Skip to main content
Log in

Airway Exposure to Modified Multi-walled Carbon Nanotubes Perturbs Cardiovascular Adenosinergic Signaling in Mice

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

The broad list of commercial applications for multi-walled carbon nanotubes (MWCNT) can be further expanded with the addition of various surface chemistry modifications. For example, standard commercial grade MWCNT (C-grade) can be carboxylated (COOH) or nitrogen-doped (N-doped) to suite specific utilities. We previously reported dose-dependent expansions of cardiac ischemia/reperfusion (I/R) injury, 24 h after intratracheal instillation of C-grade, COOH, or N-doped MWCNT in mice. Here, we have tested the hypothesis that airway exposure to MWCNT perturbs cardiovascular adenosinergic signaling, which could contribute to exacerbation of cardiac I/R injury. 100 µL of Vehicle or identical suspension volumes containing 100 µg of C-grade, COOH, or N-doped MWCNT were instilled into the trachea of CD-1 ICR mice. 1 day later, we measured cyclic adenosine monophosphate (cAMP) concentrations in cardiac tissue and evaluated arterial adenosinergic smooth muscle signaling mechanisms related to nitric oxide synthase (NOS) and cyclooxygenase (COX) in isolated aortic tissue. We also verified cardiac I/R injury expansion and examined both lung histology and bronchoalveolar lavage fluid cellularity in MWCNT exposed mice. Myocardial cAMP concentrations were reduced (p < 0.05) in the C-grade group by 17.4% and N-doped group by 13.7% compared to the Vehicle group. Curve fits to aortic ring 2-Cl-Adenosine concentration responses were significantly greater in the MWCNT groups vs. the Vehicle group. Aortic constrictor responses were more pronounced with NOS inhibition and were abolished with COX inhibition. These findings indicate that addition of functional chemical moieties on the surface of MWCNT may alter the biological responses to exposure by influencing cardiovascular adenosinergic signaling and promoting cardiac injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kuijpers, E., Bekker, C., Fransman, W., Brouwer, D., Tromp, P., Vlaanderen, J., et al. (2016). Occupational exposure to multi-walled carbon nanotubes during commercial production synthesis and handling. Annals of Occupatonal Hygiene, 60, 305–317.

    Article  CAS  Google Scholar 

  2. Poulsen, S. S., Knudsen, K. B., Jackson, P., Weydahl, I. E., Saber, A. T., Wallin, H., et al. (2017). Multi-walled carbon nanotube-physicochemical properties predict the systemic acute phase response following pulmonary exposure in mice. PLoS ONE, 12, e0174167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ayala, P., Arenal, R., Rümmeli, M., Rubio, A., & Pichler, T. (2010). The doping of carbon nanotubes with nitrogen and their potential applications. Carbon, 48, 575–586.

    Article  CAS  Google Scholar 

  4. Min, C., Zhang, Q., Shen, C., Liu, D., Shen, X., Song, H., et al. (2017). Graphene oxide/carboxyl-functionalized multi-walled carbon nanotube hybrids: Powerful additives for water-based lubrication. RSC Advances, 7, 32574–32580.

    Article  CAS  Google Scholar 

  5. Urankar, R. N., Lust, R. M., Mann, E., Katwa, P., Wang, X., Podila, R., et al. (2012). Expansion of cardiac ischemia/reperfusion injury after instillation of three forms of multi-walled carbon nanotubes. Particle Fibre Toxicology, 9, 38.

    Article  CAS  PubMed  Google Scholar 

  6. Sousa, J. B., & Diniz, C. (2017). The adenosinergic system as a therapeutic target in the vasculature: New ligands and challenges. Molecules. https://doi.org/10.3390/molecules22050752.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sprenger, J. U., Perera, R. K., Steinbrecher, J. H., Lehnart, S. E., Maier, L. S., Hasenfuss, G., et al. (2015). In vivo model with targeted cAMP biosensor reveals changes in receptor-microdomain communication in cardiac disease. Nature Communications, 6, 6965.

    Article  CAS  PubMed  Google Scholar 

  8. Weber, S., Zeller, M., Guan, K., Wunder, F., Wagner, M., & El-Armouche, A. (2017). PDE2 at the crossway between cAMP and cGMP signalling in the heart. Cell Signal, 38, 76–84.

    Article  CAS  PubMed  Google Scholar 

  9. Khaliulin, I., Bond, M., James, A. F., Dyar, Z., Amini, R., Johnson, J. L., et al. (2017). Functional and cardioprotective effects of simultaneous and individual activation of protein kinase A and Epac. British Journal of Pharmacology, 174, 438–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lochner, A., Genade, S., Tromp, E., Podzuweit, T., & Moolman, J. A. (1999). Ischemic preconditioning and the beta-adrenergic signal transduction pathway. Circulation, 100, 958–966.

    Article  CAS  PubMed  Google Scholar 

  11. Headrick, J. P., Ashton, K. J., Rose’meyer, R. B., & Peart, J. N. (2013). Cardiovascular adenosine receptors: Expression, actions and interactions. Pharmacology & Therapeutics, 140, 92–111.

