Skip to main content

Advertisement

Log in

Apigenin Attenuates β-Receptor-Stimulated Myocardial Injury Via Safeguarding Cardiac Functions and Escalation of Antioxidant Defence System

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Apigenin (AP) is a flavone in dietary flavonoids reported as strong antioxidant and elite modulator of PPARγ. The current study evaluated the consequence of AP in isoproterenol (ISO)-induced oxidative stress and myocardial infarction during β-adrenergic receptor stimulus in rats by persistent hemodynamic, biochemical and histopathological changes. Rats received AP (25, 50 and 75 mg/kg/day) or vehicle i.p. for 14 days and ISO (100 mg/kg, s.c.) on 13th and 14th days for initiation of cardiotoxicity. ISO-treated rats showed evidence of significant dwindle in systolic and diastolic arterial pressures, maximal positive rate of developed left ventricular pressure. In totting up, a noteworthy diminution in activities of creatine kinase-MB isoenzyme, reduced glutathione, superoxide dismutase, catalase and level along with rise in malondialdehyde content were observed. The shielding function of AP on isoproterenol-induced myocardial damage was observed by attenuating all the endogenous parameters and the membrane-bound enzymes. It was confirmed by histopathological examinations. The effect of AP at the doses of 50 and 75 mg/kg showed added apparent than at the dose of 25 mg/kg. Current study thus provides confirmation for protective effects of AP on myocardium in experimentally induced myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mei, Y., Thompson, M. D., & Cohen, R. A. (2015). Autophagy and oxidative stress in cardiovascular diseases. Biochimica et Biophysica Acta, 1852(2), 243–251.

    Article  PubMed  CAS  Google Scholar 

  2. Zheng, W., Antonini, J. M., Lin, Y. C., et al. (2015). Cardiovascular effects in rats after intratracheal instillation of metal welding particles. Inhalational Toxicology, 27(1), 45–53.

    Article  CAS  Google Scholar 

  3. Adaramoye, O. A., & Lawal, S. O. (2015). Kolaviron, a biflavonoid fraction from Garcinia kola, protects against isoproterenol-induced injury by mitigating cardiac dysfunction and oxidative stress in rats. Journal of Basic and Clinical Physiology and Pharmacology, 26(1), 65–72.

    Article  PubMed  CAS  Google Scholar 

  4. Caldas, F. R. L., Leite, I. M. R., Filgueiras, A. B. T., de Figueiredo Júnior, I. L., de Sousa, T. A. G. M., Martins, P. R., & Facundo, H. D. T. F. (2015). Mitochondrial ATP-sensitive potassium channel opening inhibits isoproterenol-induced cardiac hypertrophy by preventing oxidative damage. Journal of Cardiovascular Pharmacology, 65(4), 393–397.

    Article  CAS  Google Scholar 

  5. Christiansen, L. B., Dela, F., Koch, J., Hansen, C. N., Leifsson, P. S., & Yokota, T. (2015). Impaired cardiac mitochondrial oxidative phosphorylation and enhanced mitochondrial oxidative stress in feline hypertrophic cardiomyopathy. American Journal of Physiology-Heart and Circulatory Physiology, 308(10), H1237–H1247.

    Article  PubMed  CAS  Google Scholar 

  6. Guo, Z., Kozlov, S., Lavin, M. F., Person, M. D., & Paull, T. T. (2010). ATM activation by oxidative stress. Science, 330(6003), 517–521.

    Article  PubMed  CAS  Google Scholar 

  7. Goyal, S., Bharti, S., Sahoo, K. C., Sharma, A. K., & Arya, D. S. (2011). Valsartan, an angiotensin II receptor blocker, attenuates cardiac dysfunction and oxidative stress in isoproterenol-induced cardiotoxicity. Cardiovascular Toxicology, 11(2), 148–156.

