Skip to main content
Log in

Clozapine Induced Developmental and Cardiac Toxicity on Zebrafish Embryos by Elevating Oxidative Stress

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Clozapine is one of the antipsychotic drugs for treating schizophrenia, but its cardiotoxicity was the primary obstacle for its clinical use, due to the unknown mechanism of clozapine-induced cardiotoxicity. In this study, we studied the cardiotoxicity of clozapine by employing zebrafish embryos. Acute clozapine exposure showed dose-dependent mortality with the LC50 at 59.36 μmol L−1 and 49.60 μmol L−1 when determined at 48 and 72 h post exposure, respectively. Morphological abnormalities like pericardial edema, incompletely heart looping, and bradycardia were detected after clozapine exposure in a time- and dose-dependent manner. Clozapine treatment also resulted in a slower heart rate and disturbed rhythm in zebrafish embryos. Also, oxidative stress was observed after clozapine exposure by measurement of ROS (reactive oxygen species), MDA (a lipid peroxidation marker), antioxidant enzyme activities, and oxidative stress-related gene expression. The elevation of inflammation coincided with oxidative stress by the assay of inflammation-related genes expression accompanied by clozapine incubation. Collectively, the data indicate that clozapine might achieve cardiotoxic effect in zebrafish larva through increasing oxidative stress, attenuation in antioxidant defense, and up-regulation of inflammatory cytokines. The data could provide experimental explanations for myocarditis and pericarditis induced by clozapine in clinics, and help find an effective solution to reduce its cardiotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data and reagents will be made available upon request.

References

  1. Valton, V., Romaniuk, L., Douglas Steele, J., Lawrie, S., & Series, P. (2017). Comprehensive review: Computational modelling of schizophrenia. Neuroscience and Biobehavioral Reviews, 83, 631–646. https://doi.org/10.1016/j.neubiorev.2017.08.022.

    Article  PubMed  Google Scholar 

  2. Wenthur, C. J., & Lindsley, C. W. (2013). Classics in chemical neuroscience: Clozapine. ACS Chemical Neuroscience, 4(7), 1018–1025. https://doi.org/10.1021/cn400121z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fakra, E., & Azorin, J. M. (2012). Clozapine for the treatment of schizophrenia. Expert Opinion on Pharmacotherapy, 13(13), 1923–1935. https://doi.org/10.1517/14656566.2012.709235.

    Article  CAS  PubMed  Google Scholar 

  4. Layland, J. J., Liew, D., & Prior, D. L. (2009). Clozapine-induced cardiotoxicity: A clinical update. Medical Journal of Australia, 190(4), 190–192.

    Article  Google Scholar 

  5. Wooltorton, E. (2002). Antipsychotic clozapine (Clozaril): Myocarditis and cardiovascular toxicity. CMAJ, 166(9), 1185–1186.

    PubMed  PubMed Central  Google Scholar 

  6. Lee, S. H., Kim, H. R., Han, R. X., Oqani, R. K., & Jin, D. I. (2013). Cardiovascular risk assessment of atypical antipsychotic drugs in a zebrafish model. Journal of Applied Toxicology, 33(6), 466–470. https://doi.org/10.1002/jat.1768.

    Article  CAS  PubMed  Google Scholar 

  7. Raldua, D., & Pina, B. (2014). In vivo zebrafish assays for analyzing drug toxicity. Expert Opinion on Drug Metabolism & Toxicology, 10(5), 685–697. https://doi.org/10.1517/17425255.2014.896339.

    Article  CAS  Google Scholar 

  8. Renier, C., Faraco, J. H., Bourgin, P., Motley, T., Bonaventure, P., Rosa, F., et al. (2007). Genomic and functional conservation of sedative-hypnotic targets in the zebrafish. Pharmacogenetics and Genomics, 17(4), 237–253. https://doi.org/10.1097/FPC.0b013e3280119d62.

    Article  CAS  PubMed  Google Scholar 

  9. Zhu, J. J., Xu, Y. Q., He, J. H., Yu, H. P., Huang, C. J., Gao, J. M., et al. (2014). Human cardiotoxic drugs delivered by soaking and microinjection induce cardiovascular toxicity in zebrafish. Journal of Applied Toxicology, 34(2), 139–148. https://doi.org/10.1002/jat.2843.

    Article  CAS  PubMed  Google Scholar 

  10. Sun, G., & Liu, K. (2017). Developmental toxicity and cardiac effects of butyl benzyl phthalate in zebrafish embryos. Aquatic Toxicology, 192, 165–170. https://doi.org/10.1016/j.aquatox.2017.09.020.

    Article  CAS  PubMed  Google Scholar 

  11. Westerfield, M., Wegner, J., Jegalian, B. G., DeRobertis, E. M., & Puschel, A. W. (1992). Specific activation of mammalian Hox promoters in mosaic transgenic zebrafish. Genes & Development, 6(4), 591–598. https://doi.org/10.1101/gad.6.4.591.

