Skip to main content

Advertisement

Log in

The Protective Role of the Long Pentraxin PTX3 in Spontaneously Hypertensive Rats with Heart Failure

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Pentraxin 3 (PTX3) is synthesized locally and released into the circulation, reflecting local inflammation in the cardiovascular system. Therefore, we conducted a study to explore the effect of PTX3 in spontaneously hypertensive heart failure (SHHF) rats. Sprague Dawley (SD) and SHHF rats were treated with recombinant PTX3 protein, and the blood pressure (BP) and echocardiographic parameters were collected. Radioimmunoassay, enzyme immunoassay and enzyme-linked immunosorbent assay (ELISA) were applied to detect plasma levels of atrial/B-type natriuretic peptide (ANP/BNP) and PTX3. The pathological changes in the myocardial tissues were observed by hematoxylin and eosin (HE) and Masson stainings. The mRNA and protein expressions were detected by quantitative real-time reverse-transcription polymerase chain reaction (qPCR) and western blotting. Cardiomyocyte apoptosis was evaluated by TUNEL staining and DNA fragmentation test. Increased plasma concentrations of PTX3 were found in SHHF rats compared with SD rats, which was further enhanced by recombinant PTX3 protein. After injection with recombinant PTX3 protein, the heart function was improved in SHHF rats with the decreased systolic and diastolic BP, and the reduced plasma levels of ANP and BNP. Moreover, PTX3 improved the myocardial damage and interstitial fibrosis in SHHF rats with reduced cardiomyocyte apoptosis and decreased mRNA expressions of pro-inflammatory factors in myocardial tissues. PTX3 could decrease the BP and plasma levels of ANP and BNP in SHHF rats, as well as improve the inflammation, cardiomyocyte apoptosis, and pathological changes of myocardial tissues, suggesting it may be a useful intervention in the treatment of SHHF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang, J., Zhang, L., Wang, F., Liu, L., Wang, H., & China National Survey of Chronic Kidney Disease Working Group. (2014). Prevalence, awareness, treatment, and control of hypertension in China: Results from a national survey. American Journal of Hypertension, 27(11), 1355–1361. https://doi.org/10.1093/ajh/hpu053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wu, Y., Huxley, R., Li, L., Anna, V., Xie, G., Yao, C., Woodward, M., Li, X., Chalmers, J., Gao, R., Kong, L., Yang, X., & China NNHS Steering Committee; China NNHS Working Group. (2008). Prevalence, awareness, treatment, and control of hypertension in China: Data from the China national nutrition and health survey 2002. Circulation, 118(25), 2679–2686. https://doi.org/10.1161/CIRCULATIONAHA.108.788166

    Article  PubMed  Google Scholar 

  3. Pagan, L. U., Damatto, R. L., Cezar, M. D., Lima, A. R., Bonomo, C., Campos, D. H., Gomes, M. J., Martinez, P. F., Oliveira, S. A., Jr., Gimenes, R., Rosa, C. M., Guizoni, D. M., Moukbel, Y. C., Cicogna, A. C., Okoshi, M. P., & Okoshi, K. (2015). Long-term low intensity physical exercise attenuates heart failure development in aging spontaneously hypertensive rats. Cellular Physiology and Biochemistry, 36(1), 61–74. https://doi.org/10.1159/000374053

    Article  CAS  PubMed  Google Scholar 

  4. Agrawal, A., Singh, P. P., Bottazzi, B., Garlanda, C., & Mantovani, A. (2009). Pattern recognition by pentraxins. Advances in Experimental Medicine and Biology, 653, 98–116. https://doi.org/10.1007/978-1-4419-0901-5_7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huong Giang, D. T., Van Driessche, E., Vandenberghe, I., Devreese, B., & Beeckmans, S. (2010). Isolation and characterization of SAP and CRP, two pentraxins from Pangasianodon (Pangasius) hypophthalmus. Fish & Shellfish Immunology, 28(5–6), 743–753. https://doi.org/10.1016/j.fsi.2010.01.007

    Article  CAS  Google Scholar 

  6. Malinowski, B., Grzesk, G., & Grzesk, E. (2011). Pentraxin 3 as a novel marker in cardiovascular diseases? EJIFCC, 22(4), 102–108.

