Skip to main content
Log in

Arsenic and Benzo[a]pyrene Co-exposure Effects on MDA-MB-231 Cell Viability and Migration

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Although humans are frequently exposed to multiple pollutants simultaneously, research on their harmful effects on health has typically focused on studying each pollutant individually. Inorganic arsenic (As) and benzo[a]pyrene (BaP) are well-known pollutants with carcinogenic potential, but their co-exposure effects on breast cancer cell progression remain incompletely understood. This study aimed to assess the combined impact of BaP and As on the viability and migration of MDA-MB-231 cells. The results indicated that even at low levels, both inorganic As (0.01 μM, 0.1 μM, and 1 μM) and BaP (1 μM, 2.5 μM), individually or in combination, enhanced the viability and migration of the cells. However, the cell cycle analysis revealed no significant differences between the control group and the cells exposed to BaP and As. Specifically, exposure to BaP alone or in combination with As (As 0.01 μM + BaP 1 μM) for 24 h led to a significant increase in vimentin gene expression. Interestingly, short-term exposure to As not only did not induce EMT but also modulated the effects of BaP on vimentin gene expression. However, there were no observable changes in the expression of E-cadherin mRNA. Consequently, additional research is required to evaluate the prolonged effects of co-exposure to As and BaP on the initiation of EMT and the progression of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L et al (2018) Breast cancer development and progression: risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis 5(2):77–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, Bray F (2021) Cancer statistics for the year 2020: an overview. Int J Cancer 149(4):778–789

    Article  CAS  Google Scholar 

  3. Assi HA, Khoury KE, Dbouk H, Khalil LE, Mouhieddine TH, El Saghir NS (2013) Epidemiology and prognosis of breast cancer in young women. J Thorac Dis 5(Suppl 1):2–8

    Google Scholar 

  4. Momenimovahed Z, Salehiniya H (2019) Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer (Dove Med Press) 11:151–164

    PubMed  Google Scholar 

  5. Russo J, Russo IH (2006) The role of estrogen in the initiation of breast cancer. J Steroid Biochem Mol Biol 102(1–5):89–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sun YS, Zhao Z, Yang ZN, Xu F, Lu HJ, Zhu ZY et al (2017) Risk factors and preventions of breast cancer. Int J Biol Sci 13(11):1387–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Watkins EJ (2019) Overview of breast cancer. JAAPA 32(10):13–17

    Article  PubMed  Google Scholar 

  8. Winters S, Martin C, Murphy D, Shokar NK (2017) Breast cancer epidemiology, prevention, and screening. Prog Mol Biol Transl Sci 151:1–32

    Article  CAS  PubMed  Google Scholar 

  9. Korsh J, Shen A, Aliano K, Davenport T (2015) polycyclic aromatic hydrocarbons and breast cancer: a review of the literature. Breast Care (Basel) 10(5):316–318

    Article  PubMed  Google Scholar 

  10. Boffetta P (2006) Human cancer from environmental pollutants: the epidemiological evidence. Mutat Res 608(2):157–162

    Article  CAS  PubMed  Google Scholar 

  11. Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331(6024):1559–1564

    Article  CAS  PubMed  Google Scholar 

  12. Bergers G, Fendt S-M (2021) The metabolism of cancer cells during metastasis. Nat Rev Cancer 21(3):162–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ganesh K, Massagué J (2021) Targeting metastatic cancer. Nat Med 27(1):34–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Geiger TR, Peeper DS (2009) Metastasis mechanisms. Biochim Biophys Acta 1796(2):293–308

    CAS  PubMed  Google Scholar 

  15. Georgakopoulos-Soares I, Chartoumpekis DV, Kyriazopoulou V, Zaravinos A (2020) EMT factors and metabolic pathways in cancer. Front Oncol 10:499

    Article  PubMed  PubMed Central  Google Scholar 

  16. Babaei G, Aziz SG-G, Jaghi NZZ (2021) EMT, cancer stem cells and autophagy; the three main axes of metastasis. Biomed Pharmacother 133:110909

