Skip to main content
Log in

Biosynthesis Optimization of Antibacterial-Magnetic Iron Oxide Nanoparticles from Bacillus megaterium

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The occurrence of antibiotic resistance on common bacterial agents and the need to use new generations of antibiotics have led to the use of various strategies for production. Taking inspiration from nature, using bio-imitation patterns, in addition to the low cost of production, is advantageous and highly accurate. In this research, we were able to control the temperature, shake, and synthesis time of the synthesis conditions of Bacillus megaterium bacteria as a model for the synthesis of magnetic iron nanoparticles and optimize the ratio of reducing salt to bacterial regenerating agents as well as the concentration of salt to create iron oxide nanoparticles with more favorable properties and produced with more antibacterial properties. Bacterial growth was investigated by changing the incubation times of pre-culture and overnight culture in the range of the logarithmic phase. The synthesis time, salt ratio, and concentration were optimized to achieve the size, charge, colloidal stability, and magnetic and antibacterial properties of nanoparticles. The amount of the effective substance produced by the bacteria was selected by measuring the amount of the active substance synthesized using the free radical reduction (DPPH) method. With the help of DPPH, the duration of the synthesis was determined to be one week. Characterizations such as UV–vis spectroscopy, FTIR, FESEM, X-ray, and scattering optical dynamics were performed and showed that the nanoparticles synthesized with a salt concentration of 80 mM and a bacterial suspension to salt ratio of 2:1 are smaller in size and have a light scattering index, a PDI index close to 0.1, and a greater amount of reducing salt used in the reaction during one week compared to other samples. Moreover, they had more antibacterial properties than the concentration of 100 mM. As a result, better characteristics and more antibacterial properties than common antibiotics were created on E. coli and Bacillus cereus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Chart 1

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Code Availability

No custom code was used.

References

  1. Akamatsu R, Suzuki M et al (2019) Novel sequence type in Bacillus cereus strains associated with nosocomial infections and bacteremia, Japan. Emerg Infect Dis 25(5):883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Veysseyre F, Fourcade C et al (2015) Bacillus cereus infection: 57 case patients and a literature review. Med Mal Infect 45(11–12):436–440

    Article  CAS  PubMed  Google Scholar 

  3. Saif S, Tahir A et al (2016) Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials 6(11):209

    Article  PubMed  PubMed Central  Google Scholar 

  4. Atalah J, Espina G et al (2022) Advantages of using extremophilic bacteria for the biosynthesis of metallic nanoparticles and its potential for rare earth element recovery. Front Microbiol 13:855077

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yusefi M, Shameli K et al (2021) Green synthesis of Fe3O4 nanoparticles stabilized by a Garcinia mangostana fruit peel extract for hyperthermia and anticancer activities. Int J Nanomedicine 16:2515

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tan HL, Lim YC et al (2023) Plant-mediated synthesis of iron nanoparticles for environmental application: mini review. Mater Today Proc 87:64–69

    Article  CAS  Google Scholar 

  7. Mashjoor S, Yousefzadi M et al (2018) Phycosynthesis of antimicrobial Ulva prolifera-Fe3O4 Magnetic Nanoparticles. Iran J Med Microbiol 12(3):208–217

    Article  Google Scholar 

  8. Ge Y, Zhang Y et al (2009) Effect of surface charge and agglomerate degree of magnetic iron oxide nanoparticles on KB cellular uptake in vitro. Colloids Surf B Biointerfaces 73(2):294–301

    Article  CAS  PubMed  Google Scholar 

  9. Jahangirian H, Kalantari K et al (2019) A review of small molecules and drug delivery applications using gold and iron nanoparticles. Int J Nanomedicine 14:1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xia S, Li P et al (2014) In situ precipitation: a novel approach for preparation of iron-oxide magnetoliposomes. Int J Nanomedicine 9:2607

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kafali M, Şahinoğlu OB et al (2023) Antibacterial properties and osteoblast interactions of microfluidically synthesized chitosan–SPION composite nanoparticles. J Biomed Mater Res A 111(11):1662–1677

    Article  CAS  PubMed  Google Scholar 

  12. Demirezen DA, Yıldız YS et al (2019) Green synthesis and characterization of iron oxide nanoparticles using Ficus carica (common fig) dried fruit extract. J Biosci Bioeng 127(2):241–245

