA.116.004947. PMID: 28663251; PMCID: PMC5586261.

    Article  Google Scholar 

  6. Gatarek, P., & Kaluzna-Czaplinska, J. (2021). Trimethylamine N-oxide (TMAO) in human health. EXCLI Journal, 11(20), 301–319. https://doi.org/10.17179/excli2020-3239. PMID: 33746664; PMCID: PMC7975634.

    Article  Google Scholar 

  7. Yao, M. E., Liao, P. D., Zhao, X. J., & Wang, L. (2020). Trimethylamine-N-oxide has prognostic value in coronary heart disease: A meta-analysis and dose-response analysis. BMC Cardiovascular Disorders, 20(1), 7. https://doi.org/10.1186/s12872-019-01310-5. PMID: 31918665; PMCID: PMC6953212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nam, H. S. (2019). Gut microbiota and ischemic stroke: The role of trimethylamine n-oxide. Journal of Stroke., 21(2), 151–159. https://doi.org/10.5853/jos.2019.00472. Epub 2019 May 31. PMID: 31161760; PMCID: PMC6549071.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang, B., Qiu, J., Lian, J., Yang, X., & Zhou, J. (2021). Gut metabolite trimethylamine-n-oxide in atherosclerosis: from mechanism to therapy. Frontiers in Cardiovascular Medicine., 8, 723886. https://doi.org/10.3389/fcvm.2021.723886. PMID: 34888358; PMCID: PMC8650703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, T., Chen, Y., Gua, C., & Li, X. (2017). Elevated circulating trimethylamine n-oxide levels contribute to endothelial dysfunction in aged rats through vascular inflammation and oxidative stress. Frontiers in Physiology, 30(8), 350. https://doi.org/10.3389/fphys.2017.00350. PMID: 28611682; PMCID: PMC5447752.

    Article  Google Scholar 

  11. Pober, J. S., & Sessa, W. C. (2014). Inflammation and the blood microvascular system. Cold Spring Harbor Perspectives in Biology, 7(1), a016345. https://doi.org/10.1101/cshperspect.a016345. PMID: 25384307; PMCID: PMC4292166.

    Article  PubMed  Google Scholar 

  12. Fukai, T., & Ushio-Fukai, M. (2011). Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxidants & Redox Signaling., 15(6), 1583–1606. https://doi.org/10.1089/ars.2011.3999. Epub 2011 Jun 6. PMID: 21473702; PMCID: PMC3151424.

    Article  CAS  Google Scholar 

  13. Seldin, M. M., Meng, Y., Qi, H., Zhu, W., Wang, Z., Hazen, S. L., Lusis, A. J., & Shih, D. M. (2016). Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-κB. Journal of American Heart Association, 5(2), e002767. https://doi.org/10.1161/JAHA.115.002767. PMID: 26903003; PMCID: PMC4802459.

    Article  Google Scholar 

  14. Sun, X., Jiao, X., Ma, Y., Liu, Y., Zhang, L., He, Y., & Chen, Y. (2016). Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome. Biochemical and Biophysical Research Communications, 481(1–2), 63–70. https://doi.org/10.1016/j.bbrc.2016.11.017. Epub 2016 Nov 8 PMID: 27833015.

    Article  CAS  PubMed  Google Scholar 

  15. Brunt, V. E., Gioscia-Ryan, R. A., Casso, A. G., VanDongen, N. S., Ziemba, B. P., Sapinsley, Z. J., Richey, J. J., Zigler, M. C., Neilson, A. P., Davy, K. P., & Seals, D. R. (2020). Trimethylamine-N-oxide promotes age-related vascular oxidative stress and endothelial dysfunction in mice and healthy humans. Hypertension, 76(1), 101–112. https://doi.org/10.1161/HYPERTENSIONAHA.120.14759. Epub 2020 Jun 10 PMID: 32520619; PMCID: PMC7295014.

    Article  CAS  PubMed  Google Scholar 

  16. Chen, M. L., Zhu, X. H., Ran, L., Lang, H. D., Yi, L., & Mi, M. T. (2017). Trimethylamine-n-oxide induces vascular inflammation by activating the NLRP3 inflammasome through the SIRT3-SOD2-mtROS signaling pathway. Journal of American Heart Association, 6(9), e006347. https://doi.org/10.1161/JAHA.117.006347

    Article  Google Scholar 

  17. Boini, K. M., Hussain, T., Li, P. L., & Koka, S. (2017). Trimethylamine-n-oxide instigates NLRP3 inflammasome activation and endothelial dysfunction. Cellular Physiology and Biochemistry, 44(1), 152–162. https://doi.org/10.1159/000484623. Epub 2017 Nov 6. PMID: 29130962; PMCID: PMC5828122.

    Article  PubMed  Google Scholar 

  18. Conti, M., Morand, P. C., Levillain, P., & Lemonnier, A. (1991). Improved fluorometric determination of malonaldehyde. Clinical Chemistry, 37(7), 1273–1275.

    Article  CAS  PubMed  Google Scholar 

  19. Bolfa, P., Vidrighinescu, R., Petruta, A., et al. (2013). Photoprotective effects of Romanian propolis on skin of mice exposed to UVB irradiation. Food and Chemical Toxicology, 62, 329–342.

