Skip to main content
Log in

Arbutin Attenuates Isoproterenol-Induced Cardiac Hypertrophy by Inhibiting TLR-4/NF-κB Pathway in Mice

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Arbutin is a glycoside reported for its anti-oxidant, anti-inflammatory and anti-tumor properties. However, the cardioprotective effect of Arbutin is not well established. The study aims to understand the effect of arbutin on isoproterenol (ISO)-induced cardiac hypertrophy in mice. The animals were pretreated with Arbutin for a week and ISO was administered for 10 days and then sacrificed. Cardiac injury markers such as creatinine kinase and lactate dehydrogenase concentrations were measured in the serum. The mRNA expression of cardiac hypertrophy markers namely atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were measured using qRT-PCR. The levels of pro-inflammatory cytokines TNF-α and IL-6 were quantified by ELISA in isolated tissues and serum. Other tissue anti-oxidant parameters such as GST, GSH, SOD and TBARS were also measured. TUNEL assay was performed to detect apoptosis. Histology studies were performed using H & E and Masson trichome staining. Immunoblot analysis was used to quantify the protein expression of TLR-4 and NF-κB. ISO-alone-treated group showed significant increase in CK-MB, LDH along with increase in hypertrophic markers ANP and BNP, TNF-α and IL-6 levels in serum and tissues and increased cardiomyocyte apoptosis. Anti-oxidant parameters were significantly decreased and TLR-4 and NF-κB protein expression was found to be upregulated in comparison to the control group. Pretreatment with Arbutin-exhibited significant inhibition of TLR-4/NF-κB pathway with decreased levels of pro-inflammatory cytokines and enhanced myocardial anti-oxidant status. Our study demonstrated that pretreatment with Arbutin exhibits marked protective effects on ISO-induced cardiac hypertrophy in mice. Thus, Arbutin may be used as potential pharmacological interventions in the management of cardiac hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Deatona, Christi, Froelicher, Erika Sivarajan, Wuc, Lai Har, Hod, Camille, Shishani, Kawkab, & Jaarsmaf, Tiny. (2011). The global burden of cardiovascular disease. European Journal of Cardiovascular Nursing,10(2), S5–S13.

    Google Scholar 

  2. https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

  3. Rohini, A., Agrawal, N., Koyani, C. N., & Singh, R. (2010). Molecular targets and regulators of cardiac hypertrophy. Pharmacological Research,61(4), 269–280.

    CAS  PubMed  Google Scholar 

  4. Nadal-Ginard, B., Kajstura, J., Leri, A., & Anversa, P. (2003). Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circulation Research,92(2), 139–150.

    CAS  PubMed  Google Scholar 

  5. Zhang, Y., Xu, J., Long, Z., Wang, C., Wang, L., Sun, P., et al. (2016). Hydrogen (H2) inhibits isoproterenol-induced cardiac hypertrophy via antioxidative pathways. Frontiers in Pharmacology,7, 392.

    PubMed  PubMed Central  Google Scholar 

  6. Ho, Y. L., Wu, C. C., Lin, L. C., Huang, C. H., Chen, W. J., Chen, M. F., et al. (1998). Assessment of the coronary artery disease and systolic dysfunction in hypertensive patients with the dobutamine-atropine stress echocardiography: Effect of the left ventricular hypertrophy. Cardiology,89(1), 52–58.

    CAS  PubMed  Google Scholar 

  7. Li, J. M., Gall, N. P., Grieve, D. J., Chen, M., & Shah, A. M. (2002). Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension,40(4), 477–484.

    CAS  PubMed  Google Scholar 

  8. Zhang, Y., Zhang, X. J., & Li, H. (2017). Targeting interferon regulatory factor for cardiometabolic diseases: Opportunities and challenges. Current Drug Targets,18(15), 1754–1778.

    PubMed  Google Scholar 

  9. Gutierrez, S. H., Kuri, M. R., & del Castillo, E. R. (2008). Cardiac role of the transcription factor NF-κB. Cardiovascular & Haematological Disorders-Drug Targets (Formerly Current Drug Targets-Cardiovascular &Hematological Disorders),8(2), 153–160.

