Skip to main content

Advertisement

Log in

Catechin Attenuates Coronary Heart Disease in a Rat Model by Inhibiting Inflammation

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Accumulating evidence has established that systemic inflammation is an important pathophysiologic factor of coronary heart disease (CHD). In this study, we investigated whether catechin exerts anti-inflammatory function in CHD rats. CHD model of rats was established by high-fat diet feeding and pituitrin injection. The successful building of CHD model was confirmed using blood liquid biochemical analyzer. Additionally, the effects of catechin on CHD parameters and several inflammatory signaling were investigated. The levels of total cholesterol, high-density lipoprotein, low-density lipoprotein cholesterin, triglyceride and blood glucose were all significantly elevated in CHD rats compared to them in control rats, suggesting the successful establishment of CHD model. Administration of catechin attenuated CHD by reversing the levels of creatine kinase, creatine kinase-MB, lactate dehydrogenase, cardiac troponin (cTnT), ventricular ejection fraction (LVEF) and systolic internal diameter (LVIDs). Additionally, several inflammatory biomarkers or cytokines such as C-reactive protein, lipoprotein-associated phospholipase A2 (Lp-PLA2), interleukin (IL)-6 and tumor necrosis factor-alpha (TNF-α) were inhibited by catechin. In contrast to nuclear factor-kappa beta (NF-κB), several proteins involved in inflammation such as farnesoid X receptor, signal transducers and activators of transcription (STAT)-3 and protein kinase B (PKB/Akt) were all activated by catechin. Catechin could be used as a promising treatment for CHD based on its role in suppressing inflammation and balancing STAT-3 signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Organization, W. H. (2011). NCD mortality and morbidity. Global Health Observatory Geneva: WHO.

  2. Escobar, E. (2002). Hypertension and coronary heart disease. Journal of Human Hypertension, 16(Suppl 1), S61–S63.

    Article  PubMed  Google Scholar 

  3. Logue, J., Murray, H. M., Welsh, P., Shepherd, J., Packard, C., Macfarlane, P., et al. (2011). Obesity is associated with fatal coronary heart disease independently of traditional risk factors and deprivation. Heart, 97, 564–568.

    Article  PubMed  Google Scholar 

  4. Peter, R., Rose, A., & Anthony, S. (2012). Diabetes: coronary heart disease equivalent? Current Opinion in Lipidology, 23, 80–81.

    Article  PubMed  CAS  Google Scholar 

  5. Danesh, J., Wheeler, J. G., Hirschfield, G. M., Eda, S., Eiriksdottir, G., Rumley, A., et al. (2004). C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. New England Journal of Medicine, 350, 1387–1397.

    Article  PubMed  CAS  Google Scholar 

  6. Ikonomidis, I., Michalakeas, C. A., Parissis, J., Paraskevaidis, I., Ntai, K., Papadakis, I., et al. (2012). Inflammatory markers in coronary artery disease. Biofactors, 38, 320–328.

    Article  PubMed  CAS  Google Scholar 

  7. Asano, K., Okamoto, S., Fukunaga, K., Shiomi, T., Mori, T., Iwata, M., et al. (1999). Cellular source(s) of platelet-activating-factor acetylhydrolase activity in plasma. Biochemical and Biophysical Research Communications, 261, 511–514.

    Article  PubMed  CAS  Google Scholar 

  8. Khan, N., & Mukhtar, H. (2007). Tea polyphenols for health promotion. Life Sciences, 81, 519–533.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Zaveri, N. T. (2006). Green tea and its polyphenolic catechins: Medicinal uses in cancer and noncancer applications. Life Sciences, 78, 2073–2080.

    Article  PubMed  CAS  Google Scholar 

  10. Babu, P. V., & Liu, D. (2008). Green tea catechins and cardiovascular health: An update. Current Medicinal Chemistry, 15, 1840–1850.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Mak, J. C. W. (2012). Potential role of green tea catechins in various disease therapies: Progress and promise. Clinical and Experimental Pharmacology and Physiology, 39, 265–273.

    Article  PubMed  CAS  Google Scholar 

  12. Kriszbacher, I., Koppan, M., & Bodis, J. (2005). Inflammation, atherosclerosis, and coronary artery disease. New England Journal of Medicine, 353, 429.

    Article  PubMed  CAS  Google Scholar 

  13. aus dem Siepen, F., Bauer, R., Aurich, M., Buss, E. J., Steen, H., Altland, K., et al. (2015). Green tea extract as a treatment for patients with wild-type transthyretin amyloidosis: An observational study. Drug Design Development and Therapy, 9, 6319–6325.

    Article  Google Scholar 

  14. Xuan, F. F., & Jian, J. (2016). Epigallocatechin gallate exerts protective effects against myocardial ischemia/reperfusion injury through the PI3K/Akt pathway-mediated inhibition of apoptosis and the restoration of the autophagic flux. International Journal of Molecular Medicine, 38, 328–336.