    Article  CAS  Google Scholar 

  12. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., & Schilling, T. F. (1995). Stages of embryonic development of the zebrafish. Developmental Dynamics, 203(3), 253–310. https://doi.org/10.1002/aja.1002030302.

    Article  CAS  PubMed  Google Scholar 

  13. Liang, J., Jin, W., Li, H., Liu, H., Huang, Y., Shan, X., et al. (2016). In vivo cardiotoxicity induced by sodium aescinate in zebrafish larvae. Molecules, 21(3), 190. https://doi.org/10.3390/molecules21030190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Han, Y., Zhang, J. P., Qian, J. Q., & Hu, C. Q. (2015). Cardiotoxicity evaluation of anthracyclines in zebrafish (Danio rerio). Journal of Applied Toxicology, 35(3), 241–252. https://doi.org/10.1002/jat.3007.

    Article  CAS  PubMed  Google Scholar 

  15. Li, J., Zhang, Y., Liu, K., He, Q., Sun, C., Han, J., et al. (2018). Xiaoaiping induces developmental toxicity in zebrafish embryos through activation of ER stress, apoptosis and the Wnt pathway. Frontiers in Pharmacology, 9, 1250. https://doi.org/10.3389/fphar.2018.01250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zou, Y., Zhang, Y., Han, L., He, Q., Hou, H., Han, J., et al. (2017). Oxidative stress-mediated developmental toxicity induced by isoniazide in zebrafish embryos and larvae. Journal of Applied Toxicology, 37(7), 842–852. https://doi.org/10.1002/jat.3432.

    Article  CAS  PubMed  Google Scholar 

  17. Mitchell, C. A., Reddam, A., Dasgupta, S., Zhang, S., Stapleton, H. M., & Volz, D. C. (2019). Diphenyl phosphate-induced toxicity during embryonic development. Environmental Science and Technology, 53(7), 3908–3916. https://doi.org/10.1021/acs.est.8b07238.

    Article  CAS  PubMed  Google Scholar 

  18. Abdel-Wahab, B. A., & Metwally, M. E. (2015). Clozapine-induced cardiotoxicity: Role of oxidative stress, tumour necrosis factor alpha and NF-kappabeta. Cardiovascular Toxicology, 15(4), 355–365. https://doi.org/10.1007/s12012-014-9304-9.

    Article  CAS  PubMed  Google Scholar 

  19. Yan, Z., Huang, X., Xie, Y., Song, M., Zhu, K., & Ding, S. (2019). Macrolides induce severe cardiotoxicity and developmental toxicity in zebrafish embryos. Science of the Total Environment, 649, 1414–1421. https://doi.org/10.1016/j.scitotenv.2018.07.432.

    Article  CAS  Google Scholar 

  20. Ferri, N., Siegl, P., Corsini, A., Herrmann, J., Lerman, A., & Benghozi, R. (2013). Drug attrition during pre-clinical and clinical development: Understanding and managing drug-induced cardiotoxicity. Pharmacology & Therapeutics, 138(3), 470–484. https://doi.org/10.1016/j.pharmthera.2013.03.005.

    Article  CAS  Google Scholar 

  21. Eimon, P. M., & Rubinstein, A. L. (2009). The use of in vivo zebrafish assays in drug toxicity screening. Expert Opinion on Drug Metabolism & Toxicology, 5(4), 393–401. https://doi.org/10.1517/17425250902882128.

    Article  CAS  Google Scholar 

  22. Cornet, C., Calzolari, S., Minana-Prieto, R., Dyballa, S., van Doornmalen, E., Rutjes, H., et al. (2017). ZeGlobalTox: An innovative approach to address organ drug toxicity using zebrafish. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms18040864.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Song, Y., Miao, Y., & Song, C. P. (2014). Behind the scenes: The roles of reactive oxygen species in guard cells. New Phytologist, 201(4), 1121–1140. https://doi.org/10.1111/nph.12565.

    Article  CAS  Google Scholar 

  24. Diaz-Ruiz, A., Mendez-Armenta, M., Galvan-Arzate, S., Manjarrez, J., Nava-Ruiz, C., Santander, I., et al. (2013). Antioxidant, anticonvulsive and neuroprotective effects of dapsone and phenobarbital against kainic acid-induced damage in rats. Neurochemical Research, 38(9), 1819–1827. https://doi.org/10.1007/s11064-013-1087-z.

    Article  CAS  PubMed  Google Scholar 

  25. Lushchak, V. I. (2011). Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicology, 101(1), 13–30. https://doi.org/10.1016/j.aquatox.2010.10.006.

