Skip to main content

Advertisement

Log in

Anti-hyperlipidemic, Anti-inflammatory, and Ameliorative Effects of DRP1 Inhibition in Rats with Experimentally Induced Myocardial Infarction

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

This study aims to investigate the biological role of DRP1 in myocardial infarction (MI) in concert with hyperlipidemia (HL). Based on the available literatures, 10 genes related to MI with HL (HL-MI) were screened and detected in clinical samples. High-fat diet (HFD) was used to establish HL rat models, after which the rats were subcutaneously injected with PBS or isoproterenol hydrochloride to induce acute MI. Then, rats with HL-MI were injected with pcDNA3.1, pcDNA3.1-DRP1, sh-NC, or sh-DRP1. Serum levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein-cholesterol (HDL-C), and low-density lipoprotein-cholesterol (LDL-C) were measured. Cardiac function was evaluated by detecting left ventricular fractional shortening (LVFS) and left ventricular ejection fraction (LVEF). Infarct size and histopathological changes were assessed as well as myocardial apoptosis and collagen deposition. The concentration of IL-6, IL-1β, and TNF-α in rat serum and cardiac tissues was also measured by ELISA. Mitochondrial function was shown by measuring the morphology, mitochondrial membrane potential (MMP), and intracellular reactive oxygen species (ROS) level. Pro-apoptotic proteins (Bax, caspase-1, and cleaved caspase-1) and NLRP3 inflammasome activation were also assessed. The expressions of the 10 genes were measured in clinical samples and DRP1 was selected for further experiments with significantly upregulated expression in MI patients. HFD-induced rats showed increased body weight, concurrent with higher levels of TG, TC, and LDL-C and lower HDL-C level. Compared with the BD-PBS group, the HFD-PBS group presented higher mRNA and protein expression levels of DRP1, exacerbated cardiac functions, enlarged infarct size, loss of cardiomyocytes, and disordered island cardiomyocytes. In the HL-MI rat model, injection of pcDNA3.1-DRP1 enhanced the levels of serum lipids and inflammation cytokines, induced loss of a number of cardiomyocytes and collagen deposition, and decreased LVFS and LVEF, while injection of sh-DRP1 ameliorated myocardial injuries, inflammation, and cardiomyocyte apoptosis and fibrosis. In coronary artery endothelial cells from the rats, loss of MMP was observed in the HFD-MI, LV-NC, LV-DRP1, and sh-NC groups and concomitantly, the sh-DRP1group showed increased MMP and decreased levels of mitochondrial ROS, cytochrome C, pro-apoptotic proteins, and NLRP3. Inhibition of DRP1 markedly suppressed HL, systematic inflammation, and myocardial injuries induced by HL-MI through partly restoring mitochondrial function and reducing NLRP3 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Chorawala, M. R., Prakash, P., Doddapattar, P., Jain, M., Dhanesha, N., & Chauhan, A. K. (2018). Deletion of extra domain A of fibronectin reduces acute myocardial ischaemia/reperfusion injury in hyperlipidaemic mice by limiting thrombo-inflammation. Thrombosis and Haemostasis, 118, 1450–1460.

    Article  Google Scholar 

  2. Hemalatha, K. L., & StanelyMainzen Prince, P. (2015). Antihyperlipidaemic, antihypertrophic, and reducing effects of zingerone on experimentally induced myocardial infarcted rats. Journal of Biochemical and Molecular Toxicology, 29, 182–188.

    Article  CAS  Google Scholar 

  3. Wang, X., & Song, Q. (2018). Mst1 regulates post-infarction cardiac injury through the JNK-Drp1-mitochondrial fission pathway. Cellular & Molecular Biology Letters, 23, 21.

    Article  Google Scholar 

  4. Kim, C. Y., Lee, J. H., Jang, S. Y., Bae, M. H., Yang, D. H., Park, H. S., Cho, Y., Jeong, M. H., Park, J. S., Kim, H. S., Hur, S. H., Seong, I. W., Cho, M. C., Kim, C. J., Chae, S. C., & Korea Acute Mycocardial Infraction Regsitry—National Institute of Health Investigators. (2019). Usefulness of calculation of cardiovascular risk factors to predict outcomes in patients with acute myocardial infarction. American Journal of Cardiology, 124, 857–863.

    Article  Google Scholar 

  5. Shao, Y., Huo, D., Peng, Q., Pan, Y., Jiang, S., Liu, B., & Zhang, J. (2017). Lactobacillus plantarum HNU082-derived improvements in the intestinal microbiome prevent the development of hyperlipidaemia. Food & Function, 8, 4508–4516.