    Article  PubMed  CAS  Google Scholar 

  8. Zeng, P., Liu, B., Wang, Q., Fan, Q., Diao, J. X., Tang, J., et al. (2015). Apigenin attenuates atherogenesis through inducing macrophage apoptosis via inhibition of AKT Ser473 phosphorylation and downregulation of plasminogen activator inhibitor-2. Oxidative Medicine and Cellular Longevity, 2015, 1–12.

    Google Scholar 

  9. Hirsh, J., Fuster, V., Ansell, J., & Halperin, J. L. (2003). American Heart Association/American College of Cardiology Foundation guide to warfarin therapy1. Journal of the American College of Cardiology, 41(9), 1633–1652.

    Article  PubMed  CAS  Google Scholar 

  10. Rona, G. (1985). Catecholamine cardiotoxicity. Journal of Molecular and Cellular Cardiology, 17(4), 291–306.

    Article  PubMed  CAS  Google Scholar 

  11. Mukherjee, D., Ghosh, A. K., Dutta, M., Mitra, E., Mallick, S., Saha, B., & Bandyopadhyay, D. (2015). Mechanisms of isoproterenol-induced cardiac mitochondrial damage: protective actions of melatonin. Journal of Pineal Research, 58(3), 275–290.

    Article  PubMed  CAS  Google Scholar 

  12. Vazan, R., & Ravingerova, T. (2015). Protective effect of melatonin against myocardial injury induced by epinephrine. Journal of Physiology and Biochemistry, 71(1), 43–49.

    Article  PubMed  CAS  Google Scholar 

  13. Ojha, S., Azimullah, S., Mohanraj, R., Sharma, C., Yasin, J., Arya, D. S., & Adem, A. (2015). Thymoquinone protects against myocardial ischemic injury by mitigating oxidative stress and inflammation. Evidence-Based Complementary and Alternative Medicine, 501, 629–636.

    Google Scholar 

  14. Zhou, R., Xu, Q., Zheng, P., Yan, L., Zheng, J., & Dai, G. (2008). Cardioprotective effect of fluvastatin on isoproterenol-induced myocardial infarction in rat. European Journal of Pharmacology, 586(1), 244–250.

    Article  PubMed  CAS  Google Scholar 

  15. Zhu, L., Wei, T., Chang, X., He, H., Gao, J., Wen, Z., et al. (2015). Effects of salidroside on myocardial Injury in vivo in vitro via Regulation of Nox/NF-κB/AP1 Pathway. Inflammation, 38(4), 1589–1598.

    Article  PubMed  CAS  Google Scholar 

  16. Rani, N., Bharti, S., Bhatia, J., Tomar, A., Nag, T. C., Ray, R., & Arya, D. S. (2015). Inhibition of TGF-β by a novel PPAR-γ agonist, chrysin, salvages β-receptor stimulated myocardial injury in rats through MAPKs-dependent mechanism. Nutrition and Metabolism, 12(1), 11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Chen, K., & Keaney, J. F. (2012). Evolving concepts of oxidative stress and reactive oxygen species in cardiovascular disease. Current Atherosclerosis Reports, 14, 476–483.

    Article  PubMed  CAS  Google Scholar 

  18. Dianita, R., Jantan, I., Amran, A. Z., & Jalil, J. (2015). Protective Effects of Labisia pumila var. alata on biochemical and histopathological alterations of cardiac muscle cells in isoproterenol-induced myocardial infarction rats. Molecules, 20(3), 4746–4763.

    Article  PubMed  CAS  Google Scholar 

  19. Mnafgui, K., Hajji, R., Derbali, F., Khlif, I., Kraiem, F., Ellefi, H., et al. (2015). Protective effect of hydroxytyrosol against cardiac remodeling after isoproterenol-induced myocardial infarction in rat. Cardiovascular Toxicology. doi:10.1007/s12012-015-9323-1.

    PubMed  Google Scholar 

  20. Mahmood, T., Siddiqui, H. H., Dixit, R., Bagga, P., & Hussain, S. (2015). Protective effect of Bombyx mori l cocoon (abresham) and its formulations against isoproterenol-induced cardiac damage. Tropical Journal of Pharmaceutical Research, 14(1), 63–72.