    Article  CAS  PubMed  Google Scholar 

  26. Angsutararux, P., Luanpitpong, S., & Issaragrisil, S. (2015). Chemotherapy-induced cardiotoxicity: Overview of the roles of oxidative stress. Oxidative Medicine and Cellular Longevity, 2015, 795602. https://doi.org/10.1155/2015/795602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cen, J., Jia, Z. L., Zhu, C. Y., Wang, X. F., Zhang, F., Chen, W. Y., et al. (2020). Particulate matter (PM10) induces cardiovascular developmental toxicity in zebrafish embryos and larvae via the ERS, Nrf2 and Wnt pathways. Chemosphere, 250, 126288. https://doi.org/10.1016/j.chemosphere.2020.126288.

    Article  CAS  PubMed  Google Scholar 

  28. Kawabata, M., Umemoto, N., Shimada, Y., Nishimura, Y., Zhang, B., Kuroyanagi, J., et al. (2015). Downregulation of stanniocalcin 1 is responsible for sorafenib-induced cardiotoxicity. Toxicological Sciences, 143(2), 374–384. https://doi.org/10.1093/toxsci/kfu235.

    Article  CAS  PubMed  Google Scholar 

  29. He, H., Luo, Y., Qiao, Y., Zhang, Z., Yin, D., Yao, J., et al. (2018). Curcumin attenuates doxorubicin-induced cardiotoxicity via suppressing oxidative stress and preventing mitochondrial dysfunction mediated by 14-3-3gamma. Food & Function, 9(8), 4404–4418. https://doi.org/10.1039/c8fo00466h.

    Article  CAS  Google Scholar 

  30. Nikolic-Kokic, A., Tatalovic, N., Nestorov, J., Mijovic, M., Mijuskovic, A., Miler, M., et al. (2018). Clozapine, ziprasidone, and sertindole-induced morphological changes in the rat heart and their relationship to antioxidant enzymes function. Journal of Toxicology and Environmental Health, Part A, 81(17), 844–853. https://doi.org/10.1080/15287394.2018.1495587.

    Article  CAS  Google Scholar 

  31. Schieber, M., & Chandel, N. S. (2014). ROS function in redox signaling and oxidative stress. Current Biology, 24(10), R453–R462. https://doi.org/10.1016/j.cub.2014.03.034.

    Article  CAS  PubMed  Google Scholar 

  32. Ma, Q. (2013). Role of nrf2 in oxidative stress and toxicity. Annual Review of Pharmacology and Toxicology, 53, 401–426. https://doi.org/10.1146/annurev-pharmtox-011112-140320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao, L., Qi, Y., Xu, L., Tao, X., Han, X., Yin, L., et al. (2018). MicroRNA-140-5p aggravates doxorubicin-induced cardiotoxicity by promoting myocardial oxidative stress via targeting Nrf2 and Sirt2. Redox Biology, 15, 284–296. https://doi.org/10.1016/j.redox.2017.12.013.

    Article  CAS  PubMed  Google Scholar 

  34. Medzhitov, R. (2008). Origin and physiological roles of inflammation. Nature, 454(7203), 428–435. https://doi.org/10.1038/nature07201.

    Article  CAS  PubMed  Google Scholar 

  35. Valokola, M. G., Karimi, G., Razavi, B. M., Kianfar, M., Jafarian, A. H., Jaafari, M. R., et al. (2019). The protective activity of nanomicelle curcumin in bisphenol A-induced cardiotoxicity following subacute exposure in rats. Environmental Toxicology, 34(3), 319–329. https://doi.org/10.1002/tox.22687.

    Article  CAS  PubMed  Google Scholar 

  36. Zhou, W., Tian, D., He, J., Yan, X., Zhao, J., Yuan, X., et al. (2019). Prolonged exposure to carbon nanoparticles induced methylome remodeling and gene expression in zebrafish heart. Journal of Applied Toxicology, 39(2), 322–332. https://doi.org/10.1002/jat.3721.

    Article  CAS  PubMed  Google Scholar 

  37. Wang, S., Wang, Y., Zhang, Z., Liu, Q., & Gu, J. (2017). Cardioprotective effects of fibroblast growth factor 21 against doxorubicin-induced toxicity via the SIRT1/LKB1/AMPK pathway. Cell Death & Disease, 8(8), e3018. https://doi.org/10.1038/cddis.2017.410.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by (1) Mount Taishan Scholar Program of Shandong Province (tspd20181211), (2) International Science and Technology Cooperation Project of Shandong Academy of Sciences (2019GHPY13), (3) the Project for the Integration of Science, Education and Industry, major innovation project of Shandong Academy of Sciences (2020KJC-ZD10), (4) a Project of Shandong Province Higher Educational Science and Technology Program (J18KA154) and(5) Outstanding youth fund of the Shandong Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingping Tian or Qiuxia He.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Handling Editor: Martin Štěrba.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Han, L., Wang, J. et al. Clozapine Induced Developmental and Cardiac Toxicity on Zebrafish Embryos by Elevating Oxidative Stress. Cardiovasc Toxicol 21, 399–409 (2021). https://doi.org/10.1007/s12012-021-09632-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09632-7

Keywords

Navigation