    Article  CAS  Google Scholar 

  6. Wake, M., Oh, A., Onishi, Y., Guelfucci, F., Shimasaki, Y., & Teramoto, T. (2019). Adherence and persistence to hyperlipidemia medications in patients with atherosclerotic cardiovascular disease and those with diabetes mellitus based on administrative claims data in Japan. Atherosclerosis, 282, 19–28.

    Article  CAS  Google Scholar 

  7. Kupai, K., Csonka, C., Fekete, V., Odendaal, L., van Rooyen, J., de Marais, W., Csont, T., & Ferdinandy, P. (2009). Cholesterol diet-induced hyperlipidemia impairs the cardioprotective effect of postconditioning: Role of peroxynitrite. American Journal of Physiology. Heart and Circulatory Physiology, 297, H1729-1735.

    Article  CAS  Google Scholar 

  8. Ma, Y., Ma, L., Ma, J., Wu, R., Zou, Y., & Ge, J. (2020). Hyperlipidemia inhibits the protective effect of lisinopril after myocardial infarction via activation of dendritic cells. Journal of Cellular and Molecular Medicine, 24, 4082–4091.

    Article  CAS  Google Scholar 

  9. Andreadou, I., Daiber, A., Baxter, G. F., Brizzi, M. F., Di Lisa, F., Kaludercic, N., Lazou, A., Varga, Z. V., Zuurbier, C. J., Schulz, R., & Ferdinandy, P. (2021). Influence of cardiometabolic comorbidities on myocardial function, infarction, and cardioprotection: Role of cardiac redox signaling. Free Radical Biology & Medicine, 166, 33–52.

    Article  CAS  Google Scholar 

  10. Yu, W., Sun, S., Xu, H., Li, C., Ren, J., & Zhang, Y. (2020). TBC1D15/RAB7-regulated mitochondria-lysosome interaction confers cardioprotection against acute myocardial infarction-induced cardiac injury. Theranostics, 10, 11244–11263.

    Article  CAS  Google Scholar 

  11. Jin, J. Y., Wei, X. X., Zhi, X. L., Wang, X. H., & Meng, D. (2020). Drp1-dependent mitochondrial fission in cardiovascular disease. Acta Pharmacologica Sinica. https://doi.org/10.1038/s41401-020-00518-y

    Article  PubMed  PubMed Central  Google Scholar 

  12. Disatnik, M. H., Ferreira, J. C., Campos, J. C., Gomes, K. S., Dourado, P. M., Qi, X., & Mochly-Rosen, D. (2013). Acute inhibition of excessive mitochondrial fission after myocardial infarction prevents long-term cardiac dysfunction. Journal of American Heart Association, 2, e000461.

    Article  Google Scholar 

  13. Ding, M., Dong, Q., Liu, Z., Liu, Z., Qu, Y., Li, X., Huo, C., Jia, X., Fu, F., & Wang, X. (2017). Inhibition of dynamin-related protein 1 protects against myocardial ischemia-reperfusion injury in diabetic mice. Cardiovascular Diabetology, 16, 19.

    Article  Google Scholar 

  14. Hu, Q., Zhang, H., Gutierrez Cortes, N., Wu, D., Wang, P., Zhang, J., Mattison, J. A., Smith, E., Bettcher, L. F., Wang, M., Lakatta, E. G., Sheu, S. S., & Wang, W. (2020). Increased Drp1 acetylation by lipid overload induces cardiomyocyte death and heart dysfunction. Circulation Research, 126, 456–470.

    Article  CAS  Google Scholar 

  15. Sahu, B. D., Anubolu, H., Koneru, M., Kumar, J. M., Kuncha, M., Rachamalla, S. S., & Sistla, R. (2014). Cardioprotective effect of embelin on isoproterenol-induced myocardial injury in rats: Possible involvement of mitochondrial dysfunction and apoptosis. Life Sciences, 107, 59–67.

    Article  CAS  Google Scholar 

  16. Burja, B., Kuret, T., Janko, T., Topalovic, D., Zivkovic, L., Mrak-Poljsak, K., Spremo-Potparevic, B., Zigon, P., Distler, O., Cucnik, S., Sodin-Semrl, S., Lakota, K., & Frank-Bertoncelj, M. (2019). Olive leaf extract attenuates inflammatory activation and DNA damage in human arterial endothelial cells. Frontiers in Cardiovascular Medicine, 6, 56.