    Article  Google Scholar 

  21. Panda, S. (2015). Butanolic fraction of Moringa oleifera Lam.(Moringaceae) attenuates isoprotrenol–induced cardiac necrosis and oxidative stress in rats. EXCLI Journal, 14, 64–74.

    PubMed  PubMed Central  Google Scholar 

  22. Devika, P. T., & Prince, P. S. M. (2008). Protective effect of (−)-epigallocatechin-gallate (EGCG) on lipid peroxide metabolism in isoproterenol induced myocardial infarction in male Wistar rats: A histopathological study. Biomedicine and Pharmacotherapy, 62(10), 701–708.

    Article  PubMed  CAS  Google Scholar 

  23. Arango, D., Morohashi, K., Yilmaz, A., Kuramochi, K., Parihar, A., Brahimaj, B., et al. (2013). Molecular basis for the action of a dietary flavonoid revealed by the comprehensive identification of apigenin human targets. Proceedings of the National Academy of Sciences, 110(24), E2153–E2162.

    Article  Google Scholar 

  24. Manach, C., Scalbert, A., Morand, C., Remesy, C., & Jimenez, L. (2004). Polyphenols: food sources and bioavailability. American Journal of Clinical Nutrition, 79, 727–747.

    PubMed  CAS  Google Scholar 

  25. Clere, N., Faure, S., Carmen Martinez, M., & Andriantsitohaina, R. (2011). Anticancer properties of flavonoids: roles in various stages of carcinogenesis. Cardiovascular & Hematological Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Cardiovascular & Hematological Agents), 9(2), 62–77.

    Article  CAS  Google Scholar 

  26. Wei, H., Tye, L., Bresnick, E., & Birt, D. F. (1990). Inhibitory effect of apigenin, a plant flavonoid, on epidermal ornithine decarboxylase and skin tumor promotion in mice. Cancer Research, 50(3), 499–502.

    PubMed  CAS  Google Scholar 

  27. Shukla, S., & Gupta, S. (2010). Apigenin: a promising molecule for cancer prevention. Pharmaceutical Research, 27(6), 962–978.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Mascaraque, C., Gonzalez, R., Suárez, M. D., Zarzuelo, A., Sanchez de Medina, F., & Martinez-Augustin, O. (2015). Intestinal anti-inflammatory activity of apigenin K in two rat colitis models induced by trinitrobenzenesulfonic acid and dextran sulphate sodium. British Journal of Nutrition, 113(04), 618–626.

    Article  PubMed  CAS  Google Scholar 

  29. Li, R. J., He, K. L., Li, X., Wang, L. L., Liu, C. L., & He, Y. Y. (2015). Salubrinal protects cardiomyocytes against apoptosis in a rat myocardial infarction model via suppressing the dephosphorylation of eukaryotic translation initiation factor 2α. Molecular Medicine Reports, 12(1), 1043–1049.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Wright, J. P. E., Spencer, J. A., & Lovegrove, J. M. (2013). Flavonoid inhibitory pharmacodynamics on platelet function in physiological environments. Food and Function, 4, 1803–1810.

    Article  PubMed  CAS  Google Scholar 

  31. Chunhua, L., Xiuqiong, L., Donglan, F., et al. (2013). Apigenin upregulates transgelin and inhibits invasion and migration of colorectal cancer through decreased phosphorylation of AKT. Journal of Nutritional Biochemistry, 24, 1766–1775.

    Article  PubMed  CAS  Google Scholar 

  32. Chen, S., Zheng, S., Liu, Z., Tang, C., Zhao, B., Du, J., et al. (2015). Endogenous sulfur dioxide protects against oleic acid-induced acute lung injury in association with inhibition of oxidative stress in rats. Laboratory Investigation, 95, 142–156.

    Article  PubMed  CAS  Google Scholar 

  33. Touyz, R. M., & Briones, A. M. (2011). Reactive oxygen species and vascular biology: Implications in human hypertension. Hypertension Research, 34, 5–14.