    PubMed  PubMed Central  Google Scholar 

  7. Woo, J. M., Kwon, M. Y., Shin, D. Y., Kang, Y. H., Hwang, N., & Chung, S. W. (2013). Human retinal pigment epithelial cells express the long pentraxin PTX3. Molecular Vision, 19, 303–310.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Doni, A., Peri, G., Chieppa, M., Allavena, P., Pasqualini, F., Vago, L., Romani, L., Garlanda, C., & Mantovani, A. (2003). Production of the soluble pattern recognition receptor PTX3 by myeloid, but not plasmacytoid, dendritic cells. European Journal of Immunology, 33(10), 2886–2893. https://doi.org/10.1002/eji.200324390

    Article  CAS  PubMed  Google Scholar 

  9. Cieslik, P., & Hrycek, A. (2012). Long pentraxin 3 (PTX3) in the light of its structure, mechanism of action and clinical implications. Autoimmunity, 45(2), 119–128. https://doi.org/10.3109/08916934.2011.611549

    Article  CAS  PubMed  Google Scholar 

  10. Mauri, T., Bellani, G., Patroniti, N., Coppadoro, A., Peri, G., Cuccovillo, I., Cugno, M., Iapichino, G., Gattinoni, L., Pesenti, A., & Mantovani, A. (2010). Persisting high levels of plasma pentraxin 3 over the first days after severe sepsis and septic shock onset are associated with mortality. Intensive Care Medicine, 36(4), 621–629. https://doi.org/10.1007/s00134-010-1752-5

    Article  CAS  PubMed  Google Scholar 

  11. Fazzini, F., Peri, G., Doni, A., Dell’Antonio, G., Dal Cin, E., Bozzolo, E., D’Auria, F., Praderio, L., Ciboddo, G., Sabbadini, M. G., Manfredi, A. A., Mantovani, A., & Querini, P. R. (2001). PTX3 in small-vessel vasculitides: An independent indicator of disease activity produced at sites of inflammation. Arthritis & Rheumatism, 44(12), 2841–2850. https://doi.org/10.1002/1529-0131(200112)44:12%3c2841::aid-art472%3e3.0.co;2-6

    Article  CAS  Google Scholar 

  12. Luchetti, M. M., Piccinini, G., Mantovani, A., Peri, G., Matteucci, C., Pomponio, G., Fratini, M., Fraticelli, P., Sambo, P., Di Loreto, C., Doni, A., Introna, M., & Gabrielli, A. (2000). Expression and production of the long pentraxin PTX3 in rheumatoid arthritis (RA). Clinical & Experimental Immunology, 119(1), 196–202. https://doi.org/10.1046/j.1365-2249.2000.01110.x

    Article  CAS  Google Scholar 

  13. Liu, H., Guo, X., Yao, K., Wang, C., Chen, G., Gao, W., Yuan, J., Yu, W., & Ge, J. (2015). Pentraxin-3 predicts long-term cardiac events in patients with chronic heart failure. Biomed Research International, 2015, 817615. https://doi.org/10.1155/2015/817615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Unlu, M., Karaman, M., Ay, S. A., Balta, S., Cakar, M., Demirkol, S., Celik, T., Arslan, E., Demirbas, S., Turker, T., Yaman, H., Bulucu, F., & Sağlam, K. (2013). The comparative effects of valsartan and amlodipine on vascular microinflammation in newly diagnosed hypertensive patients. Clinical and Experimental Hypertension, 35(6), 418–423. https://doi.org/10.3109/10641963.2012.739237