    Article  CAS  Google Scholar 

  17. Javaheri, A., Bajpai, G., Picataggi, A., Mani, S., Foroughi, L., Evie, H., Kovacs, A., Weinheimer, C. J., Hyrc, K., Xiao, Q., Ballabio, A., Lee, J. M., Matkovich, S. J., Razani, B., Schilling, J. D., Lavine, K. J., & Diwan, A. (2019). TFEB activation in macrophages attenuates postmyocardial infarction ventricular dysfunction independently of ATG5-mediated autophagy. JCI Insight. https://doi.org/10.1172/jci.insight.127312

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ni, S. H., Sun, S. N., Zhou, Z., Li, Y., Huang, Y. S., Li, H., Wang, J. J., Xiao, W., Xian, S. X., Yang, Z. Q., Wang, L. J., & Lu, L. (2020). Arctigenin alleviates myocardial infarction injury through inhibition of the NFAT5-related inflammatory phenotype of cardiac macrophages/monocytes in mice. Laboratory Investigation, 100, 527–541.

    Article  CAS  Google Scholar 

  19. Nural-Guvener, H. F., Mutlu, N., & Gaballa, M. A. (2013). BACE1 levels are elevated in congestive heart failure. Neuroscience Letters, 532, 7–11.

    Article  CAS  Google Scholar 

  20. Shia, W. C., Ku, T. H., Tsao, Y. M., Hsia, C. H., Chang, Y. M., Huang, C. H., Chung, Y. C., Hsu, S. L., Liang, K. W., & Hsu, F. R. (2011). Genetic copy number variants in myocardial infarction patients with hyperlipidemia. BMC Genomics, 12(Suppl 3), S23.

    Article  CAS  Google Scholar 

  21. Su, H., Li, Y., Hu, D., Xie, L., Ke, H., Zheng, X., & Chen, W. (2018). Procyanidin B2 ameliorates free fatty acids-induced hepatic steatosis through regulating TFEB-mediated lysosomal pathway and redox state. Free Radical Biology & Medicine, 126, 269–286.

    Article  CAS  Google Scholar 

  22. Zhang, X., Chen, X., Qi, T., Kong, Q., Cheng, H., Cao, X., Li, Y., Li, C., Liu, L., & Ding, Z. (2019). HSPA12A is required for adipocyte differentiation and diet-induced obesity through a positive feedback regulation with PPARgamma. Cell Death and Differentiation, 26, 2253–2267.

    Article  CAS  Google Scholar 

  23. Zhu, Y. J., Wang, C., Song, G., Zang, S. S., Liu, Y. X., & Li, L. (2015). Toll-like receptor-2 and -4 are associated with hyperlipidemia. Molecular Medicine Reports, 12, 8241–8246.

    Article  CAS  Google Scholar 

  24. DattaChaudhuri, R., Banerjee, D., Banik, A., & Sarkar, S. (2020). Severity and duration of hypoxic stress differentially regulates HIF-1alpha-mediated cardiomyocyte apoptotic signaling milieu during myocardial infarction. Archives of Biochemistry and Biophysics, 690, 108430.

    Article  CAS  Google Scholar 

  25. Radhiga, T., Senthil, S., Sundaresan, A., & Pugalendi, K. V. (2019). Ursolic acid modulates MMPs, collagen-I, alpha-SMA, and TGF-beta expression in isoproterenol-induced myocardial infarction in rats. Human and Experimental Toxicology, 38, 785–793.

    Article  CAS  Google Scholar 

  26. Kannan, M. M., & Quine, S. D. (2013). Ellagic acid inhibits cardiac arrhythmias, hypertrophy and hyperlipidaemia during myocardial infarction in rats. Metabolism, 62, 52–61.

    Article  CAS  Google Scholar 

  27. Tao, A., Xu, X., Kvietys, P., Kao, R., Martin, C., & Rui, T. (2018). Experimental diabetes mellitus exacerbates ischemia/reperfusion-induced myocardial injury by promoting mitochondrial fission: Role of down-regulation of myocardial sirt1 and subsequent Akt/Drp1 interaction. International Journal of Biochemistry & Cell Biology, 105, 94–103.