    CAS  Google Scholar 

  10. Frieler, R. A., & Mortensen, R. M. (2015). Immune cell and other noncardiomyocyte regulation of cardiac hypertrophy and remodeling. Circulation,131(11), 1019–1030.

    PubMed  PubMed Central  Google Scholar 

  11. Yang, J., Wang, H. X., Zhang, Y. J., Yang, Y. H., Lu, M. L., Zhang, J., et al. (2013). Astragaloside IV attenuates inflammatory cytokines by inhibiting TLR4/NF-кBsignaling pathway in isoproterenol-induced myocardial hypertrophy. Journal of Ethnopharmacology,150(3), 1062–1070.

    CAS  PubMed  Google Scholar 

  12. Achek, A., Yesudhas, D., & Choi, S. (2016). Toll-like receptors: Promising therapeutic targets for inflammatory diseases. Archives of Pharmacal Research,39(8), 1032–1049.

    CAS  PubMed  Google Scholar 

  13. Ma, D., Zhang, J., Zhang, Y., Zhang, X., Han, X., Song, T., et al. (2018). Inhibition of myocardial hypertrophy by magnesium isoglycyrrhizinate through the TLR4/NF-κB signaling pathway in mice. International Immunopharmacology,55, 237–244.

    CAS  PubMed  Google Scholar 

  14. Katare, P. B., Bagul, P. K., Dinda, A. K., & Banerjee, S. K. (2017). Toll-like receptor 4 inhibition improves oxidative stress and mitochondrial health in isoproterenol-induced cardiac hypertrophy in rats. Frontiers in Immunology,8, 719.

    PubMed  PubMed Central  Google Scholar 

  15. Kumar, S., Alam, M. J., Prabhakar, P., Ahmad, S., Maulik, S. K., Sharma, M., et al. (2017). Proteomic analysis of the protective effects of aqueous bark extract of Terminalia arjuna (Roxb.) on isoproterenol-induced cardiac hypertrophy in rats. Journal of Ethnopharmacology,198, 98–108.

    CAS  PubMed  Google Scholar 

  16. Sharma, B., Chaube, U., & Patel, B. M. (2018). Beneficial effect of silymarin in pressure overload induced experimental cardiac hypertrophy. Cardiovascular Toxicology. https://doi.org/10.1007/s12012-018-9470-2.

    Article  PubMed  Google Scholar 

  17. Zhang, S., Tang, F., Yang, Y., Lu, M., Luan, A., Zhang, J., et al. (2015). Astragaloside IV protects against isoproterenol-induced cardiac hypertrophy by regulating NF-κB/PGC-1α signaling mediated energy biosynthesis. PLoS ONE,10(3), e0118759.

    PubMed  PubMed Central  Google Scholar 

  18. Edwards, S. E., Rocha, I., Heinrich, M., & Williamson, E. M. (2015). Phytopharmacy: An evidence-based guide to herbal medicinal products. Chichester: Wiley.

    Google Scholar 

  19. Migas, P., & Krauze-Baranowska, M. (2015). The significance of Arbutin and its derivatives in therapy and cosmetics. Phytochemistry Letters,13, 35–40.

    CAS  Google Scholar 

  20. Ahmadian, S. R., GhaS, E., Mi-Kasman, M., Pouramir, M., & Sadeghi, F. (2019). Arbutin attenuates cognitive impairment and inflammatory response in pentylenetetrazol-induced kindling model of epilepsy. Neuropharmacology,146, 117–127.

    CAS  PubMed  Google Scholar 

  21. Taha, M. M. E., Salga, M. S., Ali, H. M., Abdulla, M. A., Abdelwahab, S. I., & Hadi, A. H. A. (2012). Gastroprotective activities of Turnera diffusa Willd. exSchult. revisited: Role of Arbutin. Journal of Ethnopharmacology,141(1), 273–281.

    CAS  PubMed  Google Scholar 

  22. Wu, L. H., Li, P., Zhao, Q. L., Piao, J. L., Jiao, Y. F., Kadowaki, M., et al. (2014). Arbutin, an intracellular hydroxyl radical scavenger, protects radiation-induced apoptosis in human lymphoma U937 cells. Apoptosis,19(11), 1654–1663.