    Article  CAS  PubMed  Google Scholar 

  15. Bozza, S., Bistoni, F., Gaziano, R., Pitzurra, L., Zelante, T., Bonifazi, P., Perruccio, K., Bellocchio, S., Neri, M., Iorio, A. M., Salvatori, G., De Santis, R., Calvitti, M., Doni, A., Garlanda, C., Mantovani, A., & Romani, L. (2006). Pentraxin 3 protects from MCMV infection and reactivation through TLR sensing pathways leading to IRF3 activation. Blood, 108(10), 3387–3396. https://doi.org/10.1182/blood-2006-03-009266

    Article  CAS  PubMed  Google Scholar 

  16. Kabbani, D., Singer, L., Rotstein, C., Pipkin, T., Mazzulli, T., Keshavjee, S., & Husain, S. (2014). (401)–Role of pentaxrin 3 in differentiating Invasive Aspergillosis (IA) from Aspergillus Colonization (Ac) in lung transplant recipients. Journal of Heart & Lung Transplantation, 33(4), S152–S153.

    Article  Google Scholar 

  17. Daigo, K., Nakakido, M., Ohashi, R., Fukuda, R., Matsubara, K., Minami, T., Yamaguchi, N., Inoue, K., Jiang, S., Naito, M., Tsumoto, K., & Hamakubo, T. (2014). Protective effect of the long pentraxin PTX3 against histone-mediated endothelial cell cytotoxicity in sepsis. Science Signaling, 7(343), ra88. https://doi.org/10.1126/scisignal.2005522

    Article  CAS  PubMed  Google Scholar 

  18. Salio, M., Chimenti, S., De Angelis, N., Molla, F., Maina, V., Nebuloni, M., Pasqualini, F., Latini, R., Garlanda, C., & Mantovani, A. (2008). Cardioprotective function of the long pentraxin PTX3 in acute myocardial infarction. Circulation, 117(8), 1055–1064. https://doi.org/10.1161/CIRCULATIONAHA.107.749234

    Article  CAS  PubMed  Google Scholar 

  19. Ristagno, G., Fumagalli, F., Bottazzi, B., Mantovani, A., Olivari, D., Novelli, D., & Latini, R. (2019). Pentraxin 3 in cardiovascular disease. Frontiers in Immunology, 10, 823. https://doi.org/10.3389/fimmu.2019.00823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Heallen, T., Zhang, M., Wang, J., Bonilla-Claudio, M., Klysik, E., Johnson, R. L., & Martin, J. F. (2011). Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science, 332(6028), 458–461. https://doi.org/10.1126/science.1199010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hanft, L. M., Emter, C. A., & McDonald, K. S. (2017). Cardiac myofibrillar contractile properties during the progression from hypertension to decompensated heart failure. American Journal of Physiology Heart and Circulatory Physiology, 313(1), H103–H113. https://doi.org/10.1152/ajpheart.00069.2017

    Article  PubMed  PubMed Central  Google Scholar 

  22. Drapala, A., Szudzik, M., Chabowski, D., Mogilnicka, I., Jaworska, K., Kraszewska, K., Samborowska, E., & Ufnal, M. (2020). Heart failure disturbs gut-blood barrier and increases plasma trimethylamine, a toxic bacterial metabolite. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms21176161

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gawrys-Kopczynska, M., Konop, M., Maksymiuk, K., Kraszewska, K., Derzsi, L., Sozanski, K., Holyst, R., Pilz, M., Samborowska, E., Dobrowolski, L., & Jaworska, K. (2020). TMAO, a seafood-derived molecule, produces diuresis and reduces mortality in heart failure rats. Elife. https://doi.org/10.7554/eLife.57028

    Article  PubMed  PubMed Central  Google Scholar 

  24. Abdurrachim, D., Teo, X. Q., Woo, C. C., Chan, W. X., Lalic, J., Lam, C. S. P., & Lee, P. T. H. (2019). Empagliflozin reduces myocardial ketone utilization while preserving glucose utilization in diabetic hypertensive heart disease: A hyperpolarized (13) C magnetic resonance spectroscopy study. Diabetes, Obesity & Metabolism, 21(2), 357–365. https://doi.org/10.1111/dom.13536

