Skip to main content
Log in

Modulatory Effect of Aerobic Exercise Training on Doxorubicin-Induced Cardiotoxicity in Rats with Different Ages

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

We tested the hypothesis that aerobic exercise training (AET) would modulate doxorubicin-induced cardiotoxicity in rats of various ages. Wistar male rats (n = 72) were assigned to three groups (young, adult, and elderly) with three subgroups for each age: doxorubicin (DG, n = 8), AET + doxorubicin (AETDG, n = 8), AET + Saline (AETSG, n = 8). Following the AET intervention, rats were anesthetized and killed to collect heart tissues in order to determine heat shock protein 70 (HSP70), superoxide dismutase (SOD), malondialdehyde (MDA), interleukin-10 (IL10), and c-reactive protein (CRP). Greater levels of SOD and lower levels of MDA were found in young as compared to elderly rats (P < 0.05). CRP was significantly lower in young as compared to adult and elderly rats, respectively (P < 0.05). IL10 also was significantly lower in young as compared to elderly rats (P < 0.05). Furthermore, lower HSP70 and SOD levels were found in DG as compared to AETDG and AETSG (P < 0.05). Conversely, MDA and CRP were significantly higher in DG as compared to other groups (P < 0.05). A significant higher IL10 was noted in DG as compared to AETDG (P < 0.05). Our findings suggest that AET prior to doxorubicin treatment could be useful in minimizing toxicity after chemotherapy with doxorubicin mainly up-regulating of antioxidant defense capacity, with greatest benefit in the young group. Future studies examining the exercise-induced changes and age-related differences following chemotherapy are necessary in human.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sin, T. K., Tam, B. T., Yung, B. Y., Yip, S. P., Chan, L. W., Wong, C. S., et al. (2015). Resveratrol protects against doxorubicin-induced cardiotoxicity in aged hearts through the SIRT1-USP7 axis. The Journal of Physiology, 593, 1887–1899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pecoraro, M., Del Pizzo, M., Marzocco, S., Sorrentino, R., Ciccarelli, M., Iaccarino, G., et al. (2016). Inflammatory mediators in a short-time mouse model of doxorubicin-induced cardiotoxicity. Toxicology and Applied Pharmacology, 293, 44–52.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, S., Liu, X., Bawa-Khalfe, T., Lu, L.-S., Lyu, Y. L., Liu, L. F., et al. (2012). Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nature Medicine, 18, 1639–1642.

    Article  PubMed  Google Scholar 

  4. Strait, J. B., & Lakatta, E. G. (2012). Aging-associated cardiovascular changes and their relationship to heart failure. Heart Failure Clinics, 8, 143–164.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Løhmann, D. J., Abrahamsson, J., Ha, S.-Y., Jónsson, Ó. G., Koskenvuo, M., Lausen, B., et al. (2016). Effect of age and body weight on toxicity and survival in pediatric acute myeloid leukemia: Results from NOPHO-AML 2004. Haematologica haematol. 2016.146175.

  6. Mustian, K. M., Sprod, L. K., Janelsins, M., Peppone, L. J., & Mohile, S. (2012). Exercise recommendations for cancer-related fatigue, cognitive impairment, sleep problems, depression, pain, anxiety, and physical dysfunction: A review. Oncology & Hematology Review, 8, 81.

    Article  Google Scholar 

  7. Umanskaya, A., Santulli, G., Xie, W., Andersson, D. C., Reiken, S. R., & Marks, A. R. (2014). Genetically enhancing mitochondrial antioxidant activity improves muscle function in aging. Proceedings of the National Academy of Sciences, 111, 15250–15255.

    Article  CAS  Google Scholar 

  8. Behnke, B. J., Ramsey, M. W., Stabley, J. N., Dominguez, J. M., Davis, R. T., McCullough, D. J., et al. (2012). Effects of aging and exercise training on skeletal muscle blood flow and resistance artery morphology. Journal of Applied Physiology, 113, 1699–1708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jones, L. W., Habel, L. A., Weltzien, E., Castillo, A., Gupta, D., Kroenke, C. H., et al. (2016). Exercise and risk of cardiovascular events in women with nonmetastatic breast cancer. Journal of Clinical Oncology, 34, 2743–2749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Scott, J. M., Lakoski, S., Mackey, J. R., Douglas, P. S., Haykowsky, M. J., & Jones, L. W. (2013). The potential role of aerobic exercise to modulate cardiotoxicity of molecularly targeted cancer therapeutics. The Oncologist, 18, 221–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lien, C.-Y., Jensen, B. T., Hydock, D. S., & Hayward, R. (2015). Short-term exercise training attenuates acute doxorubicin cardiotoxicity. Journal of Physiology and Biochemistry, 71, 669–678.