    Article  PubMed  CAS  Google Scholar 

  34. Armitage, M. E., La, M., Schmidt, H. H. W., et al. (2010). Diagnosis and individual treatment of cardiovascular diseases: Targeting vascular oxidative stress. Expert in Review of Clinical Pharmacology, 3, 639–648.

    Article  Google Scholar 

  35. Vilela, D., Castañeda, R., González, M. C., Mendoza, S., & Escarpa, A. (2015). Fast and reliable determination of antioxidant capacity based on the formation of gold nanoparticles. Microchimica Acta, 182(1–2), 105–111.

    Article  CAS  Google Scholar 

  36. Agatonovic-Kustrin, S., Ortakand, D. B., Morton, D. W., & Yusof, A. P. (2015). Rapid evaluation and comparison of natural products and antioxidant activity in calendula, feverfew, and German chamomile extracts. Journal of Chromatography A, 1385, 103–110.

    Article  PubMed  CAS  Google Scholar 

  37. Desoky, N., El-Bassossy, H. M., Fahmy, A., & Azhar, A. (2015). Apigenin restores normal vascular reactivity in diabetic rats via protein kinase C inhibition. Zagazig University Medical Journal, 20(1), 20–29.

    Google Scholar 

  38. Park, M. H., & Kim, J. G. (2015). Low-dose UV-C irradiation reduces the microbial population and preserves antioxidant levels in peeled garlic (Allium sativum L.) during storage. Postharvest Biology and Technology, 100, 109–112.

    Article  CAS  Google Scholar 

  39. Monsalve, F. A., Pyarasani, R. D., Delgado-Lopez, F., & Moore-Carrasco, R. (2013). Peroxisome proliferator-activated receptor targets for the treatment of metabolic diseases. Mediators of Inflammation, 2013, 1–18.

    Article  CAS  Google Scholar 

  40. Liang, Yu-Chih, Shu-Huei, Tsai, De-Cheng, Tsai, Shoei-Yn, Lin-Shiau, & Jen-Kun, Lin. (2001). Suppression of inducible cyclooxygenase and nitric oxide synthase through activation of peroxisome proliferator-activated receptor-γ by flavonoids in mouse macrophages. FEBS Letters, 496(1), 12–18.

    Article  PubMed  CAS  Google Scholar 

  41. Kim, J. H., Song, J., Park, K. W. (2015). The multifaceted factor peroxisome proliferator-activated receptor γ (PPARγ) in metabolism, immunity, and cancer.Archives of Pharmacal Research, 38(3), 302–312.

    Article  PubMed  CAS  Google Scholar 

  42. Garretson, J. T., Teubner, B. J., Grove, K. L., Vazdarjanova, A., Ryu, V., & Bartness, T. J. (2015). Peroxisome proliferator-activated receptor γ controls ingestive behavior, agouti-related protein, and neuropeptide Y mRNA in the arcuate hypothalamus. The Journal of Neuroscience, 35(11), 4571–4581.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Rangwala, S. M., & Lazar, M. A. (2004). Peroxisome proliferator-activated receptor γ in diabetes and metabolism. Trends in Pharmacological Sciences, 25(6), 331–336.

    Article  PubMed  CAS  Google Scholar 

  44. Kim, M. A., Kang, K., Lee, H. J., Kim, M., Kim, C. Y., & Nho, C. W. (2014). Apigenin isolated from Daphne genkwa Siebold et Zucc. Inhibits 3T3-L1 preadipocyte differentiation through a modulation of mitotic clonal expansion. Life Sciences, 101(1), 64–72.

    Article  PubMed  CAS  Google Scholar 

  45. Musa, H. H., Ahmed, A. A., Musa, T. H., & Fedail, J. S. (2015). Gum arabic down-regulate PPAR-γ and SCD mRNA expression in mice. Polish Annals of Medicine, 22(1), 11–17.