    CAS  PubMed  Google Scholar 

  23. Lee, H. J., & Kim, K. W. (2012). Anti-inflammatory effects of Arbutin in lipopolysaccharide-stimulated BV2 microglial cells. Inflammation Research,61(8), 817–825.

    CAS  PubMed  Google Scholar 

  24. Dadgar, M., Pouramir, M., Dastan, Z., Ghasemi-Kasman, M., Mi-Kasman, M., Ashrafpour, M., et al. (2018). Arbutin attenuates behavioral impairment and oxidative stress in an animal model of Parkinson’s disease. Avicenna Journal of Phytomedicine,8(6), 533.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou, N., Zeng, M. N., Li, K., Yang, Y. Y., Bai, Z. Y., Zheng, X. K., et al. (2018). An integrated metabolomic strategy for the characterization of the effects of Chinese yam and its three active components on septic cardiomyopathy. Food & Function,9(9), 4989–4997.

    CAS  Google Scholar 

  26. Patel, S. (2016). Plant-derived cardiac glycosides: Role in heart ailments and cancer management. Biomedicine & Pharmacotherapy,84, 1036–1041.

    CAS  Google Scholar 

  27. Ye, Jinyan, Guan, Minqiang, Yao, Lu, Zhang, Dan, Li, Chengye, & Zhou, Caicun. (2019). Arbutin attenuates LPS-induced lung injury via Sirt1/Nrf2/NF-κBp65 pathway. Pulmonary Pharmacology & Therapeutics,54, 53–59.

    CAS  Google Scholar 

  28. Sahu, B. D., Tatireddy, S., Koneru, M., Borkar, R. M., Kumar, J. M., Kuncha, M., et al. (2014). Naringin ameliorates gentamicin-induced nephrotoxicity and associated mitochondrial dysfunction, apoptosis and inflammation in rats: Possible mechanism of nephroprotection. Toxicology and Applied Pharmacology,277(1), 8–20.

    CAS  PubMed  Google Scholar 

  29. Mir, S. M., Ravuri, H. G., Pradhan, R. K., Narra, S., Kumar, J. M., Kuncha, M., et al. (2018). Ferulic acid protects lipopolysaccharide-induced acute kidney injury by suppressing inflammatory events and upregulating antioxidant defenses in Balb/c mice. Biomedicine & Pharmacotherapy,100, 304–315.

    CAS  Google Scholar 

  30. Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry,95(2), 351–358.

    CAS  PubMed  Google Scholar 

  31. Sahu, B. D., Kumar, J. M., & Sistla, R. (2016). Fisetin, a dietary flavonoid, ameliorates experimental colitis in mice: Relevance of NF-κB signaling. The Journal of Nutritional Biochemistry,28, 171–182.

    CAS  PubMed  Google Scholar 

  32. Yeh, Y. L., Tsai, H. I., Cheng, S. M., Pai, P., Ho, T. J., Chen, R. J., et al. (2016). Mechanism of Taiwan Mingjian Oolong tea to inhibit isoproterenol-induced hypertrophy and apoptosis in cardiomyoblasts. The American Journal of Chinese Medicine,44(01), 77–86.

    CAS  PubMed  Google Scholar 

  33. Feng, X. J., Gao, H., Gao, S., Li, Z., Li, H., Lu, J., et al. (2015). The orphan receptor NOR1 participates in isoprenaline-induced cardiac hypertrophy by regulating PARP-1. British Journal of Pharmacology,172(11), 2852–2863.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, S. B., Tian, S., Yang, F., Yang, H. G., Yang, X. Y., & Du, G. H. (2009). Cardioprotective effect of salvianolic acid A on isoproterenol-induced myocardial infarction in rats. European Journal of Pharmacology,615(1–3), 125–132.

    CAS  PubMed  Google Scholar 

  35. Li, H., Xie, Y. H., Yang, Q., Wang, S. W., Zhang, B. L., Wang, J. B., et al. (2012). Cardioprotective effect of paeonol and danshensu combination on isoproterenol-induced myocardial injury in rats. PLoS ONE,7(11), e48872.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gupta, D. K., & Wang, T. J. (2015). Natriuretic peptides and cardiometabolic health. Circulation Journal,79(8), 1647–1655.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kuhn, M. (2015). Cardiology: A big-hearted molecule. Nature,519(7544), 416.