    Article  CAS  PubMed  Google Scholar 

  12. Hydock, D. S., Lien, C.-Y., Jensen, B. T., Parry, T. L., Schneider, C. M., & Hayward, R. (2012). Rehabilitative exercise in a rat model of doxorubicin cardiotoxicity. Experimental Biology and Medicine, 237, 1483–1492.

    Article  CAS  PubMed  Google Scholar 

  13. Dolinsky, V. W., Rogan, K. J., Sung, M. M., Zordoky, B. N., Haykowsky, M. J., Young, M. E., et al. (2013). Both aerobic exercise and resveratrol supplementation attenuate doxorubicin-induced cardiac injury in mice. American Journal of Physiology-Endocrinology and Metabolism: ajpendo, 00044, 02013.

    Google Scholar 

  14. Roshan, V. D., Assali, M., Moghaddam, A. H., Hosseinzadeh, M., & Myers, J. (2011). Exercise training and antioxidants effects on rat heart tissue exposed to lead acetate. International Journal of Toxicology, 30, 190–196.

    Article  CAS  PubMed  Google Scholar 

  15. Ascensão, A., Magalhães, J., Soares, J., Ferreira, R., Neuparth, M., Marques, F., et al. (2006). Endurance exercise training attenuates morphological signs of cardiac muscle damage induced by doxorubicin in male mice. Basic and Applied Myology, 16, 27–35.

    Google Scholar 

  16. Desai, V. G., Herman, E. H., Moland, C. L., Branham, W. S., Lewis, S. M., Davis, K. J., et al. (2013). Development of doxorubicin-induced chronic cardiotoxicity in the B6C3F 1 mouse model. Toxicology and Applied Pharmacology, 266, 109–121.

    Article  CAS  PubMed  Google Scholar 

  17. Ichikawa, Y., Ghanefar, M., Bayeva, M., Wu, R., Khechaduri, A., Prasad, S. V. N., et al. (2014). Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. The Journal of Clinical Investigation, 124, 617–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Saad, S. Y., Najjar, T. A., & Alashari, M. (2004). Cardiotoxicity of doxorubicin/paclitaxel combination in rats: Effect of sequence and timing of administration. Journal of Biochemical and Molecular Toxicology, 18, 78–86.

    Article  CAS  PubMed  Google Scholar 

  19. Octavia, Y., Tocchetti, C. G., Gabrielson, K. L., Janssens, S., Crijns, H. J., & Moens, A. L. (2012). Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. Journal of Molecular and Cellular Cardiology, 52, 1213–1225.

    Article  CAS  PubMed  Google Scholar 

  20. Accordino, M. K., Neugut, A. I., & Hershman, D. L. (2014). Cardiac effects of anticancer therapy in the elderly. Journal of Clinical Oncology, 32, 2654–2661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kongsted, P., Svane, I. M., Lindberg, H., & Sengeløv, L. (2016). Predictors of chemotherapy-induced toxicity and treatment outcomes in elderly versus younger patients with metastatic castration-resistant prostate cancer. Clinical Genitourinary Cancer, 14, 559–568.

    Article  Google Scholar 

  22. Gupta, A. A., Anderson, J. R., Pappo, A. S., Spunt, S. L., Dasgupta, R., Indelicato, D. J., et al. (2012). Patterns of chemotherapy-induced toxicities in younger children and adolescents with rhabdomyosarcoma. Cancer, 118, 1130–1137.

    Article  CAS  PubMed  Google Scholar 

  23. Wu, J., Xia, S., Kalionis, B., Wan, W., & Sun, T. (2014). The role of oxidative stress and inflammation in cardiovascular aging. BioMed Research International. doi:10.1155/2014/615312.

    Google Scholar 

  24. Petersen, K., & Smith, C. (2016). Ageing-associated oxidative stress and inflammation are alleviated by products from grapes. Oxidative Medicine and Cellular Longevity. doi:10.1155/2016/6236309.

    PubMed  PubMed Central  Google Scholar 

  25. Ramesh, T., Yoo, S.-K., Kim, S.-W., Hwang, S.-Y., Sohn, S.-H., Kim, I.-W., et al. (2012). Cordycepin (3′-deoxyadenosine) attenuates age-related oxidative stress and ameliorates antioxidant capacity in rats. Experimental Gerontology, 47, 979–987.

    Article  CAS  PubMed  Google Scholar 

  26. Fumoleau, P., Roche, H., Kerbrat, P., Bonneterre, J., Romestaing, P., Fargeot, P., et al. (2006). Long-term cardiac toxicity after adjuvant epirubicin-based chemotherapy in early breast cancer: French Adjuvant Study Group results. Annals of Oncology, 17, 85–92.