    Article  CAS  Google Scholar 

  12. Ladilov, Y., & Appukuttan, A. (2014). Role of soluble adenylyl cyclase in cell death and growth. Biochimica et Biophysica Acta, 1842, 2646–2655.

    Article  CAS  PubMed  Google Scholar 

  13. Jackson, E. K., Mi, Z., & Dubey, R. K. (2007). The extracellular cAMP-adenosine pathway significantly contributes to the in vivo production of adenosine. Journal of Pharmacology and Experimental Therapeutics, 320, 117–123.

    Article  CAS  PubMed  Google Scholar 

  14. Vecchio, E. A., White, P. J., & May, L. T. (2017). Targeting adenosine receptors for the treatment of cardiac fibrosis. Frontiers in Pharmacology, 8, 243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ho, M. F., & Rose’Meyer, R. B. (2013). Vascular adenosine receptors; potential clinical applications. Current Vascular Pharmacology, 11, 327–337.

    Article  CAS  PubMed  Google Scholar 

  16. Antonioli, L., Fornai, M., Blandizzi, C., Pacher, P., & Hasko, G. (2018). Adenosine signaling and the immune system: When a lot could be too much. Immunology Letters. https://doi.org/10.1016/j.imlet.2018.04.006.

    Article  PubMed  Google Scholar 

  17. Bowser, J. L., Lee, J. W., Yuan, X., & Eltzschig, H. K. (2017). The hypoxia-adenosine link during inflammation. Journal of Applied Physiology, 123, 1303–1320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Smits, P., Lenders, J. W., Willemsen, J. J., & Thien, T. (1991). Adenosine attenuates the response to sympathetic stimuli in humans. Hypertension, 18, 216–223.

    Article  CAS  PubMed  Google Scholar 

  19. Lynch, F. M., Austin, C., Heagerty, A. M., & Izzard, A. S. (2006). Adenosine and hypoxic dilation of rat coronary small arteries: Roles of the ATP-sensitive potassium channel, endothelium, and nitric oxide. American Journal of Physiology-Heart and Circulatory Physiology, 290, H1145–H1150.

    Article  CAS  PubMed  Google Scholar 

  20. Ansari, H. R., Nadeem, A., Tilley, S. L., & Mustafa, S. J. (2007). Involvement of COX-1 in A3 adenosine receptor-mediated contraction through endothelium in mice aorta. American Journal of Physiology-Heart and Circulatory Physiology, 293, H3448–H3455.

    Article  CAS  PubMed  Google Scholar 

  21. Burnstock, G., & Pelleg, A. (2015). Cardiac purinergic signalling in health and disease. Purinergic Signal, 11, 1–46.

    Article  CAS  PubMed  Google Scholar 

  22. Fox, A. C., Reed, G. E., Glassman, E., Kaltman, A. J., & Silk, B. B. (1974). Release of adenosine from human hearts during angina induced by rapid atrial pacing. Journal of Clinical Investigation, 53, 1447–1457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou, Z., Sun, C., Tilley, S. L., & Mustafa, S. J. (2015). Mechanisms underlying uridine adenosine tetraphosphate-induced vascular contraction in mouse aorta: Role of thromboxane and purinergic receptors. Vascular Pharmacology, 73, 78–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ponnoth, D. S., Nadeem, A., Tilley, S., & Mustafa, S. J. (2010). Involvement of A1 adenosine receptors in altered vascular responses and inflammation in an allergic mouse model of asthma. American Journal of Physiology-Heart and Circulatory Physiology, 299, H81–H87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hansen, P. B., Hristovska, A., Wolff, H., Vanhoutte, P., Jensen, B. L., & Bie, P. (2010). Uridine adenosine tetraphosphate affects contractility of mouse aorta and decreases blood pressure in conscious rats and mice. Acta Physiologica, 200, 171–179.

    Article  CAS  PubMed  Google Scholar 

  26. Wang, X., Katwa, P., Podila, R., Chen, P., Ke, P. C., Rao, A. M., et al. (2011). Multi-walled carbon nanotube instillation impairs pulmonary function in C57BL/6 mice. Particle and Fibre Toxicology, 8, 24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ludbrook, J. (1994). Repeated measurements and multiple comparisons in cardiovascular research. Cardiovascular Research, 28, 303–311.

    Article  CAS  PubMed  Google Scholar 

  28. Yaar, R., Jones, M. R., Chen, J. F., & Ravid, K. (2005). Animal models for the study of adenosine receptor function. Journal of Cellular Physiology, 202, 9–20.

    Article  CAS  PubMed  Google Scholar 

  29. Abukabda, A. B., Stapleton, P. A., & Nurkiewicz, T. R. (2016). Metal nanomaterial toxicity variations within the vascular system. Current Environmental Health Reports, 3, 379–391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stone, V., Miller, M. R., Clift, M. J. D., Elder, A., Mills, N. L., Møller, P., et al. (2017). Nanomaterials versus ambient ultrafine particles: An opportunity to exchange toxicology knowledge. Environmental Health Perspectives, 125(10), 106002.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Brook, R. D., Rajagopalan, S., Pope, C. A.3rd, Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., et al. (2010). Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation, 121, 2331–2378.