    Article  Google Scholar 

  46. Liang, Y. C., Tsai, S. H., Tsai, D. C., Lin-Shiau, S. Y., & Lin, J. K. (2001). Suppression of inducible cyclooxygenase and nitric oxide synthase through activation of peroxisome proliferator-activated receptor-γ by flavonoids in mouse macrophages. FEBS Letters, 496(1), 12–18.

    Article  PubMed  CAS  Google Scholar 

  47. Aswar, U., Mahajan, U., Nerurkar, G., & Aswar, M. (2013). Amelioration of cardiac hypertrophy induced by abdominal aortic banding in ferulic acid treated rats. Biomedicine & Aging Pathology, 3(4), 209–217.

    Article  Google Scholar 

  48. Ojha, S. K., Nandave, M., Arora, S., Narang, R., Dinda, A. K., & Arya, D. S. (2008). Chronic administration of Tribulus terrestris Linn extract improves cardiac function and attenuates myocardial infarction in rats. International Journal of Pharmacology, 4, 1–10.

    Article  Google Scholar 

  49. Maron, M. S., Depierre, J. W., & Manmerik, B. (1979). Level of glutathione, glutathione reductase and glutathione-S-transferase activity in rat lung and liver. Biochimica Biophysica Acta, 82, 67–78.

    Article  Google Scholar 

  50. Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay of lipid peroxide in animal tissue by thiobarbituric acid reaction. Annuls of Biochemistry, 95, 351–358.

    Article  CAS  Google Scholar 

  51. Aebi, H. (1974). Catalase. In H. E. Bergameyer (Ed.), Methods of enzymatic analysis (pp. 673–685). New York: Academic Press Inc.

    Chapter  Google Scholar 

  52. Misra, H. P., & Fridovich, I. (1978). Inhibition of superoxide dismutases by azide. Archives of Biochemistry and Biophysics, 189(2), 317–322.

    Article  PubMed  CAS  Google Scholar 

  53. Lamprecht, W., Stan, F., Weisser, H., & Heinz, F. (1974). Determination of creatine phosphate and adenosine triphosphate with creatine kinase. In H. U. Bergmeyer (Ed.), Methods of enzymatic analysis (pp. 1776–1778). New York: Academic Press.

    Google Scholar 

  54. Cabaud, P., & Wroblewski, G. (1958). Calorimetric measurements of lactic dehydrogenase activity of body fluids. American Journal of Clinical Pathology, 3, 234–236.

    Article  Google Scholar 

  55. Hassan, M. Q., Akhtar, M. S., Akhtar, M., Ali, J., Haque, S. E., Najmi, A. K. (2015). Edaravone protects rats against oxidative stress and apoptosis in experimentally induced myocardial infarction: Biochemical and Ultrastructural Evidences. Redox Report. doi:10.1179/1351000215Y.0000000011.

    PubMed  Google Scholar 

  56. Dianita, R., Jantan, I., Amran, A. Z., & Jalil, J. (2015). Protective effects of Labisia pumila var. alata on biochemical and histopathological alterations of cardiac muscle cells in isoproterenol-induced myocardial infarction rats. Molecules, 20(3), 4746–4763.

    Article  PubMed  CAS  Google Scholar 

  57. Taghavi, S., Sharp, T. E., Duran, J. M., Makarewich, C. A., Berretta, R. M., Starosta, T., Houser, S. R. (2015). Autologous c‐Kit + mesenchymal stem cell injections provide superior therapeutic benefit as compared to c‐Kit + cardiac‐derived stem cells in a feline model of isoproterenol‐induced cardiomyopathy. Clinical and Translational Science, 1–8.

  58. Carll, A. P., Haykal-Coates, N., Winsett, D. W., Hazari, M. S., Ledbetter, A. D., Richards, J. H., & Farraj, A. K. (2015). Cardiomyopathy confers susceptibility to particulate matter-induced oxidative stress, vagal dominance, arrhythmia and pulmonary inflammation in heart failure-prone rats. Inhalation Toxicology, 27(2), 100–112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Chang, C. Y., Lin, T. Y., Lu, C. W., Wang, C. C., Wang, Y. C., Chou, S. S. P., et al. (2015). Apigenin, a natural flavonoid, inhibits glutamate release in the rat hippocampus. European Journal of Pharmacology, 762, 72–81.