    Article  CAS  PubMed  Google Scholar 

  27. Muss, H. B., Berry, D. A., Cirrincione, C., Budman, D. R., Henderson, I. C., Citron, M. L., et al. (2007). Toxicity of older and younger patients treated with adjuvant chemotherapy for node-positive breast cancer: The Cancer and Leukemia Group B Experience. Journal of Clinical Oncology, 25, 3699–3704.

    Article  CAS  PubMed  Google Scholar 

  28. Chicco, A. J., Schneider, C. M., & Hayward, R. (2006). Exercise training attenuates acute doxorubicin-induced cardiac dysfunction. Journal of Cardiovascular Pharmacology, 47, 182–189.

    Article  CAS  PubMed  Google Scholar 

  29. Chicco, A. J., Hydock, D. S., Schneider, C. M., & Hayward, R. (2006). Low-intensity exercise training during doxorubicin treatment protects against cardiotoxicity. Journal of Applied Physiology, 100, 519–527.

    Article  CAS  PubMed  Google Scholar 

  30. Scott, J. M., Khakoo, A., Mackey, J. R., Haykowsky, M. J., Douglas, P. S., & Jones, L. W. (2011). Modulation of anthracycline-induced cardiotoxicity by aerobic exercise in breast cancer current evidence and underlying mechanisms. Circulation, 124, 642–650.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Campia, U., & Barac, A. (2016). Exercise and aerobic fitness to reduce cancer-related cardiovascular toxicity. Current Treatment Options in Cardiovascular Medicine, 18, 1–15.

    Article  Google Scholar 

  32. Cormie, P., Galvão, D. A., Spry, N., Joseph, D., Chee, R., Taaffe, D. R., et al. (2015). Can supervised exercise prevent treatment toxicity in patients with prostate cancer initiating androgen-deprivation therapy: A randomised controlled trial. BJU International, 115, 256–266.

    Article  PubMed  Google Scholar 

  33. Kapur, G., Windsor, P., & MC COWAN, C. (2010). The effect of aerobic exercise on treatment-related acute toxicity in men receiving radical external beam radiotherapy for localised prostate cancer. European Journal of Cancer Care, 19, 643–647.

    Article  CAS  PubMed  Google Scholar 

  34. Iyalomhe, O., Chen, Y., Allard, J., Ntekim, O., Johnson, S., Bond, V., et al. (2015). A standardized randomized 6-month aerobic exercise-training down-regulated pro-inflammatory genes, but up-regulated anti-inflammatory, neuron survival and axon growth-related genes. Experimental Gerontology, 69, 159–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Roh, H.-T., & So, W.-Y. (2016). The effects of aerobic exercise training on oxidant-antioxidant balance, neurotrophic factor levels, and blood–brain barrier function in obese and non-obese men. Journal of Sport and Health Science. doi:10.1016/j.jshs.2016.07.006.

    Google Scholar 

  36. Dias, D., Bernardes, N., Brito, J., Conti, F., Irigoyen, M. C., & De Angelis, K. (2014). Aerobic exercise training decreased oxidative stress in aged females rats after ovarian hormones deprivation (706.11). The FASEB Journal, 28(706), 711.

    Google Scholar 

  37. Kanter, M., Hamlin, R., Unverferth, D., Davis, H., & Merola, A. (1985). Effect of exercise training on antioxidant enzymes and cardiotoxicity of doxorubicin. Journal of Applied Physiology, 59, 1298–1303.

    Article  CAS  PubMed  Google Scholar 

  38. Gleeson, M., Bishop, N. C., Stensel, D. J., Lindley, M. R., Mastana, S. S., & Nimmo, M. A. (2011). The anti-inflammatory effects of exercise: Mechanisms and implications for the prevention and treatment of disease. Nature Reviews Immunology, 11, 607–615.

    Article  CAS  PubMed  Google Scholar 

  39. Jones, L. W., Eves, N. D., Haykowsky, M., Freedland, S. J., & Mackey, J. R. (2009). Exercise intolerance in cancer and the role of exercise therapy to reverse dysfunction. The Lancet Oncology, 10, 598–605.

    Article  PubMed  Google Scholar 

  40. Barnes, D. E., & Lindahl, T. (2004). Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annual Review of Genetics, 38, 445–476.

    Article  CAS  PubMed  Google Scholar 

  41. Chanchaeva, E., & Aizman, R. (2012). Age-related changes in blood plasma antioxidant activity in population of the southern Altai. Journal of Evolutionary Biochemistry and Physiology, 48, 152–154.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Christopher West (University of British Columbia) for his helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valiollah Dabidi Roshan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

There is no funding related to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadian, M., Dabidi Roshan, V. Modulatory Effect of Aerobic Exercise Training on Doxorubicin-Induced Cardiotoxicity in Rats with Different Ages. Cardiovasc Toxicol 18, 33–42 (2018). https://doi.org/10.1007/s12012-017-9411-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-017-9411-5

Keywords

Navigation