    Article  CAS  PubMed  Google Scholar 

  17. Brabletz T, Kalluri R, Nieto MA, Weinberg RA (2018) EMT in cancer. Nat Rev Cancer 18(2):128–134

    Article  CAS  PubMed  Google Scholar 

  18. Landrigan PJ, Fuller R, Fisher S, Suk WA, Sly P, Chiles TC, Bose-O’Reilly S (2019) Pollution and children’s health. Sci Total Environ 650:2389–2394

    Article  CAS  PubMed  Google Scholar 

  19. Bopp SK, Barouki R, Brack W, Dalla Costa S, Dorne J-LC, Drakvik PE et al (2018) Current EU research activities on combined exposure to multiple chemicals. Environ Int 120:544–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lagunas-Rangel FA, Linnea-Niemi JV, Kudłak B, Williams MJ, Jönsson J, Schiöth HB (2022) Role of the synergistic interactions of environmental pollutants in the development of cancer. GeoHealth 6(4):e2021GH000552

    Article  PubMed  PubMed Central  Google Scholar 

  21. You M, Song Y, Chen J, Liu Y, Chen W, Cen Y et al (2023) (2023) Combined exposure to benzo (a) pyrene and dibutyl phthalate aggravates pro-inflammatory macrophage polarization in spleen via pyroptosis involving cathepsin B. Sci Total Environ 881:163460

    Article  CAS  PubMed  Google Scholar 

  22. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2004) Some drinking-water disinfectants and contaminants, including arsenic. IARC Monogr Eval Carcinog Risks Hum 84:1–477

  23. Pullella K, Kotsopoulos J (2020) Arsenic exposure and breast cancer risk: a re-evaluation of the literature. Nutrients 12(11):1–17

  24. Abernathy CO, Liu YP, Longfellow D, Aposhian HV, Beck B, Fowler B et al (1999) Arsenic: health effects, mechanisms of actions, and research issues. Environ Health Perspect 107(7):593–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martínez-Castillo M, García-Montalvo EA, Arellano-Mendoza MG, Sánchez-Peña LdC, Soria Jasso LE, Izquierdo-Vega JA et al (2021) Arsenic exposure and non-carcinogenic health effects. Hum Exp Toxicol 40(12_suppl):S826–S50

    Article  PubMed  Google Scholar 

  26. Marciniak W, Matoušek T, Domchek S, Paradiso A, Patruno M, Irmejs A et al (2021) Blood arsenic levels as a marker of breast cancer risk among BRCA1 carriers. Cancers 13(13):3345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Palma-Lara I, Martínez-Castillo M, Quintana-Pérez J, Arellano-Mendoza M, Tamay-Cach F, Valenzuela-Limón O et al (2020) Arsenic exposure: a public health problem leading to several cancers. Regul Toxicol Pharmacol 110:104539

    Article  CAS  PubMed  Google Scholar 

  28. Marciniak W, Derkacz R, Muszyńska M, Baszuk P, Gronwald J, Huzarski T et al (2020) Blood arsenic levels and the risk of familial breast cancer in Poland. Int J Cancer 146(10):2721–2727

    Article  CAS  PubMed  Google Scholar 

  29. López-Carrillo L, Gamboa-Loira B, Gandolfi AJ, Cebrián ME (2020) Inorganic arsenic methylation capacity and breast cancer by immunohistochemical subtypes in northern Mexican women. Environ Res 184:109361

    Article  PubMed  Google Scholar 

  30. Amadou A, Praud D, Coudon T, Deygas F, Grassot L, Faure E et al (2021) Risk of breast cancer associated with long-term exposure to benzo [a] pyrene (BaP) air pollution: evidence from the French E3N cohort study. Environ Int 149:106399

    Article  CAS  PubMed  Google Scholar 

  31. Gao M, Zheng A, Chen L, Dang F, Liu X, Gao J (2022) Benzo (a) pyrene affects proliferation with reference to metabolic genes and ROS/HIF-1α/HO-1 signaling in A549 and MCF-7 cancer cells. Drug Chem Toxicol 45(2):741–749

    Article  CAS  PubMed  Google Scholar 

  32. Guo J, Xu Y, Ji W, Song L, Dai C, Zhan L (2015) Effects of exposure to benzo [a] pyrene on metastasis of breast cancer are mediated through ROS-ERK-MMP9 axis signaling. Toxicol Lett 234(3):201–210