    CAS  PubMed  Google Scholar 

  38. Mao, H. P., Wang, X. Y., Chang, Y. X., Chen, L., Niu, Z. C., Ai, J. Q., et al. (2016). Danhong injection attenuates isoproterenol-induced cardiac hypertrophy by regulating p38 and NF-κb pathway. Journal of Ethnopharmacology,186, 20–29.

    CAS  PubMed  Google Scholar 

  39. Ryu, Y., Jin, L., Kee, H. J., Piao, Z. H., Cho, J. Y., Kim, G. R., et al. (2016). Gallic acid prevents isoproterenol-induced cardiac hypertrophy and fibrosis through regulation of JNK2 signaling and Smad3 binding activity. Scientific Reports,6, 34790.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Angeloni, C., Leoncini, E., Malaguti, M., Angelini, S., Hrelia, P., & Hrelia, S. (2009). Modulation of phase II enzymes by sulforaphane: Implications for its cardioprotective potential. Journal of Agricultural and Food Chemistry,57(12), 5615–5622.

    CAS  PubMed  Google Scholar 

  41. Seddon, M., Looi, Y. H., & Shah, A. M. (2007). Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart,93(8), 903–907.

    CAS  PubMed  Google Scholar 

  42. Wong, Z. W., Thanikachalam, P. V., & Ramamurthy, S. (2017). Molecular understanding of the protective role of natural products on isoproterenol-induced myocardial infarction: A review. Biomedicine & Pharmacotherapy,94, 1145–1166.

    CAS  Google Scholar 

  43. Sahu, B. D., Anubolu, H., Koneru, M., Kumar, J. M., Kuncha, M., Rachamalla, S. S., et al. (2014). Cardioprotective effect of embelin on isoproterenol-induced myocardial injury in rats: Possible involvement of mitochondrial dysfunction and apoptosis. Life Sciences,107(1–2), 59–67.

    CAS  PubMed  Google Scholar 

  44. Takebayashi, J., Ishii, R., Chen, J., Matsumoto, T., Ishimi, Y., & Tai, A. (2010). Reassessment of antioxidant activity of Arbutin: Multifaceted evaluation using five antioxidant assay systems. Free Radical Research,44(4), 473–478.

    CAS  PubMed  Google Scholar 

  45. Purcell, N. H., Tang, G., Yu, C., Mercurio, F., DiDonato, J. A., & Lin, A. (2001). Activation of NF-κB is required for hypertrophic growth of primary rat neonatal ventricular cardiomyocytes. Proceedings of the National Academy of Sciences,98(12), 6668–6673.

    CAS  Google Scholar 

  46. Zhang, Y., Bauersachs, J., & Langer, H. F. (2017). Immune mechanisms in heart failure. European Journal of Heart Failure,19(11), 1379–1389.

    PubMed  Google Scholar 

  47. Shirazi, L. F., Bissett, J., Romeo, F., & Mehta, J. L. (2017). Role of inflammation in heart failure. Current Atherosclerosis Reports,19(6), 27.

    PubMed  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Director, CSIR-IICT, Hyderabad, India for providing necessary facilities and continuous support. Nasiruddin Nalban thanks Indian Council of Medical Research (ICMR) New Delhi, India for financial assistance in the form of Junior Research Fellowship. RS thanks CSIR, New Delhi, India and SA thanks DST, New Delhi, India for providing the junior Research Fellowships. CSIR-IICT Manuscript communication number-IICT/Pubs./2019/117.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramakrishna Sistla.

Ethics declarations

Conflicts of interest

The authors declare no competing financial interest.

Additional information

Handling Editor: Y. James Kang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nalban, N., Sangaraju, R., Alavala, S. et al. Arbutin Attenuates Isoproterenol-Induced Cardiac Hypertrophy by Inhibiting TLR-4/NF-κB Pathway in Mice. Cardiovasc Toxicol 20, 235–248 (2020). https://doi.org/10.1007/s12012-019-09548-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-019-09548-3

Keywords

Navigation