    Article  Google Scholar 

  13. Pandey R, Yang FS et al (2023) Comparing the variants of iron oxide nanoparticle-mediated delivery of miRNA34a for efficiency in silencing of PD-L1 genes in cancer cells. Pharmaceutics 15(1):215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Devi HS, Boda MA et al (2019) Green synthesis of iron oxide nanoparticles using Platanus orientalis leaf extract for antifungal activity. Green Process Synth 8(1):38–45

    Article  CAS  Google Scholar 

  15. Kebede A, Gholap AV et al (2011) Impact of laser energy on synthesis of iron oxide nanoparticles in liquid medium. World J Nano Sci Eng 1(4):89–92

    Article  CAS  Google Scholar 

  16. Ogbezode JE, Ezealigo US et al (2023) A narrative review of the synthesis, characterization, and applications of iron oxide nanoparticles. Discover Nano 18(1):125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Spoială A, Ilie CI et al (2023) Smart magnetic drug delivery systems for the treatment of cancer. Nanomaterials 13(5):876

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rodriguez-Martinez JA  (2010) Improving the in vitro stability of proteins by PEGylation (Doctoral dissertation, University of Puerto Rico, Rio Piedras (Puerto Rico))

  19. Dubey SP et al (2010) Lahtinen, Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids Surf, A Physicochem Eng Asp 364(1–3):34–41

    Article  CAS  Google Scholar 

  20. Fayaz AM, Girilal M et al (2011) Biosynthesis of anisotropic gold nanoparticles using Maduca longifolia extract and their potential in infrared absorption. Colloids Surf B Biointerfaces 88(1):287–291

    Article  PubMed  Google Scholar 

  21. Ismail EH, Saqer AMA et al (2018) Successful green synthesis of gold nanoparticles using a Corchorus olitorius extract and their antiproliferative effect in cancer cells. Int J Mol Sci 19(9):2612

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rajeshkumar S, Malarkodi C et al (2016) Anticancer and enhanced antimicrobial activity of biosynthesized silver nanoparticles against clinical pathogens. J Mol Struct 1116:165–73

    Article  CAS  Google Scholar 

  23. Setia A, Mehata AK, Malik AK, Viswanadh MK, Muthu MS (2023) Theranostic magnetic nanoparticles: synthesis, properties, toxicity, and emerging trends for biomedical applications. J Drug Delivery Sci Technol 81:104295

  24. Tiar OH, Julkapli NM et al (2024) Mechanical performance and fracture surface analysis of fatty acid-coated iron oxide-reinforced nitrile butadiene composites. Polym Bull 81(1):521–533

    Article  CAS  Google Scholar 

  25. Naveen P, Kaur K et al (2021) Green synthesis: an eco-friendly route for the synthesis of iron oxide nanoparticles. Front Nanotechnol 3:655062

    Article  Google Scholar 

  26. Ovejero JG, Armenia I et al (2021) Selective magnetic nanoheating: combining iron oxide nanoparticles for multi-hot-spot induction and sequential regulation. Nano Let 21(17):7213–7220

    Article  CAS  Google Scholar 

  27. Tran PA, Nguyen HT et al (2018) In vitro cytotoxicity of iron oxide nanoparticles: effects of chitosan and polyvinyl alcohol as stabilizing agents. Mater Res Express 5(3):035051

    Article  Google Scholar 

  28. Ashrafizadeh M, Zarrabi A et al (2023) (Nano) platforms in breast cancer therapy: drug/gene delivery, advanced nanocarriers and immunotherapy. Med Res Rev 43(6):2115–2176

    Article  CAS  PubMed  Google Scholar 

  29. Virtanen PS, Ortiz KJ, Patel A, Blocher WA, Richardson AM (2024) Blood–brain barrier disruption for the treatment of primary brain tumors: advances in the past half-decade. Curr Oncol Rep 1–14

  30. Khan MJ, Karim Z (2021) Starch magnetic nanocomposites for gene delivery. In: polysaccharide-based nanocomposites for gene delivery and tissue engineering. Woodhead Publishing 295–309