    Article  CAS  PubMed  Google Scholar 

  33. Kasala ER, Bodduluru LN, Barua CC, Sriram CS, Gogoi R (2015) Benzo(a)pyrene induced lung cancer: role of dietary phytochemicals in chemoprevention. Pharmacol Rep 67(5):996–1009

    Article  CAS  PubMed  Google Scholar 

  34. Bjørklund G, Tippairote T, Rahaman MS, Aaseth J (2020) Developmental toxicity of arsenic: a drift from the classical dose–response relationship. Arch Toxicol 94(1):67–75

    Article  PubMed  Google Scholar 

  35. Wang Z (2021) Mechanisms of the synergistic lung tumorigenic effect of arsenic and benzo (a) pyrene combined-exposure. Semin Cancer Biol 76:156–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Koual M, Tomkiewicz C, Cano-Sancho G, Antignac J-P, Bats A-S, Coumoul X (2020) Environmental chemicals, breast cancer progression and drug resistance. Environ Health 19:1–25

    Article  Google Scholar 

  37. Lewandowska AM, Rudzki M, Rudzki S, Lewandowski T, Laskowska B (2018) Environmental risk factors for cancer-review paper. Ann Agric Environ Med 26(1):1–7

    Article  PubMed  Google Scholar 

  38. Reyes-Vázquez L, Hernández AJA, Calderón-Aranda ES (2020) Role of aromatase activation on sodium arsenite-induced proliferation, migration, and invasion of MDA-MB-231 and MDA-MB-453 breast cancer cell lines. Toxicol 437:152440

    Article  Google Scholar 

  39. Yang P, Xie J, Li Y, Lin H-P, Fenske W, Clementino M et al (2020) Deubiquitinase USP7-mediated MCL-1 up-regulation enhances Arsenic and Benzo (a) pyrene co-exposure-induced Cancer Stem Cell-like property and Tumorigenesis. Theranostics 10(20):9050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shim Y, Song JM (2015) Spectral overlap-free quantum dot-based determination of benzo [a] pyrene-induced cancer stem cells by concurrent monitoring of CD44, CD24 and aldehyde dehydrogenase 1. Chem Commun 51(11):2118–2121

    Article  CAS  Google Scholar 

  41. Clément F, Xu X, Donini CF, Clément A, Omarjee S, Delay E et al (2017) Long-term exposure to bisphenol A or benzo (a) pyrene alters the fate of human mammary epithelial stem cells in response to BMP2 and BMP4, by pre-activating BMP signaling. Cell Death & Differ 24(1):155–166

    Article  Google Scholar 

  42. Shadboorestan A, Tarfiei GA, Montazeri H, Sepand MR, Zangooei M, Khedri A et al (2019) Invasion and migration of MDA-MB-231 cells are inhibited by block of AhR and NFAT: role of AhR/NFAT1/β4 integrin signaling. J Appl Toxicol 39(2):375–384

    Article  CAS  PubMed  Google Scholar 

  43. Foo NP, Ko CL, Chu CY, Wang CY, So EC (2020) Huang BM (2020) Arsenic compounds activate the MAPK and caspase pathways to induce apoptosis in OEC-M1 gingival epidermal carcinoma. Oncol Rep 44(6):2701–2714

    Article  CAS  PubMed  Google Scholar 

  44. Mu YF, Chen YH, Chang MM, Chen YC, Huang BM (2019) Arsenic compounds induce apoptosis through caspase pathway activation in MA-10 Leydig tumor cells. Oncol Lett 18(1):944–954

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Jiang R, Li Y, Xu Y, Zhou Y, Pang Y, Shen L et al (2013) EMT and CSC-like properties mediated by the IKKβ/IκBα/RelA signal pathway via the transcriptional regulator, Snail, are involved in the arsenite-induced neoplastic transformation of human keratinocytes. Archiv toxicol 87:991–1000

    Article  CAS  Google Scholar 

  46. Rea M, Kimmerer G, Mittendorf S, Xiong X, Green M, Chandler D, et al (2024) A dynamic model of inorganic arsenic-induced carcinogenesis reveals an epigenetic mechanism for epithelial–mesenchymal plasticity. Environ Pollut 347:1–10