    Article  CAS  Google Scholar 

  25. Lo Giudice, P., Campo, S., De Santis, R., & Salvatori, G. (2012). Effect of PTX3 and voriconazole combination in a rat model of invasive pulmonary aspergillosis. Antimicrobial Agents and Chemotherapy, 56(12), 6400–6402. https://doi.org/10.1128/AAC.01000-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aneja, R., Hake, P. W., Burroughs, T. J., Denenberg, A. G., Wong, H. R., & Zingarelli, B. (2004). Epigallocatechin, a green tea polyphenol, attenuates myocardial ischemia reperfusion injury in rats. Molecular Medicine, 10(1–6), 55–62. https://doi.org/10.2119/2004-00032.aneja

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nishikido, T., Oyama, J., Shiraki, A., Komoda, H., & Node, K. (2016). Deletion of Apoptosis Inhibitor of Macrophage (AIM)/CD5L attenuates the inflammatory response and infarct size in acute myocardial infarction. Journal of the American Heart Association, 5(4), e002863. https://doi.org/10.1161/JAHA.115.002863

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cittadini, A., Isgaard, J., Monti, M. G., Casaburi, C., Di Gianni, A., Serpico, R., Iaccarino, G., & Saccà, L. (2003). Growth hormone prolongs survival in experimental postinfarction heart failure. Journal of the American College of Cardiology, 41(12), 2154–2163. https://doi.org/10.1016/s0735-1097(03)00483-2

    Article  CAS  PubMed  Google Scholar 

  29. Bogazzi, F., Russo, D., Raggi, F., Ultimieri, F., Urbani, C., Gasperi, M., Bartalena, L., & Martino, E. (2008). Transgenic mice overexpressing growth hormone (GH) have reduced or increased cardiac apoptosis through activation of multiple GH-dependent or -independent cell death pathways. Endocrinology, 149(11), 5758–5769. https://doi.org/10.1210/en.2008-0346

    Article  CAS  PubMed  Google Scholar 

  30. Breviario, F., d’Aniello, E. M., Golay, J., Peri, G., Bottazzi, B., Bairoch, A., Saccone, S., Marzella, R., Predazzi, V., & Rocchi, M. (1992). Interleukin-1-inducible genes in endothelial cells. Cloning of a new gene related to C-reactive protein and serum amyloid P component. Journal of Biological Chemistry, 267(31), 22190–22197.

    Article  CAS  Google Scholar 

  31. Lee, G. W., Lee, T. H., & Vilcek, J. (1993). TSG-14, a tumor necrosis factor- and IL-1-inducible protein, is a novel member of the pentaxin family of acute phase proteins. The Journal of Immunology, 150(5), 1804–1812.

    CAS  PubMed  Google Scholar 

  32. Latini, R., Maggioni, A. P., Peri, G., Gonzini, L., Lucci, D., Mocarelli, P., Vago, L., Pasqualini, F., Signorini, S., Soldateschi, D., & Tarli, L. (2004). Prognostic significance of the long pentraxin PTX3 in acute myocardial infarction. Circulation, 110(16), 2349–2354. https://doi.org/10.1161/01.CIR.0000145167.30987.2E

    Article  CAS  PubMed  Google Scholar 

  33. Lee, D. H., Jeon, H. K., You, J. H., Park, M. Y., Lee, S. J., Kim, S. S., Shim, B. J., Choi, Y. S., Shin, W. S., Lee, J. M., & Park, C. S. (2010). Pentraxin 3 as a novel marker predicting congestive heart failure in subjects with acute coronary syndrome. Korean Circulation Journal, 40(8), 370–376. https://doi.org/10.4070/kcj.2010.40.8.370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Parlak, A., Aydogan, U., İyisoy, A., Dikililer, M. A., Kut, A., Cakir, E., & Saglam, K. (2012). Elevated pentraxin-3 levels are related to blood pressure levels in hypertensive patients: An observational study. Anadolu Kardiyol Derg, 12(4), 298–304. https://doi.org/10.5152/akd.2012.092