    Article  PubMed  CAS  Google Scholar 

  15. Gupta, S. C., Tyagi, A. K., Deshmukh-Taskar, P., Hinojosa, M., Prasad, S., & Aggarwal, B. B. (2014). Downregulation of tumor necrosis factor and other proinflammatory biomarkers by polyphenols. Archives of Biochemistry and Biophysics, 559, 91–99.

    Article  PubMed  CAS  Google Scholar 

  16. Li, M., Liu, J. T., Pang, X. M., Han, C. J., & Mao, J. J. (2012). Epigallocatechin-3-gallate inhibits angiotensin II and interleukin-6-induced C-reactive protein production in macrophages. Pharmacological Reports, 64, 912–918.

    Article  PubMed  CAS  Google Scholar 

  17. Yamamoto, N., Tokuda, H., Kuroyanagi, G., Kainuma, S., Ohguchi, R., Fujita, K., et al. (2015). Amplification by (-)-epigallocatechin gallate and chlorogenic acid of TNF-α-stimulated interleukin-6 synthesis in osteoblasts. International Journal of Molecular Medicine, 36, 1707–1712.

    Article  PubMed  CAS  Google Scholar 

  18. Kuroyanagi, G., Otsuka, T., Kondo, A., Matsushima-Nishiwaki, R., Mizutani, J., Kozawa, O., et al. (2013). (-)-Epigallocatechin gallate amplifies interleukin-1-stimulated interleukin-6 synthesis in osteoblast-like MC3T3-E1 cells. Biochimie, 95, 1933–1938.

    Article  PubMed  CAS  Google Scholar 

  19. You, H., Wei, L., Sun, W. L., Wang, L., Yang, Z. L., Liu, Y., et al. (2014). The green tea extract epigallocatechin-3-gallate inhibits irradiation-induced pulmonary fibrosis in adult rats. International Journal of Molecular Medicine, 34, 92–102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Hosokawa, Y., Hosokawa, I., Ozaki, K., Nakanishi, T., Nakae, H., & Matsuo, T. (2010). Tea polyphenols inhibit IL-6 production in tumor necrosis factor superfamily 14-stimulated human gingival fibroblasts. Molecular Nutrition & Food Research, 54, S151–S158.

    Article  CAS  Google Scholar 

  21. Kim, S. J., Jeong, H. J., Lee, K. M., Myung, N. Y., An, N. H., Yang, W. M., et al. (2007). Epigallocatechin-3-gallate suppresses NF-kappaB activation and phosphorylation of p38 MAPK and JNK in human astrocytoma U373MG cells. Journal of Nutritional Biochemistry, 18, 587–596.

    Article  PubMed  CAS  Google Scholar 

  22. Suzuki, J. I., Ogawa, M., Futamatsu, H., Kosuge, H., Sagesaka, Y. M., & Isobe, M. (2007). Tea catechins improve left ventricular dysfunction, suppress myocardial inflammation and fibrosis, and alter cytokine expression in rat autoimmune myocarditis. European Journal of Heart Failure, 9, 152–159.

    Article  PubMed  CAS  Google Scholar 

  23. Yang, F., Oz, H. S., Barve, S., de Villiers, W. J., McClain, C. J., & Varilek, G. W. (2001). The green tea polyphenol (-)-epigallocatechin-3-gallate blocks nuclear factor-kappa B activation by inhibiting I kappa B kinase activity in the intestinal epithelial cell line IEC-6. Molecular Pharmacology, 60, 528–533.

    Article  PubMed  CAS  Google Scholar 

  24. Jacoby, J. J., Kalinowski, A., Liu, M. G., Zhang, S. S. M., Gao, Q., Chai, G. X., et al. (2003). Cardiomyocyte-restricted knockout of STAT3 results in higher sensitivity to inflammation, cardiac fibrosis, and heart failure-with advanced age. Proceedings of the National Academy of Sciences of the United States of America, 100, 12929–12934.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Li, G. D., Zhu, Y., Tawfik, O., Kong, B., Williams, J. A., Zhan, L., et al. (2013). Mechanisms of STAT3 activation in the liver of FXR knockout mice. American Journal of Physiology-Gastrointestinal and Liver Physiology, 305, G829–G837.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Fernandez-Hernando, C., Ackah, E., Yu, J., Suarez, Y., Murata, T., Iwakiri, Y., et al. (2007). Loss of Akt1 leads to severe atherosclerosis and occlusive coronary artery disease. Cell Metabolism, 6, 446–457.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This study was supported by The Science and Technology Development Funding of Nanjing Medical University (Key Projects).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kejiang Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, S., Xiao, F., Min, X. et al. Catechin Attenuates Coronary Heart Disease in a Rat Model by Inhibiting Inflammation. Cardiovasc Toxicol 18, 393–399 (2018). https://doi.org/10.1007/s12012-018-9449-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-018-9449-z

Keywords

Navigation