    Article  PubMed  CAS  Google Scholar 

  60. Mnafgui, K., Hajji, R., Derbali, F., Khlif, I., Kraiem, F., Ellefi, H., et al. (2015). Protective effect of hydroxytyrosol against cardiac remodeling after isoproterenol-induced myocardial infarction in rat. Cardiovascular Toxicology. doi:10.1007/s12012-015-9323-1.

    PubMed  Google Scholar 

  61. Goyal, S. N., Bharti, S., Bhatia, J., Nag, T. C., Ray, R., & Arya, D. S. (2011). Telmisartan, a dual ARB/partial PPAR-γ agonist, protects myocardium from ischaemic reperfusion injury in experimental diabetes. Diabetes, Obesity and Metabolism, 13(6), 533–541.

    Article  PubMed  CAS  Google Scholar 

  62. Testai, L., Martelli, A., Cristofaro, M., Breschi, M. C., & Calderone, V. (2013). Cardioprotective effects of different flavonoids against myocardial ischaemia/reperfusion injury in Langendorff-perfused rat hearts. Journal of Pharmacy and Pharmacology, 65(5), 750–756.

    Article  PubMed  CAS  Google Scholar 

  63. Hu, J., Li, Z., Xu, L. T., Sun, A. J., Fu, X. Y., Zhang, L., et al. (2014). Protective effect of apigenin on ischemia/reperfusion injury of the isolated rat heart. Cardiovascular toxicology, 15(3), 241–249.

    Article  CAS  Google Scholar 

  64. Verbeek, R., Plomp, A. C., van Tol, E. A., & van Noort, J. M. (2004). The flavones luteolin and apigenin inhibit in vitro antigen-specific proliferation and interferon-gamma production by murine and human autoimmune T cells. Biochemical Pharmacology, 68(4), 621–629.

    Article  PubMed  CAS  Google Scholar 

  65. Huk, I., Brovkovych, V., Nanobash, V. J., Weigel, G., Neumayer, C., & Partyka, L. (1998). Bioflavonoid quercetin scavenges superoxide and increases nitric oxide concentration in ischaemia-reperfusion injury: an experimental study. British Journal of Surgery, 85, 1080–1085.

    Article  PubMed  CAS  Google Scholar 

  66. Wang, C. N., Chi, C. W., Lin, Y. L., Chen, C. F., & Shiao, Y. J. (2001). The neuroprotective effects of phytoestrogens on amyloid beta protein-induced toxicity are mediated by abrogating the activation of caspase cascade in rat cortical neurons. Journal of Biology and Chemistry, 276, 5287–5295.

    Article  CAS  Google Scholar 

  67. Jin, B. H., Qian, L. B., Chen, S., Li, J., Wang, H. P., & Bruce, I. C. (2009). Apigenin protects endothelium-dependent relaxation of rat aorta against oxidative stress. European Journal of Pharmacology, 616, 200–205.

    Article  PubMed  CAS  Google Scholar 

  68. Yamagata, K., Tagawa, C., Matsufuji, H., & Chino, M. (2012). Dietary apigenin regulates high glucose and hypoxic reoxygenation-induced reductions in apelin expression in human endothelial cells. Journal of Nutritional Biochemistry, 23, 929–936.

    Article  PubMed  CAS  Google Scholar 

  69. Ito, H., Nakano, A., Kinoshita, M., & Matsumori, A. (2003). Pioglitazone, a peroxisome proliferator-activated receptor-gamma agonist, attenuates myocardial ischemia/reperfusion injury in a rat model. Laboratory Investigation, 83, 1715–1721.