  31. Bhandari V, Jose S et al (2022) Antimicrobial finishing of metals, metal oxides, and metal composites on textiles: a systematic review. Ind Eng Chem Res 61(1):86–101

    Article  CAS  Google Scholar 

  32. Zambri NDS, Taib NI et al (2019) Utilization of neem leaf extract on biosynthesis of iron oxide nanoparticles. Molecules 24(20):3803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fani M, Ghandehari F et al (2018) Biosynthesis of iron oxide nanoparticles by cytoplasmic extract of bacteria lactobacillus fermentum. J Med Chem Sci 1(2):28–30

    CAS  Google Scholar 

  34. Huang KC, Ehrman SH et al (2007) Synthesis of iron nanoparticles via chemical reduction with palladium ion seeds. Langmuir 23(3):1419–1426

    Article  CAS  PubMed  Google Scholar 

  35. Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1(5):482–501

    Article  CAS  PubMed  Google Scholar 

  36. Logan NA, Rodríguez‐Díaz M (2006) Bacillus spp. and related genera. Principles and Practice of Clinical Bacteriology 139–158

  37. Mondal A, Mukherjee A, Pal R (2023) Phycosynthesis of nanoiron particles and their applications-a review. Biocatal Agric Biotechnol 102986

  38. Borriss R (2020) Bacillus. In Beneficial microbes in agro-ecology. Academic Press 107–132

  39. Magiorakos AP, Srinivasan A et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3):268–281

    Article  CAS  PubMed  Google Scholar 

  40. Nadagouda MN, Castle AB, Murdock RC, Hussain SM, Varma RS (2010) In vitro biocompatibility of nanoscale zerovalent iron particles (NZVI) synthesized using tea polyphenols. Green Chem 12(1):114–122

  41. Saravanan M, Gopinath V et al (2018) Green synthesis of anisotropic zinc oxide nanoparticles with antibacterial and cytofriendly properties. Microb Pathog 115:57–63

    Article  CAS  PubMed  Google Scholar 

  42. Wang N, Hsu C et al (2013) Influence of metal oxide nanoparticles concentration on their zeta potential. J Colloid Interface Sci 407:22–28

    Article  CAS  PubMed  Google Scholar 

  43. Cho WS, Duffin R et al (2012) Zeta potential and solubility to toxic ions as mechanisms of lung inflammation caused by metal/metal oxide nanoparticles. Toxicol Sci 126(2):469–477

    Article  CAS  PubMed  Google Scholar 

  44. Bhattacharjee S (2016) DLS and zeta potential–what they are and what they are not? J Control Release 235:337–351

    Article  CAS  PubMed  Google Scholar 

  45. Cursaru LM, Piticescu RM et al (2020) The influence of synthesis parameters on structural and magnetic properties of iron oxide nanomaterials. Nanomaterials 10(1):85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gutiérrez L, De la Cueva L et al (2019) Aggregation effects on the magnetic properties of iron oxide colloids. Nanotech 30(11):112001

    Article  Google Scholar 

  47. Gutiérrez L, De la Cueva L et al (2011) Near infra red spectroscopy—an overview. Int J ChemTech Res 3(2):825–836

    Google Scholar 

  48. Budzak S, Laurent AD et al (2016) Solvatochromic shifts in UV–Vis absorption spectra: the challenging case of 4-nitropyridine N-oxide. J Chem Theory Comput 12(4):1919–1929

    Article  CAS  PubMed  Google Scholar 

  49. Akash MSH, Rehman K, Akash MSH, Rehman K (2020) Ultraviolet-visible (UV-VIS) spectroscopy. Essentials of Pharmaceutical Analysis 29–56

  50. Rance GA, Marsh DH et al (2010) UV–vis absorption spectroscopy of carbon nanotubes: relationship between the π-electron plasmon and nanotube diameter. Chem Phys Lett 493(1–3):19–23

    Article  CAS  Google Scholar 

  51. Hajiali S, Daneshjou S et al (2022) Biomimetic synthesis of iron oxide nanoparticles from Bacillus megaterium to be used in hyperthermia therapy. AMB Express 12(1):145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ghani S, Rafiee B et al (2017) Biosynthesis of iron nano-particles by Bacillus megaterium and its anti-bacterial properties. J Babol Univ Med Sci 19(7):13–19