    Article  PubMed  Google Scholar 

  35. Jacobsen, G. (1989). Antenatal care in general practice, Trondheim, Norway. Scandinavian Journal of Primary Health Care, 7(1), 27–31. https://doi.org/10.3109/02813438909103667

    Article  CAS  PubMed  Google Scholar 

  36. Duran, S., Duran, I., Kaptanagasi, F. A. O., Nartop, F., Ciftci, H., & Korkmaz, G. G. (2013). The role of pentraxin 3 as diagnostic value in classification of patients with heart failure. Clinical Biochemistry, 46(12), 983–987. https://doi.org/10.1016/j.clinbiochem.2013.04.026

    Article  CAS  PubMed  Google Scholar 

  37. Kotooka, N., Inoue, T., Aoki, S., Anan, M., Komoda, H., & Node, K. (2008). Prognostic value of pentraxin 3 in patients with chronic heart failure. International Journal of Cardiology, 130(1), 19–22. https://doi.org/10.1016/j.ijcard.2007.07.168

    Article  PubMed  Google Scholar 

  38. Han, B., Haitsma, J. J., Zhang, Y., Bai, X., Rubacha, M., Keshavjee, S., Zhang, H., & Liu, M. (2011). Long pentraxin PTX3 deficiency worsens LPS-induced acute lung injury. Intensive Care Medicine, 37(2), 334–342. https://doi.org/10.1007/s00134-010-2067-2

    Article  PubMed  Google Scholar 

  39. Norata, G. D., Marchesi, P., PulakazhiVenu, V. K., Pasqualini, F., Anselmo, A., Moalli, F., Pizzitola, I., Garlanda, C., Mantovani, A., & Catapano, A. L. (2009). Deficiency of the long pentraxin PTX3 promotes vascular inflammation and atherosclerosis. Circulation, 120(8), 699–708. https://doi.org/10.1161/CIRCULATIONAHA.108.806547

    Article  CAS  PubMed  Google Scholar 

  40. Ishino, M., Shishido, T., Suzuki, S., Katoh, S., Sasaki, T., Funayama, A., Netsu, S., Hasegawa, H., Honda, S., Takahashi, H., Arimoto, T., Miyashita, T., Miyamoto, T., Watanabe, T., Takeishi, Y., & Kubota, I. (2015). Deficiency of long pentraxin PTX3 promoted neointimal hyperplasia after vascular injury. Journal of Atherosclerosis and Thrombosis, 22(4), 372–378. https://doi.org/10.5551/jat.26740

    Article  CAS  PubMed  Google Scholar 

  41. Klimczak-Tomaniak, D., van den Berg, V. J., Strachinaru, M., Akkerhuis, K. M., Baart, S., Caliskan, K., Manintveld, O. C., Umans, V., Geleijnse, M., Boersma, E., van Dalen, B. M., & Kardys, I. (2019). Longitudinal patterns of N-terminal pro B-type natriuretic peptide, troponin T, and C-reactive protein in relation to the dynamics of echocardiographic parameters in heart failure patients. European Heart Journal-Cardiovascular Imaging. https://doi.org/10.1093/ehjci/jez242

    Article  Google Scholar 

  42. Burnett, J. C., Jr., Kao, P. C., Hu, D. C., Heser, D. W., Heublein, D., Granger, J. P., Opgenorth, T. J., & Reeder, G. S. (1986). Atrial natriuretic peptide elevation in congestive heart failure in the human. Science, 231(4742), 1145–1147. https://doi.org/10.1126/science.2935937