    Article  CAS  Google Scholar 

  28. Cao, K., Xu, J., Zou, X., Li, Y., Chen, C., Zheng, A., Li, H., Li, H., Szeto, I. M., Shi, Y., Long, J., Liu, J., & Feng, Z. (2014). Hydroxytyrosol prevents diet-induced metabolic syndrome and attenuates mitochondrial abnormalities in obese mice. Free Radical Biology & Medicine, 67, 396–407.

    Article  CAS  Google Scholar 

  29. Shen, Y. L., Shi, Y. Z., Chen, G. G., Wang, L. L., Zheng, M. Z., Jin, H. F., & Chen, Y. Y. (2018). TNF-alpha induces Drp1-mediated mitochondrial fragmentation during inflammatory cardiomyocyte injury. International Journal of Molecular Medicine, 41, 2317–2327.

    CAS  PubMed  Google Scholar 

  30. Zou, X., Xie, L., Wang, W., Zhao, G., Tian, X., & Chen, M. (2020). FK866 alleviates cerebral pyroptosis and inflammation mediated by Drp1 in a rat cardiopulmonary resuscitation model. International Immunopharmacology, 89, 1032.

    Article  Google Scholar 

  31. Ferko, M., Farkasova, V., Jasova, M., Kancirova, I., Ravingerova, T., DurisAdameova, A., Andelova, N., & Waczulikova, I. (2018). Hypercholesterolemia antagonized heart adaptation and functional remodeling of the mitochondria observed in acute diabetes mellitus subjected to ischemia/reperfusion injury. Journal of Physiology and Pharmacology. https://doi.org/10.26402/jpp.2018.5.03

    Article  PubMed  Google Scholar 

  32. Chan, D. C. (2012). Fusion and fission: Interlinked processes critical for mitochondrial health. Annual Review of Genetics, 46, 265–287.

    Article  CAS  Google Scholar 

  33. Givvimani, S., Pushpakumar, S. B., Metreveli, N., Veeranki, S., Kundu, S., & Tyagi, S. C. (2015). Role of mitochondrial fission and fusion in cardiomyocyte contractility. International Journal of Cardiology, 187, 325–333.

    Article  CAS  Google Scholar 

  34. Wu, W., Jing, D., Huang, X., Yang, W., & Shao, Z. (2020). Drp1-mediated mitochondrial fission is involved in oxidized low-density lipoprotein-induced AF cella poptosis. Journal of Orthopaedic Research. https://doi.org/10.1002/jor.24828

    Article  PubMed  Google Scholar 

  35. Sharp, W. W., Fang, Y. H., Han, M., Zhang, H. J., Hong, Z., Banathy, A., Morrow, E., Ryan, J. J., & Archer, S. L. (2014). Dynamin-related protein 1 (Drp1)-mediated diastolic dysfunction in myocardial ischemia-reperfusion injury: Therapeutic benefits of Drp1 inhibition to reduce mitochondrial fission. The FASEB Journal, 28, 316–326.

    Article  CAS  Google Scholar 

  36. Kelley, N., Jeltema, D., Duan, Y., & He, Y. (2019). The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. International Journal of Molecular Science. https://doi.org/10.3390/ijms20133328

    Article  Google Scholar 

  37. Toldo, S., & Abbate, A. (2018). The NLRP3 inflammasome in acute myocardial infarction. Nature Reviews Cardiology, 15, 203–214.

    Article  CAS  Google Scholar 

  38. Zhou, Z., Wang, Z., Guan, Q., Qiu, F., Li, Y., Liu, Z., Zhang, H., Dong, H., & Zhang, Z. (2016). PEDF inhibits the activation of NLRP3 inflammasome in hypoxia cardiomyocytes through PEDF receptor/phospholipase A2. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms17122064

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks for the support of Shenzhen Science and Technology Research Funding (Grant No. 20170502165510880).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiehui Chen.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Ethical Statement

This study was carried out with the approval of the ethical committee of Fuwai Hospital Chinese Academy of Medical Sciences and informed consent form was acquired from each patient. All participants had been informed about the aim and requirements of this study before being enrolled. Animal experiments conformed to the Guide for the Care and Use of Laboratory Animals and relative regulations.

Additional information

Handling Editor: Dipak K Dube.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Liang, J., Bin, W. et al. Anti-hyperlipidemic, Anti-inflammatory, and Ameliorative Effects of DRP1 Inhibition in Rats with Experimentally Induced Myocardial Infarction. Cardiovasc Toxicol 21, 1000–1011 (2021). https://doi.org/10.1007/s12012-021-09691-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09691-w

Keywords

Navigation