    Article  CAS  PubMed  Google Scholar 

  20. Senthong, V., Li, X. S., Hudec, T., Coughlin, J., Wu, Y., Levison, B., Wang, Z., Hazen, S. L., & Tang, W. H. (2016). Plasma trimethylamine n-oxide, a gut microbe-generated phosphatidylcholine metabolite, is associated with atherosclerotic burden. Journal of the American College of Cardiology, 67(22), 2620–2628. https://doi.org/10.1016/j.jacc.2016.03.546. PMID: 27256833; PMCID: PMC4893167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Taniguchi, K., & Karin, M. (2018). NF-κB, inflammation, immunity and cancer: coming of age. Nature Reviews Immunology, 18, 309–324. https://doi.org/10.1038/nri.2017.142

    Article  CAS  PubMed  Google Scholar 

  22. Kauppinen, A., Suuronen, T., Ojala, J., Kaarniranta, K., & Salminen, A. (2013). Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders. Cellular Signalling, 25(10), 1939–1948. https://doi.org/10.1016/j.cellsig.2013.06.007. Epub 2013 Jun 11 PMID: 23770291.

    Article  CAS  PubMed  Google Scholar 

  23. He, F., Ru, X., & Wen, T. (2020). NRF2, a transcription factor for stress response and beyond. International Journal of Molecular Sciences, 21(13), 4777. https://doi.org/10.3390/ijms21134777. PMID: 32640524; PMCID: PMC7369905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wardyn, J. D., Ponsford, A. H., & Sanderson, C. M. (2015). Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochemical Society Transactions., 43(4), 621–626. https://doi.org/10.1042/BST20150014. Epub 2015 Aug 3. PMID: 26551702; PMCID: PMC4613495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Förstermann, U., & Sessa, W. C. (2012). Nitric oxide synthases: regulation and function. European Heart Journal., 33(7), 829–837. https://doi.org/10.1093/eurheartj/ehr304. Epub 2011 Sep 1. PMID: 21890489; PMCID: PMC3345541.

    Article  CAS  PubMed  Google Scholar 

  26. Vila, E., & Salaices, M. (2005). Cytokines and vascular reactivity in resistance arteries. American Journal of Physiology-Heart and Circulatory Physiology, 288(3), H1016–H1021. https://doi.org/10.1152/ajpheart.00779.2004. PMID: 15706038.

    Article  CAS  PubMed  Google Scholar 

  27. Hamad, A., Ozkan, M. H., & Uma, S. (2021). Trimethylamine-N-oxide (TMAO) selectively disrupts endothelium-dependent hyperpolarization-type relaxations in a time-dependent manner in rat superior mesenteric artery. Biological &/and Pharmaceutical Bulletin, 44(9), 1220–1229. https://doi.org/10.1248/bpb.b20-00767. PMID: 34471050.

    Article  CAS  Google Scholar 

  28. Matsumoto, T., Kojima, M., Takayanagi, K., Taguchi, K., & Kobayashi, T. (2020). Trimethylamine-n-oxide specifically impairs endothelium-derived hyperpolarizing factor-type relaxation in rat femoral artery. Biological &/and Pharmaceutical Bulletin, 43(3), 569–573. https://doi.org/10.1248/bpb.b19-00957. PMID: 32115516.

    Article  CAS  Google Scholar 

  29. Oakley, C. I., Vallejo, J. A., Wang, D., Gray, M. A., Tiede-Lewis, L. M., Shawgo, T., Daon, E., Zorn, G., 3rd., Stubbs, J. R., & Wacker, M. J. (2020). Trimethylamine-N-oxide acutely increases cardiac muscle contractility. American Journal of Physiology-Heart and Circulatory Physiology., 318(5), H1272–H1282. https://doi.org/10.1152/ajpheart.00507.2019. Epub 2020 Apr 3. PMID: 32243768; PMCID: PMC7346532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Restini, C. B. A., Fink, G. D., & Watts, S. W. (2021). Vascular reactivity stimulated by TMA and TMAO: Are perivascular adipose tissue and endothelium involved? Pharmacological Research., 163, 105273. https://doi.org/10.1016/j.phrs.2020.105273. Epub 2020 Nov 13. PMID: 33197599; PMCID: PMC7855790.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the University of Medicine and Pharmacy “Iuliu Hatieganu” of Cluj-Napoca, Romania, through a grant—Proiect Cercetare Doctorala 2019 (PCD 2019), contract number 1529/22 from 18.01.2019.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by CF, RM, RR, ND, and AGF. The first draft of the manuscript was written by CF and AGF, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ioana Baldea.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of University of Medicine and Pharmacy “Iuliu Hatieganu” of Cluj-Napoca, Romania and the Sanitary Veterinary Department of Cluj-Napoca, Authorization number 184 from 12.08.2019).

Additional information

Handling Editor: Kumuda Das.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 5391 kb)

Supplementary file2 (PDF 464 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Florea, C.M., Baldea, I., Rosu, R. et al. The Acute Effect of Trimethylamine-N-Oxide on Vascular Function, Oxidative Stress, and Inflammation in Rat Aortic Rings. Cardiovasc Toxicol 23, 198–206 (2023). https://doi.org/10.1007/s12012-023-09794-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-023-09794-6

Keywords

Navigation