    Article  PubMed  CAS  Google Scholar 

  70. Yue, T. L., Chen, J., Bao, W., Narayanan, P. K., Bril, A., Jiang, W., et al. (2001). In vivo myocardial protection from ischemia/reperfusion injury by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. Circulation, 104, 2588–2594.

    Article  CAS  Google Scholar 

  71. Yuan, Z., Liu, Y., Liu, Y., Zhang, J., Kishimoto, C., Wang, Y., et al. (2003). Peroxisome proliferation-activated receptor-gamma ligands ameliorate experimental autoimmune myocarditis. Cardiovascular Research, 59, 685–694.

    Article  PubMed  CAS  Google Scholar 

  72. Sakai, S., Miyauchi, T., Irukayama-Tomobe, Y., Ogata, T., Goto, K., & Yamaguchi, I. (2002). Peroxisome proliferator-activated receptor-gamma activators inhibit endothelin-1-related cardiac hypertrophy in rats. Clinical Science, 103, 16S–20S.

    Article  PubMed  CAS  Google Scholar 

  73. Zhang, T., Yan, T., Du, J., Wang, S., & Yang, H. (2015). Apigenin attenuates heart injury in lipopolysaccharide-induced endotoxemic model by suppressing sphingosine kinase 1/sphingosine 1-phosphate signaling pathway. Chemico-Biological Interactions, 233, 46–55.

    Article  PubMed  CAS  Google Scholar 

  74. Tocchetti, C. G., Leppo, M., Wang, Y., Weiss, R. G., & Paolocci, N. (2015). Cardiac over-expression of creatine kinase improves function in failing myocytes. Biophysical Journal, 108(2), 595a–600a.

    Article  Google Scholar 

  75. Li, R., Zhao, D., Qu, R., Fu, Q., & Ma, S. (2015). The effects of apigenin on lipopolysaccharide-induced depressive-like behavior in mice. Neuroscience Letters, 594, 17–22.

    Article  PubMed  CAS  Google Scholar 

  76. Golikov, P. A., Polumiskov, V. I. V., Davydov, B. V., Karev, V. A., Bashkatov, V. G., Belezerov, G. E., et al. (1989). Lipid peroxidation and the major factor of its activation in patients with myocardial infarction. Kardiologiia, 29, 53–59.

    PubMed  CAS  Google Scholar 

  77. Halliwell, B., & Chirico, S. (1993). Lipid peroxidation: its mechanism, measurement, and significance. The American Journal of Clinical Nutrition, 57(5), 715S–724S.

    PubMed  CAS  Google Scholar 

  78. Meeran, M. F. N., Jagadeesh, G. S., & Selvaraj, P. (2015). Thymol attenuates inflammation in isoproterenol induced myocardial infarcted rats by inhibiting the release of lysosomal enzymes and downregulating the expressions of proinflammatory cytokines. European Journal of Pharmacology, 754, 153–161.

    Article  CAS  Google Scholar 

  79. Rajadurai, M., & Prince, P. S. M. (2006). Preventive effect of naringin on lipid peroxides and antioxidants in isoproterenol-induced cardiotoxicity in Wistar rats: biochemical and histopathological evidences. Toxicology, 228(2), 259–268.

    Article  PubMed  CAS  Google Scholar 

  80. Atoui, A. K., Mansouri, A., Boskou, G., & Kefalas, P. (2005). Tea and herbal infusions: their antioxidant activity and phenolic profile. Food Chemistry, 89(1), 27–36.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support received under Young Scientist Research Scheme (File no. SB/YS/LS-114/2013) of Science and Engineering Research Board (SERB), Department of Science and Technology, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameer N. Goyal.

Ethics declarations

Conflict of interest

The author(s) confirm that this article content has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buwa, C.C., Mahajan, U.B., Patil, C.R. et al. Apigenin Attenuates β-Receptor-Stimulated Myocardial Injury Via Safeguarding Cardiac Functions and Escalation of Antioxidant Defence System. Cardiovasc Toxicol 16, 286–297 (2016). https://doi.org/10.1007/s12012-015-9336-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-015-9336-9

Keywords

Navigation