    Article  CAS  PubMed  Google Scholar 

  32. Cartwright, M. M., Schmuck, S. C., Corredor, C., Wang, B., Scoville, D. K., Chisholm, C. R., et al. (2016). The pulmonary inflammatory response to multiwalled carbon nanotubes is influenced by gender and glutathione synthesis. Redox Biology, 9, 264–275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bonner, J. C., Silva, R. M., Taylor, A. J., Brown, J. M., Hilderbrand, S. C., Castranova, V., et al. (2013). Interlaboratory evaluation of rodent pulmonary responses to engineered nanomaterials: The NIEHS Nano GO Consortium. Environmental Health Perspectives, 121, 676–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Thompson, L. C., Frasier, C. R., Sloan, R. C., Mann, E. E., Harrison, B. S., Brown, J. M., et al. (2014). Pulmonary instillation of multi-walled carbon nanotubes promotes coronary vasoconstriction and exacerbates injury in isolated hearts. Nanotoxicology, 8, 38–49.

    Article  CAS  PubMed  Google Scholar 

  35. Thompson, L. C., Urankar, R. N., Holland, N. A., Vidanapathirana, A. K., Pitzer, J. E., Han, L., et al. (2014). C(6)(0) exposure augments cardiac ischemia/reperfusion injury and coronary artery contraction in Sprague Dawley rats. Toxicological Sciences, 138, 365–378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Boularan, C., & Gales, C. (2015). Cardiac cAMP: Production, hydrolysis, modulation and detection. Frontiers in Pharmacology, 6, 203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chung, Y. W., Lagranha, C., Chen, Y., Sun, J., Tong, G., Hockman, S. C., et al. (2015). Targeted disruption of PDE3B, but not PDE3A, protects murine heart from ischemia/reperfusion injury. Proceedings of the National Academy of Sciences of the United States of America, 112, E2253–E2262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang, M. H., Poh, K. K., Tan, H. C., Welt, F. G., & Lui, C. Y. (2016). Therapeutic synergy and complementarity for ischemia/reperfusion injury: Beta1-adrenergic blockade and phosphodiesterase-3 inhibition. International Journal of Cardiology, 214, 374–380.

    Article  PubMed  Google Scholar 

  39. Baldwin, T. A., & Dessauer, C. W. (2018). Function of adenylyl cyclase in heart: The AKAP connection. Journal of Cardiovascular Development and Disease. https://doi.org/10.3390/jcdd5010002.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Aragon, M., Erdely, A., Bishop, L., Salmen, R., Weaver, J., Liu, J., et al. (2016). MMP-9-dependent serum-borne bioactivity caused by multiwalled carbon nanotube exposure induces vascular dysfunction via the CD36 scavenger receptor. Toxicological Sciences, 150, 488–498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mandler, W. K., Nurkiewicz, T. R., Porter, D. W., & Olfert, I. M. (2017). Thrombospondin-1 mediates multi-walled carbon nanotube induced impairment of arteriolar dilation. Nanotoxicology, 11, 112–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stapleton, P. A., Minarchick, V. C., Cumpston, A. M., McKinney, W., Chen, B. T., Sager, T. M., et al. (2012). Impairment of coronary arteriolar endothelium-dependent dilation after multi-walled carbon nanotube inhalation: A time-course study. International Journal of Molecular Sciences, 13, 13781–13803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Achterberg, P. W., Harmsen, E., & de Jong, J. W. (1985). Adenosine deaminase inhibition and myocardial purine release during normoxia and ischaemia. Cardiovascular Research, 19, 593–598.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Cathy Stang and Alvin Tsang for help with tissue collection and vascular data acquisition. We thank Dr. Walter Klein of ONY, Inc. for donating the Infasurf™, Dr. Benjamin Harrison and Dr. Richard Czerw of NanoTechLabs, Inc. for providing the MWCNT used in this study. The conclusions reported in the manuscript are those of the authors and do not necessarily reflect those of the National Institute of Environment Health Sciences, East Carolina University, Bellarmine University, or the University of Colorado at Denver.

Funding

This research was supported by East Carolina University and funded through the National Institutes of Environmental Health Sciences: NIH R01 ES016246 (CJW) and U19 ES019525 (JMB and CJW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Wingard.

Ethics declarations

Conflict of interest

The authors report no conflicts of interests related to the research reported in this manuscript.

Research Involving Animals Rights

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were approved and in accordance with the ethical standards of the Institutional Animal Care and Use Committee at East Carolina University (Greenville, NC, USA).

Additional information

Handling Editor: Travis Knuckles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thompson, L.C., Sheehan, N.L., Walters, D.M. et al. Airway Exposure to Modified Multi-walled Carbon Nanotubes Perturbs Cardiovascular Adenosinergic Signaling in Mice. Cardiovasc Toxicol 19, 168–177 (2019). https://doi.org/10.1007/s12012-018-9487-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-018-9487-6

Keywords

Navigation