    Article  PubMed  Google Scholar 

  43. Guo, P., Zhang, S. Z., He, H., Zhu, Y. T., & Tseng, S. C. (2012). PTX3 controls activation of matrix metalloproteinase 1 and apoptosis in conjunctivochalasis fibroblasts. Investigative Ophthalmology & Visual Science, 53(7), 3414–3423. https://doi.org/10.1167/iovs.11-9103

    Article  CAS  Google Scholar 

  44. Brentnall, M., Rodriguez-Menocal, L., De Guevara, R. L., Cepero, E., & Boise, L. H. (2013). Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biology, 14, 32. https://doi.org/10.1186/1471-2121-14-32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee, H. H., Kim, S. Y., Na, J. C., Yoon, Y. E., & Han, W. K. (2018). Exogenous pentraxin-3 inhibits the reactive oxygen species-mitochondrial and apoptosis pathway in acute kidney injury. PLoS ONE, 13(4), e0195758. https://doi.org/10.1371/journal.pone.0195758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Blomgren, K., Zhu, C., Wang, X., Karlsson, J. O., Leverin, A. L., Bahr, B. A., Mallard, C., & Hagberg, H. (2001). Synergistic activation of caspase-3 by m-calpain after neonatal hypoxia-ischemia: A mechanism of “pathological apoptosis”? Journal of Biological Chemistry, 276(13), 10191–10198. https://doi.org/10.1074/jbc.M007807200

    Article  CAS  Google Scholar 

  47. Chen, D. Q., Kong, X. S., Shen, X. B., Huang, M. Z., Zheng, J. P., Sun, J., & Xu, S. H. (2019). Identification of differentially expressed genes and signaling pathways in acute myocardial infarction based on integrated bioinformatics analysis. Cardiovascular Therapeutics, 2019, 8490707. https://doi.org/10.1155/2019/8490707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen, J. Y., Cortes, C., & Ferreira, V. P. (2018). Properdin: A multifaceted molecule involved in inflammation and diseases. Molecular Immunology, 102, 58–72. https://doi.org/10.1016/j.molimm.2018.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yin, J., Yi, J., Yang, C., Xu, B., Lin, J., Hu, H., Wu, X., Shi, H., & Fei, X. (2021). Chronic atrophic gastritis and intestinal metaplasia induced by high-salt and N-methyl-N′-nitro-N-nitrosoguanidine intake in rats. Experimental and Therapeutic Medicine, 21(4), 315. https://doi.org/10.3892/etm.2021.9746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Marques, F. Z., Prestes, P. R., Byars, S. G., Ritchie, S. C., Würtz, P., Patel, S. K., Booth, S. A., Rana, I., Minoda, Y., Berzins, S. P., Curl, C. L., Bell, J. R., Wai, B., Srivastava, P. M., Kangas, A. J., Soininen, P., Ruohonen, S., Kähönen, M., Lehtimäki, T.,…Charchar, F. J. (2017). Experimental and human evidence for lipocalin-2 (Neutrophil Gelatinase-Associated Lipocalin [NGAL]) in the development of cardiac hypertrophy and heart failure. Journal of the American Heart Association. https://doi.org/10.1161/JAHA.117.005971

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fedoseeva, L. A., Klimov, L. O., Ershov, N. I., Efimov, V. M., Markel, A. L., Orlov, Y. L., & Redina, O. E. (2019). The differences in brain stem transcriptional profiling in hypertensive ISIAH and normotensive WAG rats. BMC Genomics, 20(Suppl 3), 297. https://doi.org/10.1186/s12864-019-5540-5

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to appreciate the reviewers in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Ying Liao.

Ethics declarations

Conflict of interest

None.

Additional information

Handling Editor: Samuel S. W. Tay.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 591 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Zhuang, YS., Yang, CX. et al. The Protective Role of the Long Pentraxin PTX3 in Spontaneously Hypertensive Rats with Heart Failure. Cardiovasc Toxicol 21, 808–819 (2021). https://doi.org/10.1007/s12012-021-09671-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09671-0

Keywords

Navigation