    Google Scholar 

  53. Fani M, Ghandehari F et al (2019) Study on the antimicrobial effects of iron oxide nanoparticles synthesized by cytoplasmic extract of lactobacillus fermentum. New Cell Mol Biotech J 9(36):89–96

    Google Scholar 

  54. Seil JT (2012) Webster, Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedicine 7:2767

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Khatami M, Aflatoonian MR et al (2017) Evaluation of antibacterial activity of iron oxide nanoparticles against Escherichia coli. Int J Basic Sci Med 2(4):166–169

    Article  Google Scholar 

  56. Harikrishnan AM, Chowdhury ZZ, Rana M, Ali AE, Mitra A, Rafique RF, Johan RB (2024) Green synthesis of iron oxide nanoparticles and its application in water treatment. In wastewater treatment using green synthesis. CRC Press 28–46

  57. ScafaUdriște A, Burdușel AC et al (2024) Metal-based nanoparticles for cardiovascular diseases. Int J Mol Sci 25(2):1001

    Article  Google Scholar 

  58. Flieger J, Pasieczna-Patkowska S et al (2024) Characteristics and antimicrobial activities of iron oxide nanoparticles obtained via mixed-mode chemical/biogenic synthesis using spent hop (Humulus lupulus L.) extracts. Antibiotics 13(2):111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Daramola OB, George RC et al (2024) Insights on the synthesis of iron-oxide nanoparticles and the detection of iron-reducing genes from soil microbes. Colloids Surf C: Environ Aspect 2:100025

    Google Scholar 

  60. Khatoon N, Alam H et al (2019) Ampicillin silver nanoformulations against multidrug resistant bacteria. Sci Rep 9(1):6848

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed 1227–1249

  62. Gabrielyan L, Trchounian A (2019) Antibacterial activities of transient metals nanoparticles and membranous mechanisms of action. World J Microbiol Biotechnol 35:162

    Article  PubMed  Google Scholar 

  63. Khatoon N, Alam H et al (2019) Silver-coated magnetic nanocomposites induce growth inhibition and protein changes in foodborne bacteria. Sci Rep 9(1):17499

    Article  Google Scholar 

  64. Torabian P, Ghandehari F et al (2019) Evaluating antibacterial effect of green synthesis oxide iron nanoparticles using cytoplasmic extract of Lactobacillus casei. J Babol Univ Med Sci 21(1):237–241

    Google Scholar 

  65. Zhang L, Jiang Y et al (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopartic Res 9(3):479–89

    Article  Google Scholar 

  66. Vazquez-Muñoz R, Avalos-Borja M et al (2014) Ultrastructural analysis of Candida albicans when exposed to silver nanoparticles. PLoS One 9(10):e108876

    Article  PubMed  PubMed Central  Google Scholar 

  67. Mishra D, Arora R et al (2014) Synthesis and characterization of iron oxide nanoparticles by solvothermal method. Prot Met Phys Chem 50(5):628–631

    CAS  Google Scholar 

  68. Emamifar A, Kadivar M et al (2011) Effect of nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice. Food Control 22(3–4):408–413

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is based upon research funded by the Iran National Science Foundation (INSF) under project No. 4020437.

Author information

Authors and Affiliations

Authors

Contributions

S.H: data curation, formal analysis, investigation, methodology, visualization, writing – original draft. S.D: data curation, formal analysis, investigation, methodology, project administration, supervision, validation, visualization, funding acquisition, writing – review and editing. S.D: data curation, methodology, software, writing – review and editing. Kh.K: visualization, investigation, software, methodology, writing – review and editing.

Corresponding author

Correspondence to Sara Daneshjou.

Ethics declarations

Ethics Approval and Consent to Participate

This article does not contain any studies with human participants or animals.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajiali, S., Daneshjou, S., Daneshjoo, S. et al. Biosynthesis Optimization of Antibacterial-Magnetic Iron Oxide Nanoparticles from Bacillus megaterium. Biol Trace Elem Res (2024). https://doi.org/10.1007/s12011-024-04168-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12011-024-04168-7

Keywords

Navigation