  47. Chen X, Peng H, Xiao J, Guan A, Xie B, He B, Chen Q (2017) Benzo(a)pyrene enhances the EMT-associated migration of lung adenocarcinoma A549 cells by upregulating Twist1. Oncol Rep 38(4):2141–2147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vergara-Gerónimo CA, León-Del-Rio A, Rodríguez-Dorantes M, Camacho-Carranza R, Ostrosky-Wegman P, Salazar AM (2023) Arsenic reduces the GATA3 expression associated with an increase in proliferation and migration of mammary epithelial cell line MCF-10A. Toxicol Appl Pharmacol 472:116573

    Article  PubMed  Google Scholar 

  49. Danes JM, de Abreu ALP, Kerketta R, Huang Y, Palma FR, Gantner BN et al (2020) Inorganic arsenic promotes luminal to basal transition and metastasis of breast cancer. FASEB 34(12):16034–16048

    Article  CAS  Google Scholar 

  50. Shadboorestan A, Koual M, Dairou J, Coumoul X (2023) The role of the kynurenine/AhR pathway in diseases related to metabolism and cancer. Int J Tryptophan Res 16:11786469231185102

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wang Z, Fu Y, Seno A, Bi Z, Pawar AS, Ji H, et al (2023) Tumor suppressive activity of AHR in environmental arsenic-induced carcinogenesis. Toxicol Appl Pharmacol 480:1–7

  52. Thompson ED, Burwinkel KE, Chava AK, Notch EG, Mayer GD (2010) Activity of phase I and phase II enzymes of the benzo [a] pyrene transformation pathway in zebrafish (Danio rerio) following waterborne exposure to arsenite. Comp Biochem Physiol C Toxicol Pharmacol 152(3):371–378

    Article  PubMed  Google Scholar 

  53. Vakharia DD, Liu N, Pause R, Fasco M, Bessette E, Zhang Q-Y, Kaminsky LS (2001) Polycyclic aromatic hydrocarbon/metal mixtures: effect on PAH induction of CYP1A1 in human HEPG2 cells. Drug Metab Dispos 29(7):999–1006

    CAS  PubMed  Google Scholar 

  54. Wang Z, Yang P, Xie J, Lin HP, Kumagai K, Harkema J, Yang C (2020) Arsenic and benzo[a]pyrene co-exposure acts synergistically in inducing cancer stem cell-like property and tumorigenesis by epigenetically down-regulating SOCS3 expression. Environ Int 137:105560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xie J, Yang P, Lin HP, Li Y, Clementino M, Fenske W et al (2020) Integrin α4 up-regulation activates the hedgehog pathway to promote arsenic and benzo[α]pyrene co-exposure-induced cancer stem cell-like property and tumorigenesis. Cancer Lett 493:143–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li Y, He M, Chen B, Hu B (2019) Inhibition of arsenite methylation induces synergistic genotoxicity of arsenite and benzo (a) pyrene diol epoxide in SCC-7 cells. Metallomics 11(1):176–182

    Article  CAS  PubMed  Google Scholar 

  57. Shen S, Lee J, Cullen WR, Le XC, Weinfeld M (2009) Arsenite and its mono-and dimethylated trivalent metabolites enhance the formation of benzo [a] pyrene diol epoxide− DNA adducts in xeroderma pigmentosum complementation group A cells. Chem Res Toxicol 22(2):382–390

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors of this manuscript wish to express their appreciation to Tarbiat Modares University of Medical Sciences, Tehran, Iran.

Funding

This work was supported by the Tarbiat Modares University grant to accomplish Ahmad Safari Maleki's M.Sc. thesis [Grant number 87424].

Author information

Authors and Affiliations

Authors

Contributions

Amir Shadboorestan and Mohammad Hossein Ghahremani contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by Ahmad Safari Maleki and Amir Shadboorestan. The manuscript has been written, revised, and approved by all authors involved.

Corresponding author

Correspondence to Amir Shadboorestan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maleki, A.S., Ghahremani, M.H. & Shadboorestan, A. Arsenic and Benzo[a]pyrene Co-exposure Effects on MDA-MB-231 Cell Viability and Migration. Biol Trace Elem Res (2024). https://doi.org/10.1007/s12011-024-04170-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12011-024-04170-z